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* When hs(z) = Al|z||1, the proximal operator becomes

prox. ;. (z) = max(0, |z| — yA) - sign(z) 1Py

—7A

P~ X : soft thresholding

* |STA algorithm (iterative soft thresholding):
Znt1 = ProX, p.(zn — 1 Vhi(zn))
Vhi(z,) = —D*'(z — Dz,)
Znt1 = pya((1 =yD* D)z, +yD" )

- converges in sublinear time O(1/n) if v € (0,1/||D* D||)
* FISTA [Beck and Teboulle,'09|;

- adds Nesterov momentum.

- proven accelerated convergence O(1/n?)
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* [he Lasso (sparse coding operator) can be implemented

as a specific deep network

* Can we accelerate the sparse inference with a shallower
network, with trained parameters?
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_Objectives

e Random Forests and [DNNs.
e Deformable Parts Model and CNINs.
* Structured Output Prediction

- Graph Transformer Networks
- CRFs and MRFs.
- Examples: Detection, Segmentation, Pose Estimation.

* Embeddings

e Extensions to non-kEuclidean domains

- Spectral Networks
- Spatial Transformer Networks



B ~ Review: Decision lrees -
. Let r = {(xl, yl), (azT yT)} be the mput data
with x; € RV.

* Each node of the three selects a variable and splits using
a threshold.
0 CRY — (0 +1,Q“j)
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Review: Decision Irees

Let r = {(:L'l, yl), (:UT yT)} be the mput data
* with z; € RN,
* Each node of the three selects a variable and splits using
a threshold.
Q) c RY — (9 ot QL)
0l = Q! U 0=, N
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The leaves {v} of the tree define a partition of the input space into
cubic sections:

Q];O:{CEERN;Ozk,n<£€n§ﬁk,n\V/7L§N
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The leaves {v} of the tree define a partition of the input space into
cubic sections:

ngo:{xERN;O‘k,n<xn§5k,nvn§N

VK
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* Fach split optimizes the entropy In the abel distribution:

7 e

ply |z € Q7l;+1) IIl




* A decision tree can capture interactions between
different variables, but 1t Is very noisy (le unstable).

* Bvaluation and training are extremely efficient.



* A decision tree can capture interactions between

different variables, but 1t Is very noisy (le unstable).

~valuation and training are extremely efficient.

By appropriately introducing randomization, we can

construct an ensemble of random trees: the so-called
random forests.
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Random Forests

* A decision tree can capture interactions between
different variables, but 1t Is very noisy (le unstable).

* Bvaluation and training are extremely efficient.
* By appropriately introducing randomization, we can

construct an ensemble of random trees: the so-called

random forests.

* We draw bootstrapped samp

es of the training set, and

each split In the tree I1s calculated only on a small random
subset of variables (typically of size O(VN)).

* The prediction Is the aggregate prediction (le voting) of

each tree.
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* Successful across a wide range of classification and
regression problems.

Real- Time Pose
Estimation
from Kinect

measurements
(C\/PR’ | | )

LIRS @

(fisure from Ch. Wolf slides)
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ow to write a

Decision Tree In terms of a network?
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 Q: How to write a Decision Tree In terms of a network!?
(6i17b’i1)

(67;2, bz2)

(Gij 3 bij)

- Each node in the tree amounts to a comparison of the form
<£If’ 6ij> S bij
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e Let W = (e;,,€4,,...,¢€i5) € RZXN (§: number of nodes)

eLet b= (b, bi,,...,b.) € R® (L: number of leaves)
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e Let W = (e;,,€4,,...,¢€i5) € RZXN (§: number of nodes)
eLet b= (b;,,b;,,..., b)) €R® (L: number of leaves)
e Let y = sign(Wx + b)

JFor each leaf [, let v; = (£1,...,%1) encoding the tree path,
and V = (vq,...,v;) € REXS,
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e Let W = (e;,,€4,,...,¢€i5) € RZXN (§: number of nodes)

eLet b= (b, bi,,...,b.) € R® (L: number of leaves)

e Let y = sign(Wx + b)
JFor each leaf [, let v; = (£1,...,%1) encoding the tree path,
and V = (vy,...,v;) € REXS,

"Let b= (k1,...,kr) the depth of each leaf.
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e Let W = (e;,,€4,,...,¢€i5) € RZXN (§: number of nodes)

eLet b= (b, bi,,...,b.) € R® (L: number of leaves)

e Let y = sign(Wx + b)
JFor each leaf [, let v; = (£1,...,%1) encoding the tree path,
and V = (vy,...,v;) € REXS,

"Let b= (k1,...,kr) the depth of each leaf.

Let ®(z) = sign(Vy — b)
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- Embed RF into Deep Neural Networks?

poV

®(7)

e &(x) € RV is a one-hot vector encoding x € QOL_, [ < L.

(xeﬂfm@@(x)l:1,<I>(x)k:0,k7él)

* A decision tree can thus be thought as a special two-

layer network.
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- Embed RF into Deep Neural Networks?

®(7)

poV

e &(x) € RV is a one-hot vector encoding x € QOL_, [ < L.
(z € Q= d(x), =1, () =0,k #1)

* [he Random Forest Is obtained with an ensemble of

two-layer networks.

* [raining Is radically different: greedy in RF versus gradient
descent In Deep Learning.
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* Random Forests thus also consider piecewise linear
regions of the Input space.

* However the encoding of these regions Is different from
that of a deep RelLlU network.

» Computationally more efficient

* No gradient descent training

* | ess expressive
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* Random Forests thus also consider piecewise linear
regions of the input space.

* However the encoding of these regions Is different from
that of a deep RelLlU network.

» Computationally more efficient
* No gradient descent training
* | ess expressive

* One can also combine both models (eg “Deep Neural
Decision Forests”, [Kontscheider et al, MSR, [ 5]).
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classification classification and localization

single object problems

24



object detection semantic segmentation

9 ¢¢ 9 ¢¢

{“bicycle”,“man”,“woman”,
I multiple object problems
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- Defo
~ [Fisch

”mab\e

er & Elsch

Parts Model
ager 73 Felzenszwalb & Huttenlocher OO]

* [t Is a graphical model with two key components:

- Farts: local structures or templates.

- Springs: Connections between parts encoding our geometric prior.

Image: [Felzenszwalb and Huttenlocher 05]

(figure credit: Ross Girshick)
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_ Deformable Parts Model

o

root part

SCIENRTS

e Inturtion:

- Modeling each subpart is easier than modeling whole objects
because they are shared across different instances.
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o

root part

e Inturtion:

- Modeling each subpart is easier than modeling whole objects
because they are shared across different instances.

- The model also needs to capture the typical deformation between
pDarts.

- Parts can be erther localized in space or global it extracted from low-
frequency measurements (MultiResolution Analysis such as Laplacian
Pyramid).
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* Typically we start by extracting multi-resolution features,
erther by a predefined transform (such as SIFT, HoG,
Scattering) or using CNN features:

7 i Q

(u) ()
/ __ | multiresolution N /
74

feature extraction
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* Typically we start by extracting multi-resolution features,
erther by a predefined transform (such as SIFT, HoG,
Scattering) or using CNN features:

()
/ multiresolution /

feature extraction

* Deformations on coordinates & model more general
transformations (rotations, dilations, appearance, etc.)

30



e A DP model for an object with n parts is given
by a (n + 2)-tuple (Fy, P1,..., P,,b) where:

- Fy: root filter.

- b: bias term

- P, = (F;,v;,d;) part model, where Fj is
the filter for part 2, v; the anchor and
d; specifies deformation cost wrt anchor.



e A DP model for an object with n parts is given
by a (n + 2)-tuple (Fy, P1,..., P,,b) where:

- Fy: root filter.

- b: bias term

- P, = (F;,v;,d;) part model, where Fj is
the filter for part 2, v; the anchor and
d; specifies deformation cost wrt anchor.

- An object hypothesis specifies the locations of root and parts:

Z:(p()v"')pn) y pZEQ
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* An object hypothesis specifies the locations of root and
parts: 2= (po,...,pn) , pi €K

* [ he score of an object hypothesis S
E(z) = ZF*x ZdT pi — (po +vi)) + 0.
1=0

¢(7’): deformation features (typically first two moments |7|;, |T|?)

33



Deformable Parts Model

* An object hypothesis specifies the locations of root and
parts. 2= (po,--+Pn) > Di €

* [ he score of an object hypothesis S
E(z) = ZF*$ ZdT pi — (po +vi)) + 0.
1=0

¢(7’): deformation features (typically first two moments |7|;, ‘7‘|?)

* Efficient implementation using dynamic programming.

* Extension to Include mixture models for objects.
* Trained with Latent SVM.
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"Object Detection with discriminatively trained
Deformable Parts Model”, Felzenszwalb, Girshick et al. PAMI' O
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"Object Detection with
discriminatively trained
Deformable Parts

Model”, Felzenszwalb,
Girshick et al. [0

response of part filters

response of root filter

color encoding of filter
response values

low value high value

combined score of
root locations




YR y A -
- ¥

e State-of-the-art in PASCAL bbject detection p

* Model contains “convolutions with penalized of

» Can we relate 1t to generic CNNs?
37



* [he optimization of part offsets with respect to the
anchor Is a distance transform:

The distance transform of z : {2 —+ R is a
function D, : Q — R defined by D,(u) = maxz(q) — d(u — q)
q

DPM: d(r) = ri Ar + br quadratic form
Max-Pooling: d(r) = { 0 if[r[ <K,

o0 oOtherwise .
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* [he optimization of part offsets with respect to the
anchor Is a distance transform:

The distance transform of z : {2 —+ R is a
function D, : Q — R defined by D,(u) = maxz(q) — d(u — q)
q

DPM: d(r) = ri Ar + br quadratic form
Max-Pooling: d(r) = { 0 if[r[ <K,

o0 oOtherwise .

e Therefore, one can train a DPM end-to-end as a
particular instance of a CNN.
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Single-component DPM-CNN !

(1) Convolve feature pyramid level / (2) Compute distance transforms (3) Sum root and transformed part maps
with filters from DPM component ¢ \1 (DT) of part convolution maps \P+1
Output:
: DPM
root convolution B stack > ® @ component ¢’s
map stacked maps . :
L object detection scores
® geometry fOI’ pyramld
root DT filter level [
Input: ® PR e ~pooling -~ 71 TS
conv5 pyramid I@—h art l[toP-1 ¢ >, DT of conv. ¢
pa 1/7\ conv. maps __~“ N maps _7 ) )
level / e e ik \i Sidebar: example object geometry filter (Section 2.2.2)
® 1
p DT =(1,2)
256 feature channels part part P pooling DT of part P 1. 1
convolution [ convolution P
map map root
A simple DPM  Object geometry Object geometry
with one part filter (channel 1) filter (channel 2)

* Large Im

P

e State-of-

‘he-ar

[Girshick et al, CVPR'| 5]

brovement from using handcrafted features.

L amongst “sliding windows™ methods, 1.e.

translation inva

rlant.
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* Suppose that for each bounding box we ask: Is there a
{house, bicycle, dog, man, ..., none} !

4]



* Suppose that for each bounding box we ask: Is there a
{house, bicycle, dog, man, ..., none} !

* This Is standard object classification.
42



R-CNN [R. Girshick et al, [4-15]

* Rather than testing every possible rectangular region, we

rely on a Region Proposal algorithm (which can also be
done by a CNN).

* Fach proposal region Is warped and analyzed with
another CNN.




* Several iImprovements relating speed and performance
(Fast R-CNN, Faster R-CNN) and replacing pre-trained
CNN architectures (ResNet).

80 B \/OC 2007
B VOC 2010

60

Mean Average Precision (mAP)

40
20
0
DPM (2011) Regionlets R-CNN R-CNN + R-CNN
(2013) (2014, bbox reg (VGG-16)
AlexNet) (AlexNet)

(figure credit: Stanford CS-23 In lecture 8,
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* Standard classification i1s only concerned with estimating
conditional probabilities of the form p(y | =)

reX —ye)y Y ={s1,...,s1} (classification)
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* Standard classification i1s only concerned with estimating
conditional probabilities of the form p(y | =)

reX —ye)y Y ={s1,...,s1} (classification)

* [he previous task was an example of structured output
prediction:

reX — Y S (yv :u)
u(y) models the output unconditional probability.
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e Standard classr

lcation 1s on

conditional pro

reX —ye)

pablilities of t

y concerned with estimating

ne form p(y | =)

Y ={s1,...,s1} (classification)

* [he previous task was an example of structured output

prediction:

reX —ye (Y p

u(y) models the output unconditional probability.

* Q: How to regularize the estimation of p(y | z) with

1(y)

47



* Examples:

- Natural Language Processing: Translation, Summarization, Question
Answering.

- Image Segmentation.

- Speech Recognition,

* Probabllistic Graphical Models are generic structured
prediction models.

- Bayesian Networks

- Markov Random Fields

- Sequence-to-Sequence Models (in a future lecture).

* Other models also considered (e.g. Structured SVM)

48



oSuppose y:(yl,...,ys,...>,

yS
BDROYP S PO

yl

oIf p(y|z)=]]rW |2),the outputs are conditionally
iIndependent: we can estimate them separately.
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S

* Suppose ¥ = (y'5 -+, y°, .. ).

S

Y

yl

* But when we Introduce statistical dependencies across
outputs, the general model becomes

CXp (_F(y7 Ly @))
A

ply | x) =

50



* Broad class of probabilistic models that express a joint
distribution as a product of factors.

* [he dependency Is expressed in terms of a graph:

Q-G (source: wikipedia)

p(Xq,...,X,) = P(X; | P;)

P,;: context assomated with X,

* Many Instances: trees, factor graphs, Restricted Boltzmann
machines (more on that later), Markov random fields,. ..

51



best
segmentation

* [Bottou, Bengio & LeCun, '9/]

* Graphical model over possible
“segmentations’ of
handwritten characters

picks the path with
the lowest accumulated
penalty

3[0.1] 43.4] 1[0.2] 2[0.7]

scored character

candidates
8[5.2] 4[1.1]

gives low penalties
to well-formed characters

* Used commercially to read
~10% checks in the US (1996).

segmentation
graph

cuts a word into
pieces of ink

image of a word
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* Many problems ask to predict an output with temporal

O/‘

Nnal

* A

undi

S
LU
\4

DA
"d

lal structure (eg speech, Image (segmentation),
language text).

al

<ov Random Field I1s a graphical model on an

rected graph:
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* A Markov Random Field 1s a graphical model on an
undirected graph:

yl

G = (V,E)

X

Markov Property:

* Inference Is Intractable for general graphs

— trees and chains are exceptions

— Algorithms for approximate inference: message passing, Viterbi, mean

field inference.
54



* In Images, pixels form a 2D lattice graph:

* In pixe

configL

ply | x) =

la

'a

DE

10

ing tasks (le segmentation), the output

n probabillity 1s expressed as
e_E(yax)

/

, (Z : partition function)
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e~ E(y,r)

/

ply | z) = , (Z : partition function)

E(yv 213) — Zw’M(yv ZB) -+ Z %,v(% aj)

UFV

Y, “unary” potentials measure cost of pixel u being labeled v,,.

Yy.v: palrwise potentials measure cost of jointly assigning labels
Yu, Yo at pixels u and v.

* unary potentials predict labels at each location as if they
were Independent from the rest

* palrwise potentials provide data-dependent smoothing.
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CRFs as Convolutional Neural Networks

* An approximate posterior inference for the CRF model Is
done with mean-field approximation:

Approximate p(y | ) with q(y | ) =[], ¢:(y: | x) iteratively.

* One can also consider belief propagation as an
alternative to mean-field approximation (see http://
www.eecs.berkeley.edu/~wainwrig/ Talks/
A_GraphModel_Tutorial for a great tutoriall )

57


http://www.eecs.berkeley.edu/~wainwrig/Talks/A_GraphModel_Tutorial

*[Zheng et al, | 5]

approximate

message pass|

* [he system can be efficiently
trained end-to-end.

Y

FCN

» CRF-RNN

‘he mean-field

ng rterations
with CNN layers with
shared parameters.

58

Algorithm 1 Mean-field in dense CRFs [27], broken down
to common CNN operations.
Qi(l) + Z% exp (U;(1)) for all ¢
while not converged do
Q™ (1) <= X0, K™ (£, £;)Q; (1) for all m
> Message Passing

> Initialization

Q1) = 32, 0™ Q™ (1)
) ) > Weighting Filter Outputs
Q%(l) — Zl’eﬁ ,U,(l, l/)Q’L (l)

v

Qi(l) « Ui(l) — Qi(l)

> Compatibility Transform

> Adding Unary Potentials
Qi + 5= exp (Qz‘(l))

> Normalizing

end while
fo
U ;777 7 mmm T T T T T T T T T T T T T s e e e,
Qin : (/] © L §
— S ;O NS A o >

L] S8 ES & & §
1 sQQ’% §q} o@(zyg) Y‘b o'\@ Qout =
' ox <~ f9 (U) Q |

_____________________________________________________________

Figure 1. A mean-field iteration as a CNN. A single iteration of

the mean-field algorithm can be modelled as a stack of common
CNN layers.



* Results from [Zheng et al, [CCV' | 5]

Input Image FCN-8s

)

Deeplab CRF-RNN Ground Truth

i
[

B—ground | Aeroplane| Biecycle Boat Bottle Bus

Chair , Dinging-table Horse

Motorbike Potted-Plant Sofa ' o TV/Monitor
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* The CRF approximation is a specific CNN model.

* [Long, Shelhamer et al,l CVPR'I5] proposed a simpler CNN
archrtecture that also produces excellent results.

* |dea: Combine outputs from different layers and refine the
spatial resolution of the output.

convolutlonallzatxon

“tabby cat”

| |

S
XS
0&

tabby cat heatma

21

* See also “Learning to Segment
Candidates” [Pinheiro et al' | 5].
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ompson €

uman muscle |

- al, N

CNN and M

oints are very structured.

PS'14] considered a joint training of

arkov Random Fields.
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modeled as co
* [he marginal |

* [ he pairwise poten

Shoulder Unary fs

<ellhooa
1

B

s for each part a
p(Alz)=—]]wA]| B z)~pB

* [he unary potentials are modeled as detection CNNS.

ials between different parts are
nvolutional priors.

re of the form
w) + bB—>A)

(bp_a: bias term for the mssage from B to A)

Shoulder » Face

' Shoulder

|
|
|
|
|
|
f |
|
|
|
|
|
|
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Shoulder » Shoulder

s|s

Face Unary

Shoulder Unary



