
Stat 212b: Topics in Deep Learning
Lecture 9

Joan Bruna
UC Berkeley

1

Review: Proximal Splitting and ISTA

•

• ISTA algorithm (iterative soft thresholding):

- converges in sublinear time if
• FISTA [Beck and Teboulle,’09]:

- adds Nesterov momentum.
- proven accelerated convergence

When h2(z) = �kzk1, the proximal operator becomes

prox�h2
(z) = max(0, |z|� ��) · sign(z)

: soft thresholding
��

���

zn+1 = prox�nh2
(zn � �nrh1(zn))

rh1(zn) = �D

T (x�Dzn)
zn+1 = ⇢��((1� �D

T
D)zn + �D

T
x)

⇢��

⇢��

O(1/n2)

O(1/n) � 2 (0, 1/kDTDk)

2

Review:From supervised Lasso to DNNs

• The Lasso (sparse coding operator) can be implemented
as a specific deep network

• Can we accelerate the sparse inference with a shallower
network, with trained parameters?

V ⇢ ⇢ ⇢V V
0

�D

t
x

z = �(x)

3

⇢ ⇢ ⇢0

x

W

S S S

F (x,W, S)
M steps

Objectives

• Random Forests and DNNs.
• Deformable Parts Model and CNNs.
• Structured Output Prediction

- Graph Transformer Networks
- CRFs and MRFs.
- Examples: Detection, Segmentation, Pose Estimation.

• Embeddings

• Extensions to non-Euclidean domains
- Spectral Networks
- Spatial Transformer Networks

4

Review: Decision Trees
•
• Each node of the three selects a variable and splits using

a threshold.

5

Let x = {(x1, y1), . . . , (xT , yT)} be the input data,
with xi 2 RN .

⌦j
i ⇢ RN ! (⌦l

i+1,⌦
l+1
i+1)

⌦j
i = ⌦l

i+1 [⌦l+1
i+1 , ; = ⌦l

i+1 \ ⌦l+1
i+1

Review: Decision Trees
•
• Each node of the three selects a variable and splits using

a threshold.

6

Let x = {(x1, y1), . . . , (xT , yT)} be the input data,
with xi 2 RN .

v1
v2

vK

⌦j
i ⇢ RN ! (⌦l

i+1,⌦
l+1
i+1)

⌦j
i = ⌦l

i+1 [⌦l+1
i+1 , ; = ⌦l

i+1 \ ⌦l+1
i+1

⌦0
0 = RN

⌦0
1 ⌦1

1

Decision Trees

7

v1
v2

vK

The leaves {vk} of the tree define a partition of the input space into

cubic sections:

⌦k
1 = {x 2 RN ; ↵k,n  xn  �k,n 8n  N}

Decision Trees

• Each split optimizes the entropy in the label distribution:

8

v1
v2

vK

p(y | x 2 ⌦j
i)

p(y | x 2 ⌦l
i+1) p(y | x 2 ⌦l+1

i+1)

The leaves {vk} of the tree define a partition of the input space into

cubic sections:

⌦k
1 = {x 2 RN ; ↵k,n  xn  �k,n 8n  N}

Random Forests

• A decision tree can capture interactions between
different variables, but it is very noisy (ie unstable).

• Evaluation and training are extremely efficient.

9

Random Forests

• A decision tree can capture interactions between
different variables, but it is very noisy (ie unstable).

• Evaluation and training are extremely efficient.
• By appropriately introducing randomization, we can

construct an ensemble of random trees: the so-called
random forests.

10

Random Forests

• A decision tree can capture interactions between
different variables, but it is very noisy (ie unstable).

• Evaluation and training are extremely efficient.
• By appropriately introducing randomization, we can

construct an ensemble of random trees: the so-called
random forests.

• We draw bootstrapped samples of the training set, and
each split in the tree is calculated only on a small random
subset of variables (typically of size).

• The prediction is the aggregate prediction (ie voting) of
each tree.

11

O(
p
N)

Random Forests

• Successful across a wide range of classification and
regression problems.

12

Examples

Figure 5. Example inferences. Synthetic (top row); real (middle); failure modes (bottom). Left column: ground truth for a neutral pose as
a reference. In each example we see the depth image, the inferred most likely body part labels, and the joint proposals show as front, right,
and top views (overlaid on a depth point cloud). Only the most confident proposal for each joint above a fixed, shared threshold is shown.

To keep the training times down we employ a distributed
implementation. Training 3 trees to depth 20 from 1 million
images takes about a day on a 1000 core cluster.

3.4. Joint position proposals
Body part recognition as described above infers per-pixel

information. This information must now be pooled across
pixels to generate reliable proposals for the positions of 3D
skeletal joints. These proposals are the final output of our
algorithm, and could be used by a tracking algorithm to self-
initialize and recover from failure.

A simple option is to accumulate the global 3D centers
of probability mass for each part, using the known cali-
brated depth. However, outlying pixels severely degrade
the quality of such a global estimate. Instead we employ a
local mode-finding approach based on mean shift [10] with
a weighted Gaussian kernel.

We define a density estimator per body part as

fc(ˆx) /
NX

i=1

wic exp

�
����
ˆ

x� ˆ

xi

bc

����
2
!

, (7)

where ˆ

x is a coordinate in 3D world space, N is the number
of image pixels, wic is a pixel weighting, ˆxi is the reprojec-
tion of image pixel xi into world space given depth dI(xi),
and bc is a learned per-part bandwidth. The pixel weighting
wic considers both the inferred body part probability at the
pixel and the world surface area of the pixel:

wic = P (c|I,xi) · dI(xi)
2 . (8)

This ensures density estimates are depth invariant and gave
a small but significant improvement in joint prediction ac-
curacy. Depending on the definition of body parts, the pos-
terior P (c|I,x) can be pre-accumulated over a small set of
parts. For example, in our experiments the four body parts
covering the head are merged to localize the head joint.

Mean shift is used to find modes in this density effi-
ciently. All pixels above a learned probability threshold �c

are used as starting points for part c. A final confidence es-
timate is given as a sum of the pixel weights reaching each
mode. This proved more reliable than taking the modal den-
sity estimate.

The detected modes lie on the surface of the body. Each
mode is therefore pushed back into the scene by a learned
z offset ⇣c to produce a final joint position proposal. This
simple, efficient approach works well in practice. The band-
widths bc, probability threshold �c, and surface-to-interior
z offset ⇣c are optimized per-part on a hold-out validation
set of 5000 images by grid search. (As an indication, this
resulted in mean bandwidth 0.065m, probability threshold
0.14, and z offset 0.039m).

4. Experiments
In this section we describe the experiments performed to

evaluate our method. We show both qualitative and quan-
titative results on several challenging datasets, and com-
pare with both nearest-neighbor approaches and the state
of the art [13]. We provide further results in the supple-
mentary material. Unless otherwise specified, parameters
below were set as: 3 trees, 20 deep, 300k training images
per tree, 2000 training example pixels per image, 2000 can-
didate features ✓, and 50 candidate thresholds ⌧ per feature.
Test data. We use challenging synthetic and real depth im-
ages to evaluate our approach. For our synthetic test set,
we synthesize 5000 depth images, together with the ground
truth body part labels and joint positions. The original mo-
cap poses used to generate these images are held out from
the training data. Our real test set consists of 8808 frames of
real depth images over 15 different subjects, hand-labeled
with dense body parts and 7 upper body joint positions. We
also evaluate on the real depth data from [13]. The results
suggest that effects seen on synthetic data are mirrored in
the real data, and further that our synthetic test set is by far
the ‘hardest’ due to the extreme variability in pose and body
shape. For most experiments we limit the rotation of the
user to ±120

� in both training and synthetic test data since
the user is facing the camera (0�) in our main entertainment
scenario, though we also evaluate the full 360� scenario.
Error metrics. We quantify both classification and joint
prediction accuracy. For classification, we report the av-
erage per-class accuracy, i.e. the average of the diagonal of
the confusion matrix between the ground truth part label and
the most likely inferred part label. This metric weights each

Figure 5. Example inferences. Synthetic (top row); real (middle); failure modes (bottom). Left column: ground truth for a neutral pose as
a reference. In each example we see the depth image, the inferred most likely body part labels, and the joint proposals show as front, right,
and top views (overlaid on a depth point cloud). Only the most confident proposal for each joint above a fixed, shared threshold is shown.

To keep the training times down we employ a distributed
implementation. Training 3 trees to depth 20 from 1 million
images takes about a day on a 1000 core cluster.

3.4. Joint position proposals
Body part recognition as described above infers per-pixel

information. This information must now be pooled across
pixels to generate reliable proposals for the positions of 3D
skeletal joints. These proposals are the final output of our
algorithm, and could be used by a tracking algorithm to self-
initialize and recover from failure.

A simple option is to accumulate the global 3D centers
of probability mass for each part, using the known cali-
brated depth. However, outlying pixels severely degrade
the quality of such a global estimate. Instead we employ a
local mode-finding approach based on mean shift [10] with
a weighted Gaussian kernel.

We define a density estimator per body part as

fc(ˆx) /
NX

i=1

wic exp

�
����
ˆ

x� ˆ

xi

bc

����
2
!

, (7)

where ˆ

x is a coordinate in 3D world space, N is the number
of image pixels, wic is a pixel weighting, ˆxi is the reprojec-
tion of image pixel xi into world space given depth dI(xi),
and bc is a learned per-part bandwidth. The pixel weighting
wic considers both the inferred body part probability at the
pixel and the world surface area of the pixel:

wic = P (c|I,xi) · dI(xi)
2 . (8)

This ensures density estimates are depth invariant and gave
a small but significant improvement in joint prediction ac-
curacy. Depending on the definition of body parts, the pos-
terior P (c|I,x) can be pre-accumulated over a small set of
parts. For example, in our experiments the four body parts
covering the head are merged to localize the head joint.

Mean shift is used to find modes in this density effi-
ciently. All pixels above a learned probability threshold �c

are used as starting points for part c. A final confidence es-
timate is given as a sum of the pixel weights reaching each
mode. This proved more reliable than taking the modal den-
sity estimate.

The detected modes lie on the surface of the body. Each
mode is therefore pushed back into the scene by a learned
z offset ⇣c to produce a final joint position proposal. This
simple, efficient approach works well in practice. The band-
widths bc, probability threshold �c, and surface-to-interior
z offset ⇣c are optimized per-part on a hold-out validation
set of 5000 images by grid search. (As an indication, this
resulted in mean bandwidth 0.065m, probability threshold
0.14, and z offset 0.039m).

4. Experiments
In this section we describe the experiments performed to

evaluate our method. We show both qualitative and quan-
titative results on several challenging datasets, and com-
pare with both nearest-neighbor approaches and the state
of the art [13]. We provide further results in the supple-
mentary material. Unless otherwise specified, parameters
below were set as: 3 trees, 20 deep, 300k training images
per tree, 2000 training example pixels per image, 2000 can-
didate features ✓, and 50 candidate thresholds ⌧ per feature.
Test data. We use challenging synthetic and real depth im-
ages to evaluate our approach. For our synthetic test set,
we synthesize 5000 depth images, together with the ground
truth body part labels and joint positions. The original mo-
cap poses used to generate these images are held out from
the training data. Our real test set consists of 8808 frames of
real depth images over 15 different subjects, hand-labeled
with dense body parts and 7 upper body joint positions. We
also evaluate on the real depth data from [13]. The results
suggest that effects seen on synthetic data are mirrored in
the real data, and further that our synthetic test set is by far
the ‘hardest’ due to the extreme variability in pose and body
shape. For most experiments we limit the rotation of the
user to ±120

� in both training and synthetic test data since
the user is facing the camera (0�) in our main entertainment
scenario, though we also evaluate the full 360� scenario.
Error metrics. We quantify both classification and joint
prediction accuracy. For classification, we report the av-
erage per-class accuracy, i.e. the average of the diagonal of
the confusion matrix between the ground truth part label and
the most likely inferred part label. This metric weights each

[Shotton et al., CVPR 2011]

(figure from Ch. Wolf slides)

Real-Time Pose
Estimation
from Kinect

measurements
(CVPR’11)

Embed RF into Deep Neural Networks?

• Q: How to write a Decision Tree in terms of a network?

13

v1
v2

vK

Embed RF into Deep Neural Networks?

• Q: How to write a Decision Tree in terms of a network?

- Each node in the tree amounts to a comparison of the form

14

hx, eij i  bij

(ei1 , bi1)

(ei2 , bi2)

(eij , bij)

Embed RF into Deep Neural Networks?

•
•

15

(ei1 , bi1)

(ei2 , bi2)

(eij , bij)

Let b = (bi1 , bi2 , . . . , biS) 2 RS

Let W = (ei1 , ei2 , . . . , eiS) 2 RS⇥N
(S: number of nodes)

(L: number of leaves)

Embed RF into Deep Neural Networks?

•
•
•
•

16

(ei1 , bi1)

(ei2 , bi2)

(eij , bij)

Let b = (bi1 , bi2 , . . . , biS) 2 RS

Let W = (ei1 , ei2 , . . . , eiS) 2 RS⇥N
(S: number of nodes)

Let y = sign(Wx+ b)

(L: number of leaves)

For each leaf l, let vl = (±1, . . . ,±1) encoding the tree path,

and V = (v1, . . . , vl) 2 RL⇥S
.

Embed RF into Deep Neural Networks?

•
•
•
•
•

17

(ei1 , bi1)

(ei2 , bi2)

(eij , bij)

Let b = (bi1 , bi2 , . . . , biS) 2 RS

Let W = (ei1 , ei2 , . . . , eiS) 2 RS⇥N
(S: number of nodes)

Let y = sign(Wx+ b)

(L: number of leaves)

For each leaf l, let vl = (±1, . . . ,±1) encoding the tree path,

and V = (v1, . . . , vl) 2 RL⇥S
.

Let

˜b = (k1, . . . , kL) the depth of each leaf.

Embed RF into Deep Neural Networks?

•
•
•
•
•

18

(ei1 , bi1)

(ei2 , bi2)

(eij , bij)

Let b = (bi1 , bi2 , . . . , biS) 2 RS

Let W = (ei1 , ei2 , . . . , eiS) 2 RS⇥N
(S: number of nodes)

Let y = sign(Wx+ b)

(L: number of leaves)

For each leaf l, let vl = (±1, . . . ,±1) encoding the tree path,

and V = (v1, . . . , vl) 2 RL⇥S
.

Let

˜b = (k1, . . . , kL) the depth of each leaf.

Let �(x) = sign(V y � b̃)

Embed RF into Deep Neural Networks?

19

(ei1 , bi1)

(ei2 , bi2)

(eij , bij)

x

y

=
sig
n(
W

x

+
b

)⇢ �W ⇢ � V �(x)

Embed RF into Deep Neural Networks?

•

• A decision tree can thus be thought as a special two-
layer network.

20

(ei1 , bi1)

(ei2 , bi2)

(eij , bij)

x

y

=
sig
n(
W

x

+
b

)⇢ �W ⇢ � V �(x)

�(x) 2 RL
is a one-hot vector encoding x 2 ⌦

l
1, l  L.�

x 2 ⌦l
1 , �(x)l = 1,�(x)k = 0 , k 6= l

�

Embed RF into Deep Neural Networks?

•

• The Random Forest is obtained with an ensemble of
two-layer networks.

• Training is radically different: greedy in RF versus gradient
descent in Deep Learning.

21

(ei1 , bi1)

(ei2 , bi2)

(eij , bij)

x

y

=
sig
n(
W

x

+
b

)⇢ �W ⇢ � V �(x)

�(x) 2 RL
is a one-hot vector encoding x 2 ⌦

l
1, l  L.�

x 2 ⌦l
1 , �(x)l = 1,�(x)k = 0 , k 6= l

�

Random Forests and CNNs

• Random Forests thus also consider piecewise linear
regions of the input space.

• However the encoding of these regions is different from
that of a deep ReLU network.

• Computationally more efficient
• No gradient descent training
• Less expressive

22

Random Forests and CNNs

• Random Forests thus also consider piecewise linear
regions of the input space.

• However the encoding of these regions is different from
that of a deep ReLU network.

• Computationally more efficient
• No gradient descent training
• Less expressive
• One can also combine both models (eg “Deep Neural

Decision Forests”, [Kontscheider et al, MSR,’15]).
23

Beyond Object Classification

24

“cat” “cat”

classification classification and localization

single object problems

Beyond Object Classification

25

{“bicycle”, “man”, “woman”,
“house”, “house”, “house”}

object detection semantic segmentation

multiple object problems

Deformable Parts Model

• It is a graphical model with two key components:
- Parts: local structures or templates.
- Springs: Connections between parts encoding our geometric prior.

26

[Fischler & Elschlager ‘73, Felzenszwalb & Huttenlocher ’00]
Part-based models

• Parts — local appearance templates

• “Springs” — spatial connections between parts (geom. prior)

Image: [Felzenszwalb and Huttenlocher 05]

(figure credit: Ross Girshick)

Part-based models

• Local appearance is easier to model than the global appearance

- Training data shared across deformations

- “part” can be local or global depending on resolution

• Generalizes to previously unseen configurations
Deformable Parts Model

• Intuition:
- Modeling each subpart is easier than modeling whole objects

because they are shared across different instances.

27

Star-structured deformable part models

test image “star” model detection

root part

Part-based models

• Local appearance is easier to model than the global appearance

- Training data shared across deformations

- “part” can be local or global depending on resolution

• Generalizes to previously unseen configurations
Deformable Parts Model

• Intuition:
- Modeling each subpart is easier than modeling whole objects

because they are shared across different instances.
- The model also needs to capture the typical deformation between

parts.
- Parts can be either localized in space or global if extracted from low-

frequency measurements (MultiResolution Analysis such as Laplacian
Pyramid).

28

Star-structured deformable part models

test image “star” model detection

root part

Deformable Parts Model

• Typically we start by extracting multi-resolution features,
either by a predefined transform (such as SIFT, HoG,
Scattering) or using CNN features:

29

multiresolution

feature extraction

x(u) x̃(ũ) ũ 2 ⌦̃

Deformable Parts Model

• Typically we start by extracting multi-resolution features,
either by a predefined transform (such as SIFT, HoG,
Scattering) or using CNN features:

• Deformations on coordinates model more general
transformations (rotations, dilations, appearance, etc.)

30

multiresolution

feature extraction

x(u) x̃(ũ)

ũ

ũ 2 ⌦̃

Deformable Parts Model

•

-
-
-

A DP model for an object with n parts is given

by a (n+ 2)-tuple (F0, P1, . . . , Pn, b) where:

F0: root filter.

Pi = (Fi, vi, di) part model, where Fi is

the filter for part i, vi the anchor and

di specifies deformation cost wrt anchor.

b: bias term

Deformable Parts Model

•

-
-
-

- An object hypothesis specifies the locations of root and parts:

32

A DP model for an object with n parts is given

by a (n+ 2)-tuple (F0, P1, . . . , Pn, b) where:

F0: root filter.

Pi = (Fi, vi, di) part model, where Fi is

the filter for part i, vi the anchor and

di specifies deformation cost wrt anchor.

b: bias term

z = (p0, . . . , pn) , pi 2 ⌦̃

root partp0

p1 p2

p3

• An object hypothesis specifies the locations of root and
parts:

• The score of an object hypothesis is

33

Deformable Parts Model

z = (p0, . . . , pn) , pi 2 ⌦̃

E(z) =
nX

i=0

(Fi ? x̃)(pi)�
nX

i=1

d

T
i �(pi � (p0 + vi)) + b .

�(⌧): deformation features

(typically first two moments |⌧ |j , |⌧ |2j)

• An object hypothesis specifies the locations of root and
parts:

• The score of an object hypothesis is

• Efficient implementation using dynamic programming.
• Extension to include mixture models for objects.
• Trained with Latent SVM.

34

Deformable Parts Model

z = (p0, . . . , pn) , pi 2 ⌦̃

E(z) =
nX

i=0

(Fi ? x̃)(pi)�
nX

i=1

d

T
i �(pi � (p0 + vi)) + b .

�(⌧): deformation features

(typically first two moments |⌧ |j , |⌧ |2j)

Deformable Parts Model

35

3

Fig. 2. Detections obtained with a 2 component bicycle model. These examples illustrate the importance of
deformations mixture models. In this model the first component captures sideways views of bicycles while the second
component captures frontal and near frontal views. The sideways component can deform to match a “wheelie”.

the background data to find a relatively small number
of potential false positives, or hard negative examples.

A methodology of data-mining for hard negative ex-
amples was adopted by Dalal and Triggs [10] but goes
back at least to the bootstrapping methods used by [38]
and [35]. Here we analyze data-mining algorithms for
SVM and LSVM training. We prove that data-mining
methods can be made to converge to the optimal model
defined in terms of the entire training set.

Our object models are defined by filters that score
subwindows of a feature pyramid. We have investigated
feature sets similar to the HOG features from [10] and
found lower dimensional features which perform as well
as the original ones. By doing principal component anal-
ysis on HOG features the dimensionality of the feature
vector can be significantly reduced with no noticeable
loss of information. Moreover, by examining the prin-
cipal eigenvectors we discover structure that leads to
“analytic” versions of low-dimensional features which
are easily interpretable and can be computed efficiently.

We have also considered some specific problems that
arise in the PASCAL object detection challenge and sim-
ilar datasets. We show how the locations of parts in an
object hypothesis can be used to predict a bounding box
for the object. This is done by training a model specific
predictor using least-squares regression. We also demon-
strate a simple method for aggregating the output of
several object detectors. The basic idea is that objects of

some categories provide evidence for, or against, objects
of other categories in the same image. We exploit this
idea by training a category specific classifier that rescores
every detection of that category using its original score
and the highest scoring detection from each of the other
categories.

2 RELATED WORK
There is a significant body of work on deformable mod-
els of various types for object detection, including several
kinds of deformable template models (e.g. [7], [8], [21],
[43]), and a variety of part-based models (e.g. [2], [6], [9],
[15], [18], [20], [28], [42]).

In the constellation models from [18], [42] parts are
constrained to be in a sparse set of locations determined
by an interest point operator, and their geometric ar-
rangement is captured by a Gaussian distribution. In
contrast, pictorial structure models [15], [20] define a
matching problem where parts have an individual match
cost in a dense set of locations, and their geometric
arrangement is captured by a set of “springs” connecting
pairs of parts. The patchwork of parts model from [2] is
similar, but it explicitly considers how the appearance
model of overlapping parts interact.

Our models are largely based on the pictorial struc-
tures framework from [15], [20]. We use a dense set of
possible positions and scales in an image, and define
a score for placing a filter at each of these locations.

“Object Detection with discriminatively trained
Deformable Parts Model”, Felzenszwalb, Girshick et al. PAMI’10

Deformable Parts Model

36

7

+

x

xx

...

...

...

model

response of root filter

transformed responses

response of part filters

feature map feature map at twice the resolution

combined score of

root locationslow value high value

color encoding of filter

response values

Fig. 4. The matching process at one scale. Responses from the root and part filters are computed a different
resolutions in the feature pyramid. The transformed responses are combined to yield a final score for each root
location. We show the responses and transformed responses for the “head” and “right shoulder” parts. Note how the
“head” filter is more discriminative. The combined scores clearly show two good hypothesis for the object at this scale.

“Object Detection with
discriminatively trained

Deformable Parts
Model”, Felzenszwalb,

Girshick et al.’10

Deformable Parts Model

• State-of-the-art in PASCAL object detection pre-2012.
• Model contains “convolutions with penalized offsets”.
• Can we relate it to generic CNNs?

37

18

person

car

horse

sofa

bottle

cat

Fig. 10. Examples of high-scoring detections on the PASCAL 2007 dataset, selected from the top 20 highest scoring
detections in each class. The framed images (last two in each row) illustrate false positives for each category. Many
false positives (such as for person and cat) are due to the bounding box scoring criteria.

DPM and CNNs

• The optimization of part offsets with respect to the
anchor is a distance transform:

38

The distance transform of x : ⌦ ! R is a

function D

x

: ⌦ ! R defined by

D

x

(u) = max

q

x(q)� d(u� q) .

DPM: d(r) = rTAr + br quadratic form

Max-Pooling: d(r) =

⇢
0 if |r|  K ,
1 otherwise .

DPM and CNNs

• The optimization of part offsets with respect to the
anchor is a distance transform:

• Therefore, one can train a DPM end-to-end as a
particular instance of a CNN.

39

The distance transform of x : ⌦ ! R is a

function D

x

: ⌦ ! R defined by

D

x

(u) = max

q

x(q)� d(u� q) .

DPM: d(r) = rTAr + br quadratic form

Max-Pooling: d(r) =

⇢
0 if |r|  K ,
1 otherwise .

DPMs and CNNs

• Large improvement from using handcrafted features.
• State-of-the-art amongst “sliding windows” methods, i.e.

translation invariant.

40

(4) DPM-CNN

image pyramid
level 1

.

.

.

(2) Truncated SuperVision CNN

conv5 pyramid
level 1

level L

conv5 pyramid
level 1

conv5 pyramid
level 1

256

256

3

level L

3

image pyramid
level 1

(1/16th spatial resolution of the image)

(1) Color image pyramid

level L

DPM score
pyramid
level 1

(3) Conv5 feature pyramid (5) DPM score pyramid

For each pyramid
level l

For each pyramid
level l

(output layer is conv5)

DeepPyramid DPM

.

.

.

.

.

.

Figure 1. Schematic model overview. (1) An image pyramid is built from a color input image. (2) Each pyramid level is forward
propagated through a fully-convolutional CNN (e.g., a truncated SuperVision CNN [27] that ends at convolutional layer 5). (3) The result
is a pyramid of conv5 feature maps, each at 1/16th the spatial resolution of its corresponding image pyramid level. (4) Each conv5 level is
then input into a DPM-CNN, which (5) produces a pyramid of DPM detection scores. Since the whole system is the composition of two
CNNs, it can be viewed as a single, unified CNN that takes a color image pyramid as input and outputs a DPM score pyramid.

part 1 to P - 1
conv. maps

DT
pooling

256 feature channels

Input:
conv5 pyramid

level l

⊗

⊗

⊗

…

root

part 1

part P

root convolution
map

part P
convolution

map

DT
pooling

stacked maps

P+1

stack
object

geometry
filter

⊗

Output:
DPM

component c’s
detection scores

for pyramid
level l

(1) Convolve feature pyramid level l
with filters from DPM component c

(2) Compute distance transforms
(DT) of part convolution maps

(3) Sum root and transformed part maps

DT of conv.
maps

DT of part P
convolution

map

11

1

v1= (1,2)

root
part

A simple DPM
with one part

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0
0

Object geometry
filter (channel 1)

Object geometry
filter (channel 2)

Sidebar: example object geometry filter (Section 2.2.2)

Single-component DPM-CNN

0

Figure 2. CNN equivalent to a single-component DPM. A DPM component can be written as an equivalent CNN by unrolling the DPM
detection algorithm into a network. We present the construction for a single-component DPM-CNN here and then show how several
of these CNNs can be composed into a multi-component DPM-CNN using a maxout layer (Figure 3). A single-component DPM-CNN
operates on a feature pyramid level. (1) The pyramid level is convolved with the root filter and P part filters, yielding P + 1 convolution
maps. (2) The part convolution maps are then processed with a distance transform pooling layer, which we show is a generalization of max
pooling. (3) The root convolution map and the DT pooled part convolution maps are stacked into a single feature map with P +1 channels
and then convolved with a sparse object geometry filter (see sidebar diagram and Section 2.2.2). The output is a single-channel score map
for the DPM component.

the maximization of a function subject to a distance penalty
dmax makes the connection between distance transforms and
max pooling clear. The distance transform generalizes max
pooling and can introduce learnable parameters, as is the
case in a DPM. Note that unlike max pooling, the distance
transform of f at p is taken over the entire domain G. There-
fore, rather than specifying a fixed pooling window a priori,
the shape of the pooling region can be learned from the data.

In the construction of a DPM-CNN, DT-pooling layers
are inserted after each part filter convolution. When the DT-
pooling layer is implemented on a CPU, the distance trans-
form can be computed efficiently in O(|G|) time, using the
algorithm of [12]. When implemented on a GPU, it is faster
to loosely bound the pooling region and use a brute-force,

but parallel-friendly maximization, as was done in [37].

2.2.2 Object geometry filters

The score of DPM component c at each root filter location
s is given by adding the root filter score at s to the distance
transformed part scores at “anchor” locations offset from s.
Each part p has its own anchor offset that is specified by a
2D vector v

p

= (v
px

, v
py

).
Computing component scores at all root locations can be

rephrased as a convolution. The idea is to stack the root fil-
ter score map together with the P distance transformed part
score maps to form a score map with P + 1 channels, and
then convolve that score map with a specially constructed

[Girshick et al, CVPR’15]

Region-based CNN (R-CNN)

• Suppose that for each bounding box we ask: is there a
{house, bicycle, dog, man, …, none} ?

41

Region-based CNN (R-CNN)

• Suppose that for each bounding box we ask: is there a
{house, bicycle, dog, man, …, none} ?

• This is standard object classification.
42

R-CNN [R. Girshick et al, 14-15]

• Rather than testing every possible rectangular region, we
rely on a Region Proposal algorithm (which can also be
done by a CNN).

• Each proposal region is warped and analyzed with
another CNN.

43

Lecture 8 - 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 201653

Putting it together: R-CNN

Girschick et al, “Rich feature hierarchies for
accurate object detection and semantic
segmentation”, CVPR 2014

Slide credit: Ross Girschick

R-CNN [R. Girshick et al, 14-15]

• Several improvements relating speed and performance
(Fast R-CNN, Faster R-CNN) and replacing pre-trained
CNN architectures (ResNet).

44

Lecture 8 - 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 201662

R-CNN Results

 Wang et al, “Regionlets for Generic Object Detection”, ICCV 2013

(figure credit: Stanford CS-231n lecture 8)

Structured Output Prediction

• Standard classification is only concerned with estimating
conditional probabilities of the form :

45

x 2 X �! y 2 Y Y = {s1, . . . , sL} (classification)

p(y | x)

Structured Output Prediction

• Standard classification is only concerned with estimating
conditional probabilities of the form :

• The previous task was an example of structured output
prediction:

46

x 2 X �! y 2 Y

x 2 X �! y 2 (Y, µ)

Y = {s1, . . . , sL} (classification)

µ(y) models the output unconditional probability.

p(y | x)

Structured Output Prediction

• Standard classification is only concerned with estimating
conditional probabilities of the form :

• The previous task was an example of structured output
prediction:

• Q: How to regularize the estimation of with

47

x 2 X �! y 2 Y

x 2 X �! y 2 (Y, µ)

Y = {s1, . . . , sL} (classification)

µ(y) models the output unconditional probability.

p(y | x)

p(y | x)

µ(y)

Structured Output Prediction

• Examples:
- Natural Language Processing: Translation, Summarization, Question

Answering.
- Image Segmentation.
- Speech Recognition.

• Probabilistic Graphical Models are generic structured
prediction models.
- Bayesian Networks
- Markov Random Fields
- Sequence-to-Sequence Models (in a future lecture).

•Other models also considered (e.g. Structured SVM)

48

• Suppose .

• If , the outputs are conditionally
independent: we can estimate them separately.

Structured Output Prediction

49

y = (y1, . . . , ys, . . .)

p(y | x) =
Y

i

p(yi | x)

x

y1
ys

• Suppose .

• But when we introduce statistical dependencies across
outputs, the general model becomes

Structured Output Prediction

50

y = (y1, . . . , ys, . . .)

x

y1
ys

p(y | x) = exp (�F (y, x,⇥))

Z

Graphical Models

• Broad class of probabilistic models that express a joint
distribution as a product of factors.

• The dependency is expressed in terms of a graph:

• Many instances: trees, factor graphs, Restricted Boltzmann
machines (more on that later), Markov random fields,…

51

(source: wikipedia)

p(X1, . . . , Xn) =
nY

i=1

P (Xi | Pi)

Pi: context associated with Xi

Graph Transformer Network
• [Bottou, Bengio & LeCun, ’97]
• Graphical model over possible

“segmentations” of
handwritten characters

• Used commercially to read
~10% checks in the US (1996).

52

• Many problems ask to predict an output with temporal
or spatial structure (eg speech, image (segmentation),
natural language text).

• A Markov Random Field is a graphical model on an
undirected graph:

Conditional Random Fields

53

x

y1
ys

G = (V,E)

Conditional Random Fields

• A Markov Random Field is a graphical model on an
undirected graph:

• Inference is intractable for general graphs
– trees and chains are exceptions
– Algorithms for approximate inference: message passing, Viterbi, mean

field inference.
54

x

y1
ys

G = (V,E)

p(yi | X, yj , j 6= i) = p(yi | X, yj , j ⇠ i)

Markov Property:

• In images, pixels form a 2D lattice graph:

• In pixel labeling tasks (ie segmentation), the output
configuration probability is expressed as

Conditional Random Fields

55

p(y | x) = e

�E(y,x)

Z

, (Z : partition function)

Conditional Random Fields

• unary potentials predict labels at each location as if they
were independent from the rest

• pairwise potentials provide data-dependent smoothing.

56

E(y, x) =
X

u

 u(y, x) +
X

u 6=v

 u,v(y, x)

p(y | x) = e

�E(y,x)

Z

, (Z : partition function)

 u: “unary” potentials measure cost of pixel u being labeled yu.

 u,v: pairwise potentials measure cost of jointly assigning labels

yu, yv at pixels u and v.

• An approximate posterior inference for the CRF model is
done with mean-field approximation:

• One can also consider belief propagation as an
alternative to mean-field approximation (see http://
www.eecs.berkeley.edu/~wainwrig/Talks/
A_GraphModel_Tutorial for a great tutorial!)

57

Approximate p(y | x) with q(y | x) =
Q

i qi(yi | x) iteratively.

CRFs as Convolutional Neural Networks

http://www.eecs.berkeley.edu/~wainwrig/Talks/A_GraphModel_Tutorial

CRFs as Convolutional Neural Networks

• [Zheng et al,’15]
approximate the mean-field
message passing iterations
with CNN layers with
shared parameters.

• The system can be efficiently
trained end-to-end.

58

proposed an approach based on learning messages. Many
of these ideas can be traced back to [53], which proposed
unrolling message passing algorithms as simpler operations
that could be performed within a CNN. In a different setup,
Krähenbühl and Koltun [28] demonstrated automatic pa-
rameter tuning of dense CRF when a modified mean-field
algorithm is used for inference. An alternative inference ap-
proach for dense CRF, not based on mean-field, is proposed
in [58].

In contrast to the works described above, our approach
shows that it is possible to formulate dense CRF as an RNN
so that one can form an end-to-end trainable system for se-
mantic image segmentation which combines the strengths
of deep learning and graphical modelling. The concurrent
and independent work [47] explores a similar joint training
approach for semantic segmentation.

3. Conditional Random Fields

In this section we provide a brief overview of CRF for
pixel-wise labelling and introduce the notation used in the
paper. A CRF, used in the context of pixel-wise label pre-
diction, models pixel labels as random variables that form
a MRF when conditioned upon a global observation. The
global observation is usually taken to be the image.

Let Xi be the random variable associated to pixel i,
which represents the label assigned to the pixel i and
can take any value from a pre-defined set of labels L =
{l1, l2, . . . , lL}. Let X be the vector formed by the ran-
dom variables X1, X2, . . . , XN , where N is the number of
pixels in the image. Given a graph G = (V,E), where
V = {X1, X2, . . . , XN}, and a global observation (im-
age) I, the pair (I,X) can be modelled as a CRF charac-
terized by a Gibbs distribution of the form P (X = x|I) =
1

Z(I) exp(−E(x|I)). Here E(x) is called the energy of

the configuration x ∈ LN and Z(I) is the partition func-
tion [31]. From now on, we drop the conditioning on I in
the notation for convenience.

In the fully connected pairwise CRF model of [27], the
energy of a label assignment x is given by:

E(x) =
∑

i

ψu(xi) +
∑

i<j

ψp(xi, xj), (1)

where the unary energy components ψu(xi) measure the
inverse likelihood (and therefore, the cost) of the pixel
i taking the label xi, and pairwise energy components
ψp(xi, xj) measure the cost of assigning labels xi, xj to
pixels i, j simultaneously. In our model, unary energies are
obtained from a CNN, which, roughly speaking, predicts la-
bels for pixels without considering the smoothness and the
consistency of the label assignments. The pairwise ener-
gies provide an image data-dependent smoothing term that
encourages assigning similar labels to pixels with similar

Algorithm 1 Mean-field in dense CRFs [27], broken down
to common CNN operations.

Qi(l)← 1
Zi

exp (Ui(l)) for all i ◃ Initialization

while not converged do

Q̃
(m)
i (l)←

∑

j ̸=i k
(m)(fi, fj)Qj(l) for all m

◃ Message Passing

Q̌i(l)←
∑

m w(m)Q̃
(m)
i (l)

◃ Weighting Filter Outputs

Q̂i(l)←
∑

l′∈L µ(l, l′)Q̌i(l)
◃ Compatibility Transform

Q̆i(l)← Ui(l)− Q̂i(l)
◃ Adding Unary Potentials

Qi ←
1
Zi

exp
(

Q̆i(l)
)

◃ Normalizing

end while

Figure 1. A mean-field iteration as a CNN. A single iteration of

the mean-field algorithm can be modelled as a stack of common

CNN layers.

properties. As was done in [27], we model pairwise poten-
tials as weighted Gaussians:

ψp(xi, xj) = µ(xi, xj)
M
∑

m=1

w(m)k
(m)
G (fi, fj), (2)

where each k
(m)
G for m = 1, . . . ,M , is a Gaussian kernel

applied on feature vectors. The feature vector of pixel i,
denoted by fi, is derived from image features such as spatial
location and RGB values [27]. We use the same features as
in [27]. The function µ(., .), called the label compatibility
function, captures the compatibility between different pairs
of labels as the name implies.

Minimizing the above CRF energy E(x) yields the most
probable label assignment x for the given image. Since this
exact minimization is intractable, a mean-field approxima-
tion to the CRF distribution is used for approximate max-
imum posterior marginal inference. It consists in approxi-
mating the CRF distribution P (X) by a simpler distribution
Q(X), which can be written as the product of independent
marginal distributions, i.e., Q(X) =

∏

i Qi(Xi). The steps
of the iterative algorithm for approximate mean-field infer-
ence and its reformulation as an RNN are discussed next.

1531

tween the labels to a varied extent, depending on the com-
patibility between these labels. Compatibility between the
two labels l and l′ is parameterized by the label compatibil-
ity function µ(l, l′). The Potts model, given by µ(l, l′) =
[l ̸= l′], where [.] is the Iverson bracket, assigns a fixed
penalty if different labels are assigned to pixels with simi-
lar properties. A limitation of this model is that it assigns
the same penalty for all different pairs of labels. Intuitively,
better results can be obtained by taking the compatibility
between different label pairs into account and penalizing
the assignments accordingly. For example, assigning la-
bels “person” and “bicycle” to nearby pixels should have
a lesser penalty than assigning “sky” and “bicycle”. There-
fore, learning the function µ from data is preferred to fixing
it in advance with Potts model. We also relax our compat-
ibility transform model by assuming µ(l, l′) ̸= µ(l′, l) in
general.

Compatibility transform step can be viewed as another
convolution layer where the spatial receptive field of the fil-
ter is 1 × 1, and the number of input and output channels
are both L. Learning the weights of this filter is equivalent
to learning the label compatibility function µ. Transferring
error differentials from the output of this step to the input
can be done since this step is a usual convolution operation.

4.5. Adding Unary Potentials

In this step, the output from the compatibility transform
stage is subtracted element-wise from the unary inputs U .
While no parameters are involved in this step, transferring
error differentials can be done trivially by copying the dif-
ferentials at the output of this step to both inputs with the
appropriate sign.

4.6. Normalization

Finally, the normalization step of the iteration can be
considered as another softmax operation with no parame-
ters. Differentials at the output of this step can be passed on
to the input using the softmax operation’s backward pass.

5. The End-to-end Trainable Network

We now describe our end-to-end deep learning system
for semantic image segmentation. To pave the way for this,
we first explain how repeated mean-field iterations can be
organized as an RNN.

5.1. CRF as RNN

In the previous section, it was shown that one iteration
of the mean-field algorithm can be formulated as a stack of
common CNN layers (see Fig. 1). We use the function fθ
to denote the transformation done by one mean-field iter-
ation: given an image I , pixel-wise unary potential values
U and an estimation of marginal probabilities Qin from the

FCN CRF-RNN

Figure 2. The End-to-end Trainable Network. Schematic vi-

sualization of our full network which consists of a CNN and the

CNN-CRF network. Best viewed in colour.
previous iteration, the next estimation of marginal distribu-
tions after one mean-field iteration is given by fθ(U,Qin, I).
The vector θ =

{

w(m), µ(l, l′)
}

, m ∈ {1, . . . ,M}, l, l′ ∈
{l1, . . . , lL} represents the CRF parameters described in
Section 4.

Multiple mean-field iterations can be implemented by re-
peating the above stack of layers in such a way that each
iteration takes Q value estimates from the previous iteration
and the unary values in their original form. This is equiva-
lent to treating the iterative mean-field inference as a Recur-
rent Neural Network (RNN). The behaviour of the network
is given by the following equations where H1, H2 are hid-
den states, and T is the number of mean-field iterations:

H1(t) =

{

softmax(U), t = 0

H2(t− 1), 0 < t ≤ T,
(3)

H2(t) = fθ(U,H1(t), I), 0 ≤ t ≤ T, (4)

Y (t) =

{

0, 0 ≤ t < T

H2(t), t = T.
(5)

We name this RNN structure CRF-RNN. Parameters of
the CRF-RNN are same as the mean-field parameters de-
scribed in Section 4 and denoted by θ here. Since the calcu-
lation of error differentials w.r.t. these parameters in a single
iteration was described in Section 4, they can be learnt in the
RNN setting using the standard back-propagation through
time algorithm [46, 38]. It was shown in [27] that the mean-
field iterative algorithm for dense CRF converges in less
than 10 iterations. Furthermore, in practice, after about 5
iterations, increasing the number of iterations usually does
not significantly improve results [27]. Therefore, it does
not suffer from the vanishing and exploding gradient prob-
lem inherent to deep RNNs [7, 41]. This allows us to use a
plain RNN architecture instead of more sophisticated archi-
tectures such as LSTMs in our network.

5.2. Completing the Picture

Our approach comprises a fully convolutional network
stage, which predicts pixel-level labels without consid-
ering structure, followed by a CRF-RNN stage, which

1533

Example: Segmentation

• Results from [Zheng et al, ICCV’15]

59
Figure 3. Qualitative results on the validation set of Pascal

VOC 2012. FCN [35] is a CNN-based model that does not em-

ploy CRF. Deeplab [9] is a two-stage approach, where the CNN is

trained first, and then CRF is applied on top of the CNN output.

Our approach is an end-to-end trained system that integrates both

CNN and CRF-RNN in one deep network. Best viewed in colour.

iments with the Pascal VOC 2012 dataset, followed by a
qualitative experiment.

In the first experiment, following [35, 36, 39], we used
a training set consisted of VOC 2012 training data (1464
images), and training and validation data of [22], which
amounts to a total of 11,685 images. After removing the
overlapping images between VOC 2012 validation data and
this training dataset, we were left with 346 images from the
original VOC 2012 validation set to validate our models on.
We call this set the reduced validation set in the sequel. An-
notations of the VOC 2012 test set, which consists of 1456
images, are not publicly available and hence the final results
on the test set were obtained by submitting the results to the
Pascal VOC challenge evaluation server [17]. Regardless
of the smaller number of images, we found that the relative
improvements of the accuracy on our validation set were in
good agreement with the test set.

As a first step we directly compared the potential advan-
tage of learning the model end-to-end with respect to alter-
natives. These are plain FCN-8s without applying CRF, and
with CRF as a postprocessing method disconnected from
the training of FCN, which is comparable to the approach

described in [9] and [39]. The results are reported in Table 1
and show a clear advantage of the end-to-end strategy over
the offline application of CRF as a post-processing method.
This can be attributed to the fact that during the SGD train-
ing of the CRF-RNN, the CNN component and the CRF
component learn how to co-operate with each other to pro-
duce the optimum output of the whole network.

We then proceeded to compare our approach with all
state-of-the-art methods that used training data from the
standard VOC 2012 training and validation sets, and from
the dataset published with [21]. The results are shown in
Table 2, above the bar, and we can see that our approach
outperforms all competitors.

In the second experiment, in addition to the above train-
ing set, we used data from the Microsoft COCO dataset [34]
as was done in [39] and [11]. We selected images from
COCO 2014 training set where the ground truth segmen-
tation has at least 200 pixels marked with classes labels
present in the VOC 2012 dataset. With this selection, we
ended up using 66,099 images from the COCO dataset and
therefore a total of 66,099 + 11,685 = 77,784 training im-
ages were used in the second experiment. The same reduced
validation set was used in this second experiment as well.
In this case, we first fine-tuned the plain FCN-32s network
(without the CRF-RNN part) on COCO data, then we built
an FCN-8s network with the learnt weights and finally train
the CRF-RNN network end-to-end using VOC 2012 train-
ing data only. Since the MS COCO ground truth segmen-
tation data contains somewhat coarse segmentation masks
where objects are not delineated properly, we found that
fine-tuning our model with COCO did not yield significant
improvements. This can be understood because the primary
advantage of our model comes from delineating the objects
and improving fine segmentation boundaries. The VOC
2012 training dataset therefore helps our model learn this
task effectively. The results of this experiment are shown in
Table 2, below the bar, and we see that our approach sets a
new state-of-the-art on the VOC 2012 dataset.

Note that in both setups, our approach outperforms com-
peting methods due to the end-to-end training of the CNN
and CRF in the unified CRF-RNN framework. We also
evaluated our models on the VOC 2010, and VOC 2011 test
set (see Table 2). In all cases our method achieves the state-
of-the-art performance.

Method Without COCO With COCO

Plain FCN-8s 61.3 68.3

FCN-8s and CRF disconnected 63.7 69.5

End-to-end training of
CRF-RNN

69.6 72.9

Table 1. Mean IU accuracy of our approach, CRF-RNN, compared

with similar methods, evaluated on the reduced VOC 2012 valida-

tion set.

1535

Example: Segmentation
• The CRF approximation is a specific CNN model.
• [Long, Shelhamer et al,CVPR’15] proposed a simpler CNN

architecture that also produces excellent results.
• Idea: Combine outputs from different layers and refine the

spatial resolution of the output.

• See also “Learning to Segment Object
Candidates” [Pinheiro et al’15].

60

Fully Convolutional Networks for Semantic Segmentation

Jonathan Long⇤ Evan Shelhamer⇤ Trevor Darrell
UC Berkeley

{jonlong,shelhamer,trevor}@cs.berkeley.edu

Abstract

Convolutional networks are powerful visual models that
yield hierarchies of features. We show that convolu-
tional networks by themselves, trained end-to-end, pixels-
to-pixels, exceed the state-of-the-art in semantic segmen-
tation. Our key insight is to build “fully convolutional”
networks that take input of arbitrary size and produce
correspondingly-sized output with efficient inference and
learning. We define and detail the space of fully convolu-
tional networks, explain their application to spatially dense
prediction tasks, and draw connections to prior models. We
adapt contemporary classification networks (AlexNet [22],
the VGG net [34], and GoogLeNet [35]) into fully convolu-
tional networks and transfer their learned representations
by fine-tuning [5] to the segmentation task. We then define a
skip architecture that combines semantic information from
a deep, coarse layer with appearance information from a
shallow, fine layer to produce accurate and detailed seg-
mentations. Our fully convolutional network achieves state-
of-the-art segmentation of PASCAL VOC (20% relative im-
provement to 62.2% mean IU on 2012), NYUDv2, and SIFT
Flow, while inference takes less than one fifth of a second
for a typical image.

1. Introduction

Convolutional networks are driving advances in recog-
nition. Convnets are not only improving for whole-image
classification [22, 34, 35], but also making progress on lo-
cal tasks with structured output. These include advances
in bounding box object detection [32, 12, 19], part and key-
point prediction [42, 26], and local correspondence [26, 10].

The natural next step in the progression from coarse to
fine inference is to make a prediction at every pixel. Prior
approaches have used convnets for semantic segmentation
[30, 3, 9, 31, 17, 15, 11], in which each pixel is labeled with
the class of its enclosing object or region, but with short-
comings that this work addresses.

⇤Authors contributed equally

96

384 256 409
6
409

6 21

21

backward/learning

forward/inference

pix
elw

ise
 p

red
ict

ion

seg
men

ta
tio

n
g.t

.

256
384

Figure 1. Fully convolutional networks can efficiently learn to
make dense predictions for per-pixel tasks like semantic segmen-
tation.

We show that a fully convolutional network (FCN)
trained end-to-end, pixels-to-pixels on semantic segmen-
tation exceeds the state-of-the-art without further machin-
ery. To our knowledge, this is the first work to train FCNs
end-to-end (1) for pixelwise prediction and (2) from super-
vised pre-training. Fully convolutional versions of existing
networks predict dense outputs from arbitrary-sized inputs.
Both learning and inference are performed whole-image-at-
a-time by dense feedforward computation and backpropa-
gation. In-network upsampling layers enable pixelwise pre-
diction and learning in nets with subsampled pooling.

This method is efficient, both asymptotically and abso-
lutely, and precludes the need for the complications in other
works. Patchwise training is common [30, 3, 9, 31, 11], but
lacks the efficiency of fully convolutional training. Our ap-
proach does not make use of pre- and post-processing com-
plications, including superpixels [9, 17], proposals [17, 15],
or post-hoc refinement by random fields or local classifiers
[9, 17]. Our model transfers recent success in classifica-
tion [22, 34, 35] to dense prediction by reinterpreting clas-
sification nets as fully convolutional and fine-tuning from
their learned representations. In contrast, previous works
have applied small convnets without supervised pre-training
[9, 31, 30].

Semantic segmentation faces an inherent tension be-
tween semantics and location: global information resolves
what while local information resolves where. Deep feature
hierarchies encode location and semantics in a nonlinear

1

Example: Human Pose Estimation

• Human muscle joints are very structured.
• [Tompson et al, NIPS’14] considered a joint training of

CNN and Markov Random Fields.

61

The impact of the number of resolution banks is shown in Fig 8c). As expected, we see a big
improvement when multiple resolution banks are added. Also note that the size of the receptive
fields as well as the number and size of the pooling stages in the network also have a large impact on
the performance. We tune the network hyper-parameters using coarse meta-optimization to obtain
maximal validation set performance within our computational budget (less than 100ms per forward-
propagation).

Fig 9 shows the predicted joint locations for a variety of inputs in the FLIC and LSP test-sets. Our
network produces convincing results on the FLIC dataset (with low joint position error), however,
because our simple Spatial-Model is less effective for a number of the highly articulated poses in
the LSP dataset, our detector results in incorrect joint predictions for some images. We believe that
increasing the size of the training set will improve performance for these difficult cases.

Figure 9: Predicted Joint Positions, Top Row: FLIC Test-Set, Bottom Row: LSP Test-Set

5 Conclusion

We have shown that the unification of a novel ConvNet Part-Detector and an MRF inspired Spatial-
Model into a single learning framework significantly outperforms existing architectures on the task
of human body pose recognition. Training and inference of our architecture uses commodity level
hardware and runs at close to real-time frame rates, making this technique tractable for a wide variety
of application areas.

For future work we expect to further improve upon these results by increasing the complexity and
expressiveness of our simple spatial model (especially for unconstrained datasets like LSP).

6 Acknowledgments

The authors would like to thank Mykhaylo Andriluka for his support. This research was funded in
part by the Office of Naval Research ONR Award N000141210327.

References
[1] M. Andriluka, S. Roth, and B. Schiele. Pictorial structures revisited: People detection and articulated

pose estimation. In CVPR, 2009.

8

Example: Pose Estimation

• The unary potentials are modeled as detection CNNs.
• The pairwise potentials between different parts are

modeled as convolutional priors.
• The marginal likelihoods for each part are of the form

62

function. Evaluation of Eq 1 is analogous to a single round of sum-product belief propagation.
Convergence to a global optimum is not guaranteed given that our spatial model is not tree structured.
However, as it can been seen in our results (Fig 8b), the inferred solution is sufficiently accurate for
all poses in our datasets. The learned pair-wise distributions are purely uniform when any pairwise
edge should to be removed from the graph structure. Fig 5 shows a practical example of how the
Spatial-Model is able to remove an anatomically incorrect strong outlier from the face heat-map by
incorporating the presence of a strong shoulder detection. For simplicity, only the shoulder and face
joints are shown, however, this example can be extended to incorporate all body part pairs. If the
shoulder heat-map shown in Fig 5 had an incorrect false-negative (i.e. no detection at the correct
shoulder location), the addition of the background bias bv!A would prevent the output heat-map
from having no maxima in the detected face region.

x x

*

*

f|f

f|s

Face Unary

Shoulder Unary

Face

Shoulder

Face Unary

Shoulder Unary

*

*

s|f

s|s

=

=

=

=

Shoulder Face

Face Face Face Shoulder

Shoulder Shoulder

Figure 5: Didactic Example of Message Passing Between the Face and Shoulder Joints

Fig 5 contains the conditional distributions for face and shoulder parts learned on the FLIC [27]
dataset. For any part A the distribution PA|A is the identity map, and so the message passed from
any joint to itself is its unary distribution. Since the FLIC dataset is biased towards front-facing poses
where the right shoulder is directly to the lower right of the face, the model learns the correct spatial
distribution between these body parts and has high probability in the spatial locations describing
the likely displacement between the shoulder and face. For datasets that cover a larger range of the
possible poses (for instance the LSP [17] dataset), we would expect these distributions to be less
tightly constrained, and therefore this simple Spatial-Model will be less effective.

For our practical implementation we treat the distributions above as energies to avoid the evalua-
tion of Z. There are 3 reasons why we do not include the partition function. Firstly, we are only
concerned with the maximum output value of our network, and so we only need the output energy
to be proportional to the normalized distribution. Secondly, since both the part detector and spa-
tial model parameters contain only shared weight (convolutional) parameters that are equal across
pixel positions, evaluation of the partition function during back-propagation will only add a scalar
constant to the gradient weight, which would be equivalent to applying a per-batch learning-rate
modifier. Lastly, since the number of parts is not known a priori (since there can be unlabeled peo-
ple in the image), and since the distributions pv describe the part location of a single person, we
cannot normalize the Part-Model output. Our final model is a modification to Eq 1:

ēA = exp

X

v2V

⇥
log

�
SoftPlus

�
eA|v

�
⇤ ReLU (ev) + SoftPlus (bv!A)

�⇤
!

(2)

where: SoftPlus (x) =

1
/� log (1 + exp (�x)) , 1/2  �  2

ReLU (x) = max (x, ✏) , 0 < ✏  0.01

Note that the above formulation is no longer exactly equivalent to an MRF, but still satisfactorily
encodes the spatial constraints of Eq 1. The network-based implementation of Eq 2 is shown in
Fig 6. Eq 2 replaces the outer multiplication of Eq 1 with a log space addition to improve numerical
stability and to prevent coupling of the convolution output gradients (the addition in log space means
that the partial derivative of the loss function with respect to the convolution output is not dependent
on the output of any other stages). The inclusion of the SoftPlus and ReLU stages on the weights,
biases and input heat-map maintains a strictly greater than zero convolution output, which prevents
numerical issues for the values leading into the Log stage. Finally, a SoftPlus stage is used to

5

p(A | x) = 1

Z

Y

B

(p(A | B, x) ? p(B | x) + bB!A)

(bB!A: bias term for the mssage from B to A)

