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Review: Invariance, Linearization and Geodesics

* Algorithm from [Henaff & Simoncelli "1 6];

min S))dt+ [ (D) (¢)|dt
J, tila+ [
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Review:Invariance, Linearization and Geodesics

* On pertained CNNs
(VGG oxford net),
inearization 1s empirically
verified for various
oroups.

 Continuous e
transformation groups = pmmimmm s e
are better linearized with
energy pooling than with
max-pooling
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Review: Sparse Shape Scattering Reconstructions

Original images of N? pixels:
Y - 1
P |
/7 A e
P
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m = 1, 27 = N: reconstruction from O(log, N) scattering coeff.

m = 2, 27 = N: reconstruction from O( log2 ) scattering coeff.
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o If /(x,y) is small, then B(x,y) =~ O:
distances are approx. shrunk by 2, angles are preserved.

If Z(x,y) is large, then 5(a;,y? ~ 0.5:

* distances are shrunk by a smaller factor.

Q , Class I

[Raja Giryes]

points with small angles between them become closer
than points with larger angles between them

The result can be cascaded since gaussian mean width is
approximately preserved by each layer.
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* [raining the network does not

Inter-class Intra-class

—Random
——Trained

—Random
——Trained
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owever, It critically changes t

boundary polints:

- Inter-class distances expand (as expected).
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ect the bulk of distances

behavior at the

- Intra-class distances shrink (as expected).



~ Review: Empirical Recovery

: 2 R(x): Regularization with “learnt” prior
mxln H(I)(ZC) (xO) H | —|_ R( ) ( Generatlve Adversarial Networks, TBD)

Images
Reconstructlnrom CONV5S
Our-GAN | " ;.H,,_.__'- '. L-a___ —_ 5 e
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Our-GAN § el &
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Objectves

* Inference models and Deep Networks
- Clustering and Dictionary Learning

- From Unsupervised to Supervised Sparsity

- From Inference to Deep Neural Networks

- Examples

* Fisher Vectors and Pyramid Kernels

e Random Forests and CART



ow to Increase separation between classes!



e Q: How to Increase separation between classes!

* [he simplest model 1s K-means clustering:
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e Q: How to Increase separation between classes!

* [he simplest model 1s K-means clustering:
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» K-means defines a mapping:

d : R™ o R¥
T — e(z) , k(r) = argmin ||z — ¢
J
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» K-means defines a mapping:

d : R™ - RE

T ep(z) » k() = arg mjiﬂ |z — ¢

* Assuming power-normalized data (

separates points falling into different

((P(x), P(y)) = 0 in that case)
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Selection Models

. The K—means encodmg S e><tremely naive: Iog(K) b|ts
encoding which region of input space we fall into
(plecewise constant encoding)

- It 1s nevertheless a very competitive encoding for small image
patches.
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Selection Models

* [he K-means encoding Is extremely naive: log(K) brts
encoding which region of input space we fall into
(plecewise constant encoding)

- It 1s nevertheless a very competitive encoding for small image
patches.

* A strictly richer model is the union of subspaces model
or dictionary learning:
min > s — Dzl + AR ()

D=(dq,....dg),||dr|| <1,z “
1<n

R(z): sparsity-promoting
R(z) = ||z|lo (NP-Hard)
R(z) = ||z]|1 (Tractable)
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-or a given dictionary D, the sparse coding Is defined as
the mapping

¢ : R — R"
r — ®(z) = argmin ||z — Dz||* + AR(z2) .

|16



* For a given dictionary D, the sparse coding Is defined as
the mapping

¢ : R — R"
r — ®(z) = argmin ||z — Dz||* + AR(z2) .

* A particularly attractive choice 1s R(z) = ||z||1
- in that case ®(x) requires solving a convex program.

- Lasso estimator [ Tibshirani, 96]

- Rich theory In the statistical coommunity.

- Extensions: Group Lasso, Hierarchical Lasso, etc.
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* [he sparse coding involves minimizing a function of the

form
min hl (Z) -+ hg (Z)

z

hi(z) = ||z — Dz||* convex and smooth (differentiable)
ho(z) = Al|z||1 convex but non-smooth

|18



* [he sparse coding involves minimizing a function of the

form
min hl (Z) -+ hg (Z)

z

|z — Dz||* convex and smooth (differentiable)

- h1 (Z)
- ha(2)

A||z]|1 convex but non-smooth

* A solution can be obtained by alternatively minimizing
each term:

Fact: Let h: R™ — R be a convex function. For every z € R™
, 1
mini(y) + 5[z =yl
has unique solution, denoted prox; (z).

(prox, is a non-expansive operator for all h)

|19



e It can be shown that if h; is convex and differentiable with Lipschitz
oradient, and ho is convex, then the solutions of

IIliIlz hl (Z) —+ hQ(Z)

are characterized by the fixed points of

z = proxX,y, (2 —vyVhi(z)) Vv > 0.
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e It can be shown that if h; is convex and differentiable with Lipschitz
oradient, and ho is convex, then the solutions of

HliIlz hl (Z) —+ hQ(Z)

are characterized by the fixed points of

z = proxX,y, (2 —vyVhi(z)) Vv > 0.

* These can be found by rterating

Znt1 = Prox, p.(zn — mVhi(z,))

- by properly adjusting the rate Vn these method Is proven to
converge to Its unigue solution.,
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* When ho(z) = A||z]|1, the proximal operator becomes

prox. ;. (z) = max(0, |z| — yA) - sign(z) 1Py

—7A

P~ X : soft thresholding
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* When hs(z) = Al|z||1, the proximal operator becomes

prox. ;. (z) = max(0, |z| — yA) - sign(z) 1Py

—7A

P~ X : soft thresholding

* |STA algorithm (iterative soft thresholding):
Znt1 = ProX, p.(zn — 1 Vhi(zn))
Vhi(z,) = —D*'(z — Dz,)
Znt1 = pya((1 =yD* D)z, +yD" )

- converges in sublinear time O(1/n) if v € (0, 1/HDTDH)
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* When hs(z) = Al|z||1, the proximal operator becomes

prox. ;. (z) = max(0, |z| — yA) - sign(z) 1Py

—7A

P~ X : soft thresholding

* |STA algorithm (iterative soft thresholding):
Znt1 = ProX, p.(zn — 1 Vhi(zn))
Vhi(z,) = —D*'(z — Dz,)
Znt1 = pya((1 =yD* D)z, +yD" )

- converges in sublinear time O(1/n) if v € (0,1/||D* D||)
* FISTA [Beck and Teboulle,'09|;

- adds Nesterov momentum.

- proven accelerated convergence O(1/n?)
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Vz=(1—-~D'D)z+~D'z): linear with bias
p: pointwise non-linearity
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Sparse Coding with (F)ISTA

O_’V ,0 V p .................. | V 10 >
~vD'x 1 I !

Vz=(1—-~vD!''D)z+ D' x): linear with bias
p: pointwise non-linearity

* | asso can be cast as a (very) deep network, with
- Shared weights, adapted to the dictionary.
A=1—~+D"D , B=~D"
Cpy1(z) = p(APp(z) + Br)

- Note that A is a contraction (||Az|| < ||z|]), but the affine term

may Increase the separation:
| ®pt1(2) = Prgr ()| < [A(Pr(z) — Pp (")) ]| + || B(z — 27)|

< | @ur) — @u(2)] + | Bl — ')




Dictionary learning is a locally linear approximation
model:

27



* Dictionary learning is a locally linear approximation
model:

28



* Orthogonalization of different linear pieces:

29



* Orthogonalization of different linear pieces:

Zk#O

-If 1 and x5 share most dictionary atoms J, then
(@(a1), ®(22)) = (D1, Dlas) = (21, DyDlas)
If 1 and 3 do not share dictionary atoms, then
(®(z1), P(z3)) =~ 0

30



Linear decoder implies geometric instability is preserved in the sparse decom-
position

lv — Dz|| < ellzf] , [lorz = Dzr|| < ellz| , |lz—przf ~ [z

|

|z = prx| < |[Dz — Dzr|| 4 2¢

|2 — 27| 2 [ID]| | Dz — Dz |
> | Dl ([l = prz|| — 2e|z])
(1 = 2¢)|

31

O O O

Y

—1
e



- unsupervised to supervised selection

* [he previous model Is unsupervised:

- Why would a dictionary for reconstruction be useful for recognition
or other tasks!

- Pro: it exploits the local regularity of the data.

- Cons: sparse coding unaware of stabllity, sparse dictionaries might be
not unique.

32



- unsupervised to supervised selection

* [he previous model Is unsupervised:

- Why would a dictionary for reconstruction be useful for recognition
or other tasks!

- Pro: it exploits the local regularity of the data.

- Cons: sparse coding unaware of stabllity, sparse dictionaries might be
not unique.

* Q: Can we make a dictionary task-aware! (1.e. supervised
dictionary learning)

33



- unsupervised to supervised selection

* Task-driven dictionary learning [Mairal et al, [ 2]:

Suppose we want to predict y € Y from x € X

34



B unsupervised to supervised selection

* Task-driven dictionary learning [Mairal et al, [ 2]:

Suppose we want to predict y € Y from x € X

Consider the sparse coding operator
O(x; D) = argmzin §Hx — Dz||* + X|z|l1 + X223

It is Lipschitz with respect to both x and D if Ay > 0,
it is differentiable almost everywhere.

35



~ From unsupervised to supervised selection

* Task-driven dictionary learning [Mairal et al, [ 2]:

Suppose we want to predict y € Y from x € X

Consider the sparse coding operator
O(x; D) = argmzin §H$ — Dz||* + X|z|l1 + X223

It is Lipschitz with respect to both x and D if Ay > 0,
it is differentiable almost everywhere.

We can construct an estimator y from this sparse code:
= W' ®(x; D) (more generally, ,9j = F(W, ®(x; D))

gl,iml} Loy 0y, §(x, W, D))

36
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* The Lasso (sparse coding operator) can be implemented
as a specific deep network.

38



From supervised Lasso to DNNs

* The Lasso (sparse coding operator) can be implemented
as a specific deep network

* Can we accelerate the sparse inference with a shallower
network, with trained parameters?

) z = ®(x)
N v 0 V P i, S Ve P >

D'z i 1

39



* [he Lasso (sparse coding operator) can be implemented
as a specific deep network

* Can we accelerate the sparse inference with a shallower
network, with trained parameters?

z = ®(x)
@mE -
VD x|
F(x,W,S)
P - P >

0 ;
]
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~ LISTA [Gregor and LeCun, 10]

_xpllcnt Sparse encoder trained to predict the output of
the Lasso:

mm—ZH(I) z;) — F(x;, W, 9|

4]



LISTA [Gregor and LeCun, | O]

_><p||C|t Sparse encoder trained to predict the output of
the Lasso:

E , ‘I 7 2
W.,5 n
CITro
X X
X i X y
10 x X
’t
, ¢ ° °
2 . ° o
°
I -| x FISTA (4x) o
X FISTA (1x) o
05 )
® LISTA (4x)
® LISTA (1x)

- jter

- LISTA adapts to the data distribution and produces much faster
approximate sparse codes.
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'he fast approximation of a sparse code can be plugged-
N 1N a supervised regression or classification task:

M steps

B P

A

F(x,W,S)

@m,%/lvl | ((y;, DF (x;,0)) + M| F(x;,0)|1

(/
F(x,W,95) A

min 3 ((y;. G(F(2:.0),0) + | F(z:.0)

(2
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* [he fast approximation of a sparse code can be plugged-
N 1N a supervised regression or classification task.

e For example, [Sprechmann, Bronstein & Sapiro,’| 2] IN speaker
identification experiments using non-negative matrix
factorization:

RNMF Encoders

Noise Exact , . .
(Supervised) (Discriminative)
street 0.86 0.91 0.91
restaurant 0.91 0.89 0.90
car 0.90 0.91 0.96
exhibition 0.93 0.91 0.95
train 0.93 0.88 0.96
airport 0.92 0.85 0.98
average 0.91 0.89 0.94

44



* Recall the generic kernel method for (binary)
classification:

y(x) = sign qu)\zK(x,xz)

{(x;,y:)}i: labeled training examples
A;: Lagrange multipliers associated to the loss

K (x,y): similarity kernel

45



* Recall the generic kernel method for (binary)
classification:

y(x) = sign (Z Y\ K (x, .CCZ))
{(x;,y:)}i: labeled trainingz examples

A;: Lagrange multipliers associated to the loss

K (x,y): similarity kernel

* Important challenge: how to choose the kernel!

46



Key Idea: derive the kernel function from a generative
brobability model of the data p(z | 9).

47



* Key Idea: derive the kernel function from a generative
brobability model of the data p(z | 9).

* The Fisher score Is defined as
U, = Vglogp(z | 6)

- [t measures how the parameter vector contributes to generating x.

48



* Key Idea: derive the kernel function from a generative
brobability model of the data p(z | 9).

* The Fisher score Is defined as
U, = Vglogp(z | 6)

- [t measures how the parameter vector contributes to generating x.

* A natural metric in that probability space is given by the
Fisher Information matrix:

[ = ‘Emwp(a:|9)(Ua;Ug)

49



* [t results in the Fisher Kernel

K(z,y) = U:Z]_lUy

50



* [t results in the Fisher Kernel

K(z,y) = Ugl_lUy

* If Ip 1s symmetric and positive definite, it admits a
Cholesky decomposition Iy = Lj Ly and thus

~

K(x,y) — <0a:,6’7 ﬁy,6’> ; Ua:,@ — Lg_an;

* How to apply 1t to image classification/retrieval!

51



elet X ={z;;1=1...L} bea collection of L local
descriptors extracted from a single image.

52



elet X ={z;;1=1...L} bea collection of L local
descriptors extracted from a single image.

» Consider a Gaussian Mixture Model (GMM) as
oenerative model:

plz|0)= Zwkfx,uk,Zk)
k<K

wi: mixture weights
f(x; p, X): Multivariate Gaussian density with mean p and covariance 3.
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elet X ={z;;1=1...L} bea collection of L local
descriptors extracted from a single image.

» Consider a Gaussian Mixture Model (GMM) as
oenerative model:

plz|0)= Zwkfx,uk,Zk)
k<K

wi: mixture weights
f(x; p, X): Multivariate Gaussian density with mean p and covariance 3.

* [f we assume that the i are generated independently by
p(x | 6) we have that

1
Ux =7 ;Ve log p(z1 | 0)

54



* By slightly simplifying the model, we obtain normalized

-isher vectors of the form:

Ux = (ﬁx,k,m ﬁX,k,a)kgK

7 Z 7 1 S (k) (fEl—Mk)Q_l
X.k,u = % , UX k.o L\/ml<L% U/%

l<L

wkf(ilf 1y Uk, D k) (soft assignment of descriptor x; to Gaussian k)
Zk’gK wk’f(xl; K’ Zk’)

Vi (k) =

[ "Improving the Fisher Kernel for Large-Scale Image Classification”, Perronnin et al,’| 0]
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* By slightly simplifying the model, we obtain normalized

-isher vectors of the form:

Ux = (ﬁx,k,u, ﬁX,k:,a)kgK

7 Z 7 1 S (k) (fEl—Mk)Q_l
X.k,u = % , UX k.o L\/ml<L% U/%

l<L

wkf(ili' 1y Uk, D k) (soft assignment of descriptor x; to Gaussian k)
Zk’gK wk’f(xl; K’ Zk’)

Vi (k) =

* We aggregate over the image not only counts of visual
words, but also first and second order statistics within
each cluster,

[ "Improving the Fisher Kernel for Large-Scale Image Classification”, Perronnin et al,’| 0]
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* ypically, one considers local descripto

(Scale Invariant Fea
of Oriented Gradie

ure Transform) of
nts).
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Fisher Vectors and VLAD

* Typically, one considers local descriptors such as SIFT
(Scale Invariant Feature Transform) of HoG (Histogram
of Oriented Gradients)

* By properly normalizing the Fisher vectors and improving
the spatial aggregation, State-of-the-art results on Image

Classification, Detection and Retrieval before CNINs
[Perronnin et al, " O].
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* lypical
(Scale

Fisher Vectors and VLAD

y, one considers local descripto

nvariant Fea

ture Transform) of

of Oriented Gradients)

* By properly norma
the spatial aggregat
Classification,

oG (

rs such as SIFT

Istogram

zing the Fisher vectors and improving
on, State-of-the-art results on Image

[Perronnin et al, " O].

* VLAD (Vector of Locally Aggregated
et al, "1 0] considers on

assignments.

59

Detection and Retrieval before CNNs

Descriptors) [Jegou

y first order statistics and hard



* [he VLAD representation thus becomes
() (A, k) = Y ar(du(@))(du(x)(N) — ek (V)

(<L

o7k local descrl tor at location [ .
ar (¢ (x 1 if ¢ is closest to ¢;(x), 0 otherwise

* How to relate this operation with what a CNN can do!?

60



* Replace the hard cluster assignments with a softmax

assignment of the form .
e—clldi(z)—ckl

W(0(0) = = e @ e P

6|



* Replace the hard cluster assignments with a softmax

assignment of the form .
e—clldi(z)—ckl

W(0(0) = = e @ e P

» Replace the local descriptors ¢i(%) by a few
convolutional layers and make the centers ¢k trainable.

Image  Convolutional Neural Network NetVLAD layer
] o . ' (KxD)x1
| 1o _SOft-assignment ______ | VLAD
il conv (w,b) s o | L2 | vectot
1x1xDxK soft-max || normalization [, g
> | “ —————— A———— =+ A
ya
| > x| VLAD core (c) | % intra-
.~ IWxHxD map interpreted as “| normalization :
NxD local descript

PO | —_ — e — — e o — — — — — — — — — — — — — — — — — — o —
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Best baseline
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* More general pooling
mechanism

* [raining end-to-ena
again brings substantial
oains.



* Typical 20-question game:




~ Decision Irees

e {(5’517 y1)7 (CUT yT)} be the mput data
* Each node of the three selects a variable and splits using

a thresho d.
Q) CRY — (Qzﬂ,ﬂl‘j)

Q) = QL utt p=al, naolt!

Q) =RY




The leaves {v} of the tree define a partition of the input space into
cubic sections:

ngo:{xERN;O‘k,n<xn§5k,nvn§N

VK

U2

* Fach split optimizes the entropy In the abel distribution:

7 e

ply |z € Q7l;+1) IIl
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* A decision tree can capture interactions between
different variables, but 1t Is very noisy (le unstable).

* Bvaluation and training are extremely efficient.

68



* A decision tree can capture interactions between

different variables, but 1t Is very noisy (le unstable).

~valuation and training are extremely efficient.

By appropriately introducing randomization, we can

construct an ensemble of random trees: the so-called
random forests.
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Random Forests

* A decision tree can capture interactions between
different variables, but 1t Is very noisy (le unstable).

* Bvaluation and training are extremely efficient.
* By appropriately introducing randomization, we can

construct an ensemble of random trees: the so-called

random forests.

* We draw bootstrapped samp

es of the training set, and

each split In the tree I1s calculated only on a small random
subset of variables (typically of size O(VN)).

* The prediction Is the aggregate prediction (le voting) of

each tree.
70



* Successful across a wide range of classification and
regression problems.

Real- Time Pose
Estimation
from Kinect

measurements
(C\/PR’ | | )

LIRS @

(fisure from Ch. Wolf slides)
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* Random Forests thus also consider piecewise linear
regions of the Input space.

* However the encoding of these regions Is different from
that of a deep RelLlU network.

» Computationally more efficient

* No gradient descent training

* | ess expressive
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* Random Forests thus also consider piecewise linear
regions of the Input space.

* However the encoding of these regions Is different from
that of a deep RelLlU network.

» Computationally more efficient

* No gradient descent training

* | ess expressive
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