
Stat 212b: Topics in Deep Learning
Lecture 8

Joan Bruna
UC Berkeley

1

Review: Invariance, Linearization and Geodesics

• Algorithm from [Henaff & Simoncelli ’16]:

�x0

x1

�(x1)

�(x0)

min
�(0)=x0,�(1)=x1

Z 1

0
|�̇(t)|dt+

Z 1

0
| ˙(��)(t)|dt

�(t)

2

Review:Invariance, Linearization and Geodesics
Under review as a conference paper at ICLR 2016

ground truth VGG network, max pooling VGG network, L2 pooling

Figure 3: Comparison of geodesic sequences for VGG network representation with max pooling
(middle column) and VGG network with L2 pooling (right column) with ground truth sequence (left
column). Three different types of geometric transformation are tested: horizontal translation (top),
rotation around the center (middle), dilation about the center (bottom). As in figure 1, square images
are the middle frame from the corresponding sequence, and underneath is the temporal evolution of
three image slices, taken along the red lines shown in the left column. The original VGG network
is unable to linearize these transformations (as indicated by the ‘double exposure’ in the middle
frame, and the discontinuous temporal slices), whereas the same VGG network with L2 pooling
(right column) induces a geodesic that is close to ground truth.

6

[Henaff and Simoncelli’16]

• On pertained CNNs
(VGG oxford net),
linearization is empirically
verified for various
groups.

• Continuous
transformation groups
are better linearized with
energy pooling than with
max-pooling

3

Review: Sparse Shape Scattering Reconstructions
Original images of N2 pixels:

m = 2, 2

J
= N : reconstruction from O(log

2
2 N) scattering coe↵.

m = 1, 2

J
= N : reconstruction from O(log2 N) scattering coe↵.

4

Review: Random Networks
•

•

If \(x, y) is small, then �(x, y) ⇡ 0:
distances are approx. shrunk by 2, angles are preserved.

If \(x, y) is large, then �(x, y) ⇡ 0.5:
distances are shrunk by a smaller factor.

DISTANCE AND ANGLES DISTORTION

Points with small angles between them become
closer than points with larger angles between them

𝑋 𝜓

Class II
Class I Class IIClass I

points with small angles between them become closer

than points with larger angles between them

[Raja Giryes]

The result can be cascaded since gaussian mean width is

approximately preserved by each layer.

5

Review: Role of Training?
Inter-class Intra-class

 𝑉 − 𝑍
𝑊 − 𝑉

 𝑉 − 𝑍
𝑊 − 𝑉

BOUNDARY DISTANCE RATIO

[Raja Giryes]

• Training the network does not affect the bulk of distances
• However, it critically changes the behavior at the

boundary points:
- Inter-class distances expand (as expected).
- Intra-class distances shrink (as expected).

6

Review: Empirical Recovery
R(x): Regularization with “learnt” prior

(Generative Adversarial Networks, TBD)

min
x

k�(x)� �(x0)k2 +R(x)

Images

Reconstruction from CONV5

Our-GAN

Our-simple

[20]

Reconstruction from FC6

Our-GAN

Our-simple

[20]

Reconstruction from FC7

Our-GAN

Our-simple

[20]

Figure 13: Reconstructions from higher layers of AlexNet with the GAN-based version of our method, the simple version of
our method and the method of Mahendran and Vedaldi [20].

[Dosovitsky & Brox’15]7

Objectives

• Inference models and Deep Networks
- Clustering and Dictionary Learning
- From Unsupervised to Supervised Sparsity
- From Inference to Deep Neural Networks
- Examples

• Fisher Vectors and Pyramid Kernels

• Random Forests and CART

8

Selection Models

• Q: How to increase separation between classes?

9

Selection Models

• Q: How to increase separation between classes?
• The simplest model is K-means clustering:

10

Selection Models

• Q: How to increase separation between classes?
• The simplest model is K-means clustering:

K = 6

Given data X = (x1, . . . , xn), min
c1,...,cK

X

in

min
j

kxi � cjk2

c1

c6

11

Selection Models

• K-means defines a mapping:

c1

c6

x 7! e

k(x) , k(x) = argmin
j

kx� c

j

k
� : Rm ! RK

12

Selection Models

• K-means defines a mapping:

• Assuming power-normalized data (), maximally
separates points falling into different clusters:

c1

c6

x 7! e

k(x) , k(x) = argmin
j

kx� c

j

k

kxk = 1

� : Rm ! RK

�

(h�(x),�(y)i = 0 in that case)

13

Selection Models
• The K-means encoding is extremely naïve: log(K) bits

encoding which region of input space we fall into
(piecewise constant encoding)
- It is nevertheless a very competitive encoding for small image

patches.

14

Selection Models
• The K-means encoding is extremely naïve: log(K) bits

encoding which region of input space we fall into
(piecewise constant encoding)
- It is nevertheless a very competitive encoding for small image

patches.
• A strictly richer model is the union of subspaces model

or dictionary learning:
min

D=(d1,...,dK),kdkk1,z

X

in

kxi �Dzik2 + �R(zi)

R(z): sparsity-promoting

R(z) = kzk0 (NP-Hard)

R(z) = kzk1 (Tractable)

15

Selection Models

• For a given dictionary D, the sparse coding is defined as
the mapping

� : Rm ! RK

x 7! �(x) = argmin
z

kx�Dzk2 + �R(z) .

16

Selection Models

• For a given dictionary D, the sparse coding is defined as
the mapping

• A particularly attractive choice is
- in that case requires solving a convex program.
- Lasso estimator [Tibshirani,’96]
- Rich theory in the statistical community.
- Extensions: Group Lasso, Hierarchical Lasso, etc.

� : Rm ! RK

x 7! �(x) = argmin
z

kx�Dzk2 + �R(z) .

R(z) = kzk1
�(x)

17

Proximal Splitting

• The sparse coding involves minimizing a function of the
form

min
z

h1(z) + h2(z)

h2(z) = �kzk1 convex but non-smooth

h1(z) = kx�Dzk2 convex and smooth (di↵erentiable)

18

Proximal Splitting

• The sparse coding involves minimizing a function of the
form

-
-

• A solution can be obtained by alternatively minimizing
each term:

min
z

h1(z) + h2(z)

h2(z) = �kzk1 convex but non-smooth

h1(z) = kx�Dzk2 convex and smooth (di↵erentiable)

Fact: Let h : Rm ! R be a convex function. For every z 2 Rm
,

min
y

h(y) +
1

2
kz � yk2

has unique solution, denoted proxh(z).

(proxh is a non-expansive operator for all h)

19

Forward-Backward Splitting
• It can be shown that if h1 is convex and di↵erentiable with Lipschitz

gradient, and h2 is convex, then the solutions of

minz h1(z) + h2(z)

are characterized by the fixed points of

z = prox�h2
(z � �rh1(z)) 8 � � 0.

20

Forward-Backward Splitting
•

• These can be found by iterating

- by properly adjusting the rate these method is proven to
converge to its unique solution.

It can be shown that if h1 is convex and di↵erentiable with Lipschitz

gradient, and h2 is convex, then the solutions of

minz h1(z) + h2(z)

are characterized by the fixed points of

z = prox�h2
(z � �rh1(z)) 8 � � 0.

zn+1 = prox�nh2
(zn � �nrh1(zn))

�n

21

Proximal Splitting and ISTA

• When h2(z) = �kzk1, the proximal operator becomes

prox�h2
(z) = max(0, |z|� ��) · sign(z)

: soft thresholding
��

���

⇢��

⇢��

22

Proximal Splitting and ISTA

•

• ISTA algorithm (iterative soft thresholding):

- converges in sublinear time if

When h2(z) = �kzk1, the proximal operator becomes

prox�h2
(z) = max(0, |z|� ��) · sign(z)

: soft thresholding
��

���

zn+1 = prox�nh2
(zn � �nrh1(zn))

rh1(zn) = �D

T (x�Dzn)
zn+1 = ⇢��((1� �D

T
D)zn + �D

T
x)

⇢��

⇢��

O(1/n) � 2 (0, 1/kDTDk)

23

Proximal Splitting and ISTA

•

• ISTA algorithm (iterative soft thresholding):

- converges in sublinear time if
• FISTA [Beck and Teboulle,’09]:

- adds Nesterov momentum.
- proven accelerated convergence

When h2(z) = �kzk1, the proximal operator becomes

prox�h2
(z) = max(0, |z|� ��) · sign(z)

: soft thresholding
��

���

zn+1 = prox�nh2
(zn � �nrh1(zn))

rh1(zn) = �D

T (x�Dzn)
zn+1 = ⇢��((1� �D

T
D)zn + �D

T
x)

⇢��

⇢��

O(1/n2)

O(1/n) � 2 (0, 1/kDTDk)

24

Sparse Coding with (F)ISTA

V z = (1� �D

T
D)z + �D

T
x): linear with bias

⇢: pointwise non-linearity

V ⇢ ⇢ ⇢V V
0

�D

t
x

z = �(x)

25

Sparse Coding with (F)ISTA

• Lasso can be cast as a (very) deep network, with
- Shared weights, adapted to the dictionary.

- Note that is a contraction , but the affine term
may increase the separation:

V z = (1� �D

T
D)z + �D

T
x): linear with bias

⇢: pointwise non-linearity

V ⇢ ⇢ ⇢V V
0

�D

t
x

z = �(x)

A = 1� �DTD , B = �DT

�n+1(x) = ⇢(A�n(x) +Bx)

A (kAxk  kxk)

k�k+1(x)� �k+1(x
0)k  kA(�k(x)� �k(x

0))k+ kB(x� x

0)k
 k�k(x)� �k(x

0)k+ kB(x� x

0)k
26

Geometric Interpretation

• Dictionary learning is a locally linear approximation
model:

27

• Dictionary learning is a locally linear approximation
model:

Geometric Interpretation

x ⇡ Dz =
X

zk 6=0

zkdk

28

Geometric Interpretation

• Orthogonalization of different linear pieces:

x ⇡ Dz =
X

zk 6=0

zkdk

x1 x2

x3

29

Geometric Interpretation

• Orthogonalization of different linear pieces:

-

x ⇡ Dz =
X

zk 6=0

zkdk

x1 x2

x3

If x1 and x2 share most dictionary atoms J , then

If x1 and x3 do not share dictionary atoms, then

h�(x1),�(x3)i ⇡ 0

h�(x1),�(x2)i ⇡ hDT
J x1, D

T
J x2i = hx1, DJD

T
J x2i

30

Sparse Coding and Stability

kx� '⌧xk  kDz �Dz⌧k+ 2✏

=)

kz � z⌧k � kDk�1
1 kDz �Dz⌧k

� kDk�1
1 (kx� '⌧xk � 2✏kxk)

⇠ kDk�1
1 (1� 2✏)kxk

kx�Dzk  ✏kxk , k'⌧x�Dz⌧k  ✏kxk , kx� '⌧xk ⇠ kxk

=)

Linear decoder implies geometric instability is preserved in the sparse decom-

position

31

From unsupervised to supervised selection

• The previous model is unsupervised:
- Why would a dictionary for reconstruction be useful for recognition

or other tasks?
- Pro: it exploits the local regularity of the data.
- Cons: sparse coding unaware of stability, sparse dictionaries might be

not unique.

32

From unsupervised to supervised selection

• The previous model is unsupervised:
- Why would a dictionary for reconstruction be useful for recognition

or other tasks?
- Pro: it exploits the local regularity of the data.
- Cons: sparse coding unaware of stability, sparse dictionaries might be

not unique.

• Q: Can we make a dictionary task-aware? (i.e. supervised
dictionary learning)

33

From unsupervised to supervised selection

• Task-driven dictionary learning [Mairal et al,’12]:
Suppose we want to predict y 2 Y from x 2 X

34

From unsupervised to supervised selection

• Task-driven dictionary learning [Mairal et al,’12]:
Suppose we want to predict y 2 Y from x 2 X

Consider the sparse coding operator

�(x;D) = argmin
z

1

2
kx�Dzk2 + �kzk1 + �2kzk22

It is Lipschitz with respect to both x and D if �2 > 0,

it is di↵erentiable almost everywhere.

35

From unsupervised to supervised selection

• Task-driven dictionary learning [Mairal et al,’12]:
Suppose we want to predict y 2 Y from x 2 X

Consider the sparse coding operator

�(x;D) = argmin
z

1

2
kx�Dzk2 + �kzk1 + �2kzk22

We can construct an estimator ŷ from this sparse code:

ŷ = W

T
�(x;D) (more generally, , ŷ = F (W,�(x;D))

min
D,W

E
x,y

`(y, ŷ(x,W,D))

It is Lipschitz with respect to both x and D if �2 > 0,

it is di↵erentiable almost everywhere.

36

From unsupervised to supervised

• Half-toning Results from [Mairal et al,’12]:

but our approach has two main advantages. First, it is much
easier to use since it does not require complicated heuristic
procedures to select the parameters, and second, it applies to
a wider spectrum of applications such as to regression tasks.

Our second experiment follows [24], where only a few
samples are labeled. We use the semi-supervised formulation
of Section 3.2.2 which exploits unlabeled data. Unlike the first
experiment where the parameters are chosen using a
validation set, and following [24], we make a few arbitrary
choices. Indeed, we use p ¼ 300, !1 ¼ 0:075, and " ¼ 10"5,
which were the parameters chosen in the previous experi-
ment. As in the previous experiment, we have observed that
these parameters lead to sparse vectors ##? with about
15 nonzero coefficients. The dictionaries associated with each
digit class are initialized using the unsupervised formulation
of Section 2. To test our algorithm with different values of $,
we use a continuation strategy: Starting with $ ¼ 1:0, we
sequentially decrease its value by 0.1 until we have $ ¼ 0,
learning with 10,000 iterations for each new value of $. We
report the error rates in Fig. 1, showing that our approach
offers a competitive performance similar to [24]. The best
error rates of our method for n ¼ 300; 1;000; 5;000 labeled
data are, respectively, 5.81, 3.55, and 1.81 percent, which is
similar to [24] who has reported 7.18, 3.21, and 1.52 percent
with the same sets of labeled data.

5.3 Learning a Nonlinear Image Mapping

We now illustrate our method in a regression context by
considering a classical image processing task called “inverse
halftoning.” With the development of several binary display
technologies in the 1970s (including, for example, printers
and PC screens), the problem of converting a grayscale
continuous-tone image into a binary one that looks percep-
tually similar to the original one (“halftoning”) was posed to
the image processing community. Examples of halftoned
images obtained with the classical Floyd-Steinberg algorithm
[47] are presented in the second column of Fig. 2, with
original images in the first column. Restoring these binary
images to continuous-tone ones (“inverse halftoning”) has
become a classical problem (see [48] and references therein).

Unlike most image processing approaches that explicitly
model the halftoning process, we formulate it as a
regression problem, without exploiting any prior on the task.
We use a database of 36 images; 24 are high-quality images
from the Kodak PhotoCD data set10 and are used for
training, and 12 are classical images often used for
evaluating image processing algorithms;11 the first four

(house, peppers, cameraman, lena) are used for validation
and the remaining eight for testing.

We apply the Floyd-Steinberg algorithm implemented in
the LASIP Matlab toolbox12 to the grayscale continuous-tone
images in order to build our training/validation/testing set.
We extract all pairs of patches from the original/halftoned
images in the training set, which provides us with a database
of approximately nine million patches. We then use the
“signal regression” formulation of (12) to learn a dictionary D
and model parameters W by performing two passes of our
algorithm over the nine million training pairs.

At this point, we have learned how to restore a small
patch from an image, but not yet how to restore a full
image. Following other patch-based approaches to image
restoration [2], we extract from a test image all patches
including overlaps, and restore each patch independently so
that we get different estimates for each pixel (one estimate
for each patch the pixel belongs to). These estimates are
then averaged to reconstruct the full image, which has
proven to give very good results in many image restoration
tasks (see, e.g., [2], [4]). The final image is then postpro-
cessed using the denoising algorithm in [4] to remove
possible artifacts.

We then measure how well it reconstructs the contin-
uous-tone images from the halftoned ones in the test set. To
reduce the number of hyperparameters, we have made a few
arbitrary choices: We first use the Lasso formulation for
encoding the signals—that is, we set !2 ¼ 0. With millions of
training samples, our model is unlikely to overfit and the
regularization parameter " is set to 0 as well. The remaining
free parameters are the sizem of the patches, the size p of the

798 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 4, APRIL 2012

Fig. 1. Error rates on MNIST when using n labeled data, for various
values of $.

Fig. 2. From left to right: Original images, halftoned images, recon-
structed images. Even though the halftoned images (center column)
perceptually look relatively close to the original images (left column),
they are binary. Reconstructed images (right column) are obtained by
restoring the halftoned binary images. Best viewed by zooming on a
computer screen.

10. http://r0k.us/graphics/kodak/.
11. The list of these images can be found in [4], where they are used for

the problem of image denoising. 12. http://www.cs.tut.fi/~lasip/.

37

From supervised Lasso to DNNs

• The Lasso (sparse coding operator) can be implemented
as a specific deep network.

38

From supervised Lasso to DNNs

• The Lasso (sparse coding operator) can be implemented
as a specific deep network

• Can we accelerate the sparse inference with a shallower
network, with trained parameters?

V ⇢ ⇢ ⇢V V
0

�D

t
x

z = �(x)

39

From supervised Lasso to DNNs

• The Lasso (sparse coding operator) can be implemented
as a specific deep network

• Can we accelerate the sparse inference with a shallower
network, with trained parameters?

V ⇢ ⇢ ⇢V V
0

�D

t
x

z = �(x)

40

⇢ ⇢ ⇢0

x

W

S S S

F (x,W, S)
M steps

• Explicit Sparse encoder trained to predict the output of
the Lasso:

LISTA [Gregor and LeCun,’10]

min
W,S

1

n

X

in

k�(xi)� F (xi,W, S)k2

41

• Explicit Sparse encoder trained to predict the output of
the Lasso:

- LISTA adapts to the data distribution and produces much faster
approximate sparse codes.

LISTA [Gregor and LeCun,’10]

min
W,S

1

n

X

in

k�(xi)� F (xi,W, S)k2

Learning Fast Approximations of Sparse Coding

FISTA !4x"
FISTA !1x"
LISTA !4x"
LISTA !1x"

0 1 2 3 5 7
iter

0.5

1

2

5

10

error

Figure 3. Code prediction error as a function of number of
iterations for FISTA (crosses) and for LISTA (dots), for
m = 100 (red) and m = 400 (blue). Note the logarithmic
scales. iter = 0 corresponds to the baseline trainable en-
coder with the shrinkage function. It takes 18 iterations of
FISTA to reach the error fo LISTA with just one iteration
for m = 100, and 35 iteration for m = 400. Hence one can
say that LISTA is roughly 20 times faster than FISTA for
approximate solutions.

80% of connections (cf = 0.2) causes a relatively small
increase in prediction error from about 1.6 to about
2.0. Removing connections also allows efficient com-
putation of the S matrix multiplication when only the
nonzero code units are used.

dim reduction !4x"
elements removal !4x"
dim reduction !1x"
elements removal !1x"

0.01 0.02 0.05 0.1 0.2 0.5 1
cf

1.5

2

2.5

3

3.5

4

error

Figure 4. Prediction error for LISTA with one iteration as
a function of fraction of operations cf required relative to
a full S matrix. The matrix is reduced using a low rang
factorization, or by removing small elements.

LCoD: The prediction results for the learned CoD
are shown in the Figure 5. Each iteration costs O(m)
operations as opposed to LISTA’s O(m2) or O(mk).
The cost of the initial operation WeX is O(nm). It
is remarkable that with only 20 iterations, which adds
a tiny additional cost to the initial calculation WeX,
and much smaller than a single iteration of FISTA or
LISTA, the error is already below 2. It takes 100 itera-
tions of CoD to reach the same error as 5 iterations of

LCoD. For a large number of iterations, LCoD loses to
CoD when the matrices are initialized randomly, but
initializing the matrices with their CoD-prescribed val-
ues improves the performance significantly (open cir-
cles).

CoD !4x"
CoD !1x"
LCoD !4x"
LCoD !1x"

0 1 2 5 10 20 50 100 200
iter

0.2

0.5

1

2

5

10

50

error

Figure 5. Code prediction errors for CoD and LCoD for
varying numbers of iterations. LCoD is about 20 times
faster than CoD for small numbers of iterations. Initial-
izing the matrices with their LCoD values before training
(open circles) improve the performance in the high itera-
tion regime, but seems to degrade it in the low iteration
regime (data not shown).

In the second set of experiments we investigated
whether the improvement in prediction error leads to
a better recognition performance using the MNIST
dataset. In the first experiment, the CoD and LCoD
methods with codes of size 784 were trained on the
whole 28× 28 = 784 pixel images. In the second one,
the CoD and LCoD methods with 256 dimensional
codes were trained on 16× 16 pixel patches extracted
from the MNIST digits. A complete feature vector
consisted of 25 concatenated such vectors, extracted
from all 16× 16 patches shifted by 3 pixels on the in-
put. The features were extracted for all digits using
CoD with exact inference, CoD with a fixed number of
iterations, and LCoD. Additionally a version of CoD
(denoted CoD’) used inference with a fixed number
of iterations during training of the filters, and used
the same number of iterations during test (same com-
plexity as LCoD). A logistic regression classifier was
trained on the features thereby obtained.

Classification errors on the test set are shown in Ta-
bles 2 and 3. While the error rate decreases with the
number of iterations for all methods, the error rate
of LCoD with 10 iterations is very close to the opti-
mal (differences in error rates of less than 0.1% are
insignificant on MNIST)1.

1cpu times assume efficient implementation of the WeX
that is not available for the argmax of (L)CoD: 1.6x speed
up for Table 2 (vector) and 5x for Table 3 (batch).

42

From supervised sparse coding to DNN

• The fast approximation of a sparse code can be plugged-
in in a supervised regression or classification task:

43

min
⇥,⇥0

X

i

`(yi, G(F (xi,⇥),⇥0)) + �kF (xi,⇥)k1

⇢ ⇢ ⇢0

x

W

S S S

F (x,W, S)
M steps

ŷD

min
⇥,W

X

i

`(yi, DF (xi,⇥)) + �kF (xi,⇥)k1

x

F (x,W, S) ŷ

From supervised sparse coding to DNN

• The fast approximation of a sparse code can be plugged-
in in a supervised regression or classification task.

• For example, [Sprechmann, Bronstein & Sapiro,’12] in speaker
identification experiments using non-negative matrix
factorization:

Table 3: Speaker identification success rate.

Noise Exact
RNMF Encoders

(Supervised) (Discriminative)

street 0.86 0.91 0.91

restaurant 0.91 0.89 0.90

car 0.90 0.91 0.96

exhibition 0.93 0.91 0.95

train 0.93 0.88 0.96

airport 0.92 0.85 0.98

average 0.91 0.89 0.94

7 Conclusions and future work

In this work we have developed a comprehensive framework for process-centric

parsimonious modeling. By combining ideas from convex optimization with

multi-layer neural networks, we have shown how to produce deterministic func-

tions capable of faithfully approximating the optimization-based solution of

parsimonious models at a fraction of the computational time. Furthermore,

at almost the same computational cost, the framework includes di↵erent objec-

tive functions that allow the encoders to be trained in a discriminative fashion

or solve challenging alignment problems. We conducted empirical experiments

in di↵erent settings and real applications such as image modeling, robust face

modeling, audio sources separation and robust speaker recognition. A simple

unoptimized implementation already achieves often several order of magnitude

speedups when compared to exact solvers.

While we limited our attention to synthesis models, the proposed framework

can be naturally extended to analysis cosparse models [52, 53], in which the

signal is known to be sparse in a transformed domain. Specifically, given a

“sensing” matrix M 2 Rn⇥q and an analysis dictionary ⌦ 2 Rp⇥m, in an

analysis counterpart of (21), one looks for a function f 2 F , where again F is

a space of functions with certain desired properties, that minimizes

min
f2F

1

2

NX

i=1

kxi � Mf(xi)k2 + � k⌦f(xi)k
1

. (30)

The space F can be set by truncating suitable iterative optimization algorithms

such as the augmented Lagrangian methods of multipliers (ADMM) [21].

30

44

Fisher Kernels

• Recall the generic kernel method for (binary)
classification:

45

ŷ(x) = sign

X

i

yi�iK(x, xi)

!

{(xi, yi)}i: labeled training examples

�i: Lagrange multipliers associated to the loss

K(x, y): similarity kernel

Fisher Kernels

• Recall the generic kernel method for (binary)
classification:

• Important challenge: how to choose the kernel?

46

ŷ(x) = sign

X

i

yi�iK(x, xi)

!

{(xi, yi)}i: labeled training examples

�i: Lagrange multipliers associated to the loss

K(x, y): similarity kernel

Fisher Kernels

• Key idea: derive the kernel function from a generative
probability model of the data .

47

p(x | ✓)

Fisher Kernels

• Key idea: derive the kernel function from a generative
probability model of the data .

• The Fisher score is defined as

- It measures how the parameter vector contributes to generating x.

48

p(x | ✓)

U

x

= r
✓

log p(x | ✓)

Fisher Kernels

• Key idea: derive the kernel function from a generative
probability model of the data .

• The Fisher score is defined as

- It measures how the parameter vector contributes to generating x.

• A natural metric in that probability space is given by the
Fisher Information matrix:

49

p(x | ✓)

U

x

= r
✓

log p(x | ✓)

I = E
x⇠p(x|✓)(Ux

UT

x

)

Fisher Vectors

• It results in the Fisher Kernel

50

K(x, y) = U

T

x

I

�1
U

y

Fisher Vectors

• It results in the Fisher Kernel

• If is symmetric and positive definite, it admits a
Cholesky decomposition and thus

• How to apply it to image classification/retrieval?

51

I✓ = LT
✓ L✓

I✓

K(x, y) = hŨ
x,✓

, Ũ

y,✓

i , Ũ

x,✓

= L

�1
✓

U

x

K(x, y) = U

T

x

I

�1
U

y

Fisher Vectors

• Let be a collection of L local
descriptors extracted from a single image.

52

X = {xl ; l = 1 . . . L}

Fisher Vectors

• Let be a collection of L local
descriptors extracted from a single image.

• Consider a Gaussian Mixture Model (GMM) as
generative model:

53

X = {xl ; l = 1 . . . L}

p(x | ✓) =
X

kK

wkf(x;µk,⌃k)

wk: mixture weights

f(x;µ,⌃): Multivariate Gaussian density with mean µ and covariance ⌃.

Fisher Vectors

• Let be a collection of L local
descriptors extracted from a single image.

• Consider a Gaussian Mixture Model (GMM) as
generative model:

• If we assume that the are generated independently by
 we have that

54

X = {xl ; l = 1 . . . L}

p(x | ✓) =
X

kK

wkf(x;µk,⌃k)

wk: mixture weights

f(x;µ,⌃): Multivariate Gaussian density with mean µ and covariance ⌃.

xl

p(x | ✓)
UX =

1

L

X

l

r✓ log p(xl | ✓)

Fisher Vectors

• By slightly simplifying the model, we obtain normalized
Fisher vectors of the form:

55

ŨX = (ŨX,k,µ, ŨX,k,�)kK

ŨX,k,µ =
1

L

p
wk

X

lL

�l(k)
xl � µk

�k
, ŨX,k,� =

1

L

p
2wk

X

lL

�l(k)

✓
(xl � µk)2

�

2
k

� 1

◆
.

�l(k) =
wkf(xl;µk,⌃k)P

k0K wk0
f(xl;µk0

,⌃k0)
(soft assignment of descriptor xl to Gaussian k)

[“Improving the Fisher Kernel for Large-Scale Image Classification”, Perronnin et al,’10]

Fisher Vectors

• By slightly simplifying the model, we obtain normalized
Fisher vectors of the form:

• We aggregate over the image not only counts of visual
words, but also first and second order statistics within
each cluster.

56

ŨX = (ŨX,k,µ, ŨX,k,�)kK

ŨX,k,µ =
1

L

p
wk

X

lL

�l(k)
xl � µk

�k
, ŨX,k,� =

1

L

p
2wk

X

lL

�l(k)

✓
(xl � µk)2

�

2
k

� 1

◆
.

�l(k) =
wkf(xl;µk,⌃k)P

k0K wk0
f(xl;µk0

,⌃k0)
(soft assignment of descriptor xl to Gaussian k)

[“Improving the Fisher Kernel for Large-Scale Image Classification”, Perronnin et al,’10]

Fisher Vectors and VLAD

• Typically, one considers local descriptors such as SIFT
(Scale Invariant Feature Transform) of HoG (Histogram
of Oriented Gradients).

57

Fisher Vectors and VLAD

• Typically, one considers local descriptors such as SIFT
(Scale Invariant Feature Transform) of HoG (Histogram
of Oriented Gradients)

• By properly normalizing the Fisher vectors and improving
the spatial aggregation, State-of-the-art results on Image
Classification, Detection and Retrieval before CNNs
[Perronnin et al, ’10].

58

Fisher Vectors and VLAD

• Typically, one considers local descriptors such as SIFT
(Scale Invariant Feature Transform) of HoG (Histogram
of Oriented Gradients)

• By properly normalizing the Fisher vectors and improving
the spatial aggregation, State-of-the-art results on Image
Classification, Detection and Retrieval before CNNs
[Perronnin et al, ’10].

• VLAD (Vector of Locally Aggregated Descriptors) [Jegou
et al, ’10] considers only first order statistics and hard
assignments.

59

From VLAD to CNNs

• The VLAD representation thus becomes

• How to relate this operation with what a CNN can do?

60

�(x)(�, k) =
X

lL

ak(�l(x))(�l(x)(�)� ck(�))

�l: local descriptor at location l
ak(�l(x)) = 1 if ck is closest to �l(x), 0 otherwise

NetVLAD [Arandjelovic et al,’15]

• Replace the hard cluster assignments with a softmax
assignment of the form

61

a

k

(�
l

(x)) =
e

�↵k�l(x)�ckk2

P
k

0 e
�↵k�l(x)�ck0k2

NetVLAD [Arandjelovic et al,’15]

• Replace the hard cluster assignments with a softmax
assignment of the form

• Replace the local descriptors by a few
convolutional layers and make the centers trainable.

62

a

k

(�
l

(x)) =
e

�↵k�l(x)�ckk2

P
k

0 e
�↵k�l(x)�ck0k2

�l(x)
ck

conv (w,b)
1x1xDxK soft-max

VLAD core (c) intra-
normalization

L2
normalization

soft-assignment

Vx
x

s

(KxD)x1
VLAD
vector

NetVLAD layerConvolutional Neural Network

...

Image

WxHxD map interpreted as
NxD local descriptors x

Figure 2. CNN architecture with the NetVLAD layer. The layer can be implemented using standard CNN layers (convolutions,
softmax, L2-normalization) and one easy-to-implement aggregation layer to perform aggregation in equation (4) (“VLAD core”), joined
up in a directed acyclic graph. Parameters are shown in brackets.

response with the magnitude of the distance. Note that for
↵ ! +1 this setup replicates the original VLAD exactly
as ā

k

(x

i

) for the closest cluster would be 1 and 0 otherwise.
By expanding the squares in (2), it is easy to see that

the term e�↵kxik2

cancels between the numerator and the
denominator resulting in a soft-assignment of the following
form

ā
k

(x

i

) =

ew
T
k xi+bk

P
k

0 e
w

T
k0xi+bk0

, (3)

where vector w
k

= 2↵c
k

and scalar b
k

= �↵kc
k

k2. The
final form of the NetVLAD layer is obtained by plugging
the soft-assignment (3) into the VLAD descriptor (1) re-
sulting in

V (j, k) =
NX

i=1

ew
T
k xi+bk

P
k

0 e
w

T
k0xi+bk0

(x
i

(j)� c
k

(j)) , (4)

where {w
k

}, {b
k

} and {c
k

} are sets of trainable parameters
for each cluster k. Similarly to the original VLAD descrip-
tor, the NetVLAD layer aggregates the first order statistics
of residuals (x

i

� c

k

) in different parts of the descriptor
space weighted by the soft-assignment ā

k

(x

i

) of descriptor
x

i

to cluster k. Note however, that the NetVLAD layer has
three independent sets of parameters {w

k

}, {b
k

} and {c
k

},
compared to just {c

k

} of the original VLAD. This enables
greater flexibility than the original VLAD, as explained in
figure 3. For example, decoupling {w

k

, b
k

} from {c
k

} has
been proposed in [3] as a means to adapt the VLAD to a
new dataset. All parameters of NetVLAD are learnt for the
specific task in an end-to-end manner.

As illustrated in figure 2 the NetVLAD layer can be vi-
sualized as a meta-layer that is further decomposed into ba-
sic CNN layers connected up in a directed acyclic graph.
First, note that the first term in eq. (4) is a soft-max func-
tion �

k

(z) =

exp(zk)P
k0 exp(zk0)

. Therefore, the soft-assignment
of the input array of descriptors x

i

into K clusters can be
seen as a two step process: (i) a convolution with a set of K
filters {w

k

} that have spatial support 1⇥1 and biases {b
k

},
producing the output s

k

(x

i

) = w

T

k

x

i

+ b
k

; (ii) the convo-
lution output is then passed through the soft-max function

Figure 3. Benefits of supervised VLAD. Red and green cir-
cles are local descriptors from two different images, assigned to
the same cluster (Voronoi cell). Under the VLAD encoding, their
contribution to the similarity score between the two images is the
scalar product (as final VLAD vectors are L2-normalized) between
the corresponding residuals, where a residual vector is computed
as the difference between the descriptor and the cluster’s anchor
point. The anchor point c

k

can be interpreted as the origin of a
new coordinate system local to the the specific cluster k. In stan-
dard VLAD, the anchor is chosen as the cluster centre (⇥) in order
to evenly distribute the residuals across the database. However, in
a supervised setting where the two descriptors are known to be-
long to images which should not match, it is possible to learn a
better anchor (?) which causes the scalar product between the new
residuals to be small.

�
k

to obtain the final soft-assignment ā
k

(x

i

) that weights
the different terms in the aggregation layer that implements
eq. (4). The output after normalization is a (K ⇥ D) ⇥ 1

descriptor.

Relations to other methods. Other works have proposed to
pool CNN activations using VLAD or Fisher Vectors (FV)
[13, 22], but do not learn the VLAD/FV parameters nor the
input descriptors. The most related method to ours is the
one of Sydorov et al. [71], which proposes to learn FV pa-
rameters jointly with an SVM for the end classification ob-
jective. However, in their work it is not possible to learn
the input descriptors as they are hand-engineered (SIFT),
while our VLAD layer is easily pluggable into any CNN
architecture as it is amenable to backpropagation. Results
(section 5.2) will show this difference to make a large im-
pact on performance. Finally, [67] propose “Fisher Net-
works” where Fisher Vector layers are stacked on top of

4

• Examples of Retrieval Results (Tokyo dataset).

63

In
pu

t
im

ag
e

A
le

xN
et

ou
rs

A
le

xN
et

of
f-

sh
el

f
Pl

ac
es

20
5

of
f-

sh
el

f

Figure 9. What has been learnt? Each column corresponds to one image (top row) and the emphasis various networks (under f
max

) give
to different patches. Each pixel in the heatmap corresponds to the change in representation when a large gray occluding square (100⇥100)
is placed over the image in the same position (c.f . section 5.3); all heatmaps have the same colour scale. Note that the original image and
the heatmaps are not in perfect alignment as nearby patches overlap 50% and patches touching an image edge are discarded to prevent
border effects. All images are from Pitts250k-val that the network hasn’t seen at training.

Q
ue

ry
O

ur
s

B
es

tb
as

el
in

e

Figure 10. Examples of retrieval results for challenging queries on Tokyo 24/7. Each column corresponds to one test case: the query
is shown in the first row, the top retrieved image using our best method (trained VGG-16 NetVLAD + whitening) in the second, and the top
retrieved image using the best baseline (RootSIFT + VLAD + whitening) in the last row. The green and red borders correspond to positive
and negative retrievals.

15

NetVLAD [Arandjelovic et al,’15]

• More general pooling
mechanism

• Training end-to-end
again brings substantial
gains.

64

NetVLAD [Arandjelovic et al,’15]

Figure 2. CNN architecture with the NetVLAD layer. The layer can be implemented using standard CNN layers (convolutions,
softmax, L2-normalization) and one easy-to-implement aggregation layer to perform aggregation in equation (4) (“VLAD core”), joined
up in a directed acyclic graph. Parameters are shown in brackets.

response with the magnitude of the distance. Note that for
↵ ! +1 this setup replicates the original VLAD exactly
as ā

k

(x

i

) for the closest cluster would be 1 and 0 otherwise.
By expanding the squares in (2), it is easy to see that

the term e�↵kxik2

cancels between the numerator and the
denominator resulting in a soft-assignment of the following
form

ā
k

(x

i

) =

ew
T
k xi+bk

P
k

0 e
w

T
k0xi+bk0

, (3)

where vector w
k

= 2↵c
k

and scalar b
k

= �↵kc
k

k2. The
final form of the NetVLAD layer is obtained by plugging
the soft-assignment (3) into the VLAD descriptor (1) re-
sulting in

V (j, k) =
NX

i=1

ew
T
k xi+bk

P
k

0 e
w

T
k0xi+bk0

(x
i

(j)� c
k

(j)) , (4)

where {w
k

}, {b
k

} and {c
k

} are sets of trainable parameters
for each cluster k. Similarly to the original VLAD descrip-
tor, the NetVLAD layer aggregates the first order statistics
of residuals (x

i

� c

k

) in different parts of the descriptor
space weighted by the soft-assignment ā

k

(x

i

) of descriptor
x

i

to cluster k. Note however, that the NetVLAD layer has
three independent sets of parameters {w

k

}, {b
k

} and {c
k

},
compared to just {c

k

} of the original VLAD. This enables
greater flexibility than the original VLAD, as explained in
figure 3. For example, decoupling {w

k

, b
k

} from {c
k

} has
been proposed in [3] as a means to adapt the VLAD to a
new dataset. All parameters of NetVLAD are learnt for the
specific task in an end-to-end manner.

As illustrated in figure 2 the NetVLAD layer can be vi-
sualized as a meta-layer that is further decomposed into ba-
sic CNN layers connected up in a directed acyclic graph.
First, note that the first term in eq. (4) is a soft-max func-
tion �

k

(z) =

exp(zk)P
k0 exp(zk0)

. Therefore, the soft-assignment
of the input array of descriptors x

i

into K clusters can be
seen as a two step process: (i) a convolution with a set of K
filters {w

k

} that have spatial support 1⇥1 and biases {b
k

},
producing the output s

k

(x

i

) = w

T

k

x

i

+ b
k

; (ii) the convo-
lution output is then passed through the soft-max function

+

Figure 3. Benefits of supervised VLAD. Red and green cir-
cles are local descriptors from two different images, assigned to
the same cluster (Voronoi cell). Under the VLAD encoding, their
contribution to the similarity score between the two images is the
scalar product (as final VLAD vectors are L2-normalized) between
the corresponding residuals, where a residual vector is computed
as the difference between the descriptor and the cluster’s anchor
point. The anchor point c

k

can be interpreted as the origin of a
new coordinate system local to the the specific cluster k. In stan-
dard VLAD, the anchor is chosen as the cluster centre (⇥) in order
to evenly distribute the residuals across the database. However, in
a supervised setting where the two descriptors are known to be-
long to images which should not match, it is possible to learn a
better anchor (?) which causes the scalar product between the new
residuals to be small.

�
k

to obtain the final soft-assignment ā
k

(x

i

) that weights
the different terms in the aggregation layer that implements
eq. (4). The output after normalization is a (K ⇥ D) ⇥ 1

descriptor.

Relations to other methods. Other works have proposed to
pool CNN activations using VLAD or Fisher Vectors (FV)
[13, 22], but do not learn the VLAD/FV parameters nor the
input descriptors. The most related method to ours is the
one of Sydorov et al. [71], which proposes to learn FV pa-
rameters jointly with an SVM for the end classification ob-
jective. However, in their work it is not possible to learn
the input descriptors as they are hand-engineered (SIFT),
while our VLAD layer is easily pluggable into any CNN
architecture as it is amenable to backpropagation. Results
(section 5.2) will show this difference to make a large im-
pact on performance. Finally, [67] propose “Fisher Net-
works” where Fisher Vector layers are stacked on top of

4

N - Number of top database candidates
0 5 10 15 20 25 30

R
e

ca
ll@

N
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

f
VLAD

 ours (V)+white

f
VLAD

 ours (V)

f
VLAD

 ours (A)+white

f
VLAD

 ours (A)

f
max

 ours (V)

f
max

 ours (A)

Torii et al. CVPR15 [75]
RootSIFT+VLAD+white
RootSIFT+VLAD
f

VLAD
 VGG-16 (V)

f
VLAD

 AlexNet (A)

f
VLAD

 Places205 (A)

f
max

 VGG-16 (V)

f
max

 AlexNet (A) [6,56]

f
max

 Places205 (A)

(a) Legend

N - Number of top database candidates
0 5 10 15 20 25

R
e

ca
ll@

N
 (

%
)

30

40

50

60

70

80

90

100

(b) Pitts30k-test

N - Number of top database candidates
0 5 10 15 20 25

R
e

ca
ll@

N
 (

%
)

20

30

40

50

60

70

80

90

100

(c) Pitts250k-test

N - Number of top database candidates
0 5 10 15 20 25

R
e

ca
ll@

N
 (

%
)

40

50

60

70

80

90

100

(d) TokyoTM-val

N - Number of top database candidates
0 5 10 15 20 25

R
e
ca

ll@
N

 (
%

)

0

10

20

30

40

50

60

70

80

90

(e) Tokyo 24/7 all queries

N - Number of top database candidates
0 5 10 15 20 25

R
e

ca
ll@

N
 (

%
)

10

20

30

40

50

60

70

80

90

100

(f) Tokyo 24/7 daytime

N - Number of top database candidates
0 5 10 15 20 25

R
e
ca

ll@
N

 (
%

)

0

10

20

30

40

50

60

70

80

90

(g) Tokyo 24/7 sunset/night

Figure 8. Comparison of our methods versus off-the-shelf networks and state-of-the-art. The base CNN architecture is denoted in
brackets: (A)lexNet and (V)GG-16. Trained representations (red and magenta for AlexNet and VGG-16) outperform by a large margin off-
the-shelf ones (blue, cyan, green for AlexNet, Places205, VGG-16), f

V LAD

(-o-) works better than f
max

(-x-), and our f
V LAD

+whitening
(-⇤-) representation based on VGG-16 sets the state-of-the-art on all datasets. [75] only evaluated on Tokyo 24/7 as the method relies on
depth data not available in other datasets.

14

• Typical 20-question game:

Decision Trees

65

has a beard?

has tattoos? no hipster

obsessed with
coffee?

no hipster

hipster no hipster

Decision Trees
•
• Each node of the three selects a variable and splits using

a threshold.

66

Let x = {(x1, y1), . . . , (xT , yT)} be the input data,
with xi 2 RN .

v1
v2

vK

⌦j
i ⇢ RN ! (⌦l

i+1,⌦
l+1
i+1)

⌦j
i = ⌦l

i+1 [⌦l+1
i+1 , ; = ⌦l

i+1 \ ⌦l+1
i+1

⌦0
0 = RN

⌦0
1 ⌦1

1

Decision Trees

• Each split optimizes the entropy in the label distribution:

67

v1
v2

vK

p(y | x 2 ⌦j
i)

p(y | x 2 ⌦l
i+1) p(y | x 2 ⌦l+1

i+1)

The leaves {vk} of the tree define a partition of the input space into

cubic sections:

⌦k
1 = {x 2 RN ; ↵k,n  xn  �k,n 8n  N}

Random Forests

• A decision tree can capture interactions between
different variables, but it is very noisy (ie unstable).

• Evaluation and training are extremely efficient.

68

Random Forests

• A decision tree can capture interactions between
different variables, but it is very noisy (ie unstable).

• Evaluation and training are extremely efficient.
• By appropriately introducing randomization, we can

construct an ensemble of random trees: the so-called
random forests.

69

Random Forests

• A decision tree can capture interactions between
different variables, but it is very noisy (ie unstable).

• Evaluation and training are extremely efficient.
• By appropriately introducing randomization, we can

construct an ensemble of random trees: the so-called
random forests.

• We draw bootstrapped samples of the training set, and
each split in the tree is calculated only on a small random
subset of variables (typically of size).

• The prediction is the aggregate prediction (ie voting) of
each tree.

70

O(
p
N)

Random Forests

• Successful across a wide range of classification and
regression problems.

71

Examples

Figure 5. Example inferences. Synthetic (top row); real (middle); failure modes (bottom). Left column: ground truth for a neutral pose as
a reference. In each example we see the depth image, the inferred most likely body part labels, and the joint proposals show as front, right,
and top views (overlaid on a depth point cloud). Only the most confident proposal for each joint above a fixed, shared threshold is shown.

To keep the training times down we employ a distributed
implementation. Training 3 trees to depth 20 from 1 million
images takes about a day on a 1000 core cluster.

3.4. Joint position proposals
Body part recognition as described above infers per-pixel

information. This information must now be pooled across
pixels to generate reliable proposals for the positions of 3D
skeletal joints. These proposals are the final output of our
algorithm, and could be used by a tracking algorithm to self-
initialize and recover from failure.

A simple option is to accumulate the global 3D centers
of probability mass for each part, using the known cali-
brated depth. However, outlying pixels severely degrade
the quality of such a global estimate. Instead we employ a
local mode-finding approach based on mean shift [10] with
a weighted Gaussian kernel.

We define a density estimator per body part as

fc(ˆx) /
NX

i=1

wic exp

�
����
ˆ

x� ˆ

xi

bc

����
2
!

, (7)

where ˆ

x is a coordinate in 3D world space, N is the number
of image pixels, wic is a pixel weighting, ˆxi is the reprojec-
tion of image pixel xi into world space given depth dI(xi),
and bc is a learned per-part bandwidth. The pixel weighting
wic considers both the inferred body part probability at the
pixel and the world surface area of the pixel:

wic = P (c|I,xi) · dI(xi)
2 . (8)

This ensures density estimates are depth invariant and gave
a small but significant improvement in joint prediction ac-
curacy. Depending on the definition of body parts, the pos-
terior P (c|I,x) can be pre-accumulated over a small set of
parts. For example, in our experiments the four body parts
covering the head are merged to localize the head joint.

Mean shift is used to find modes in this density effi-
ciently. All pixels above a learned probability threshold �c

are used as starting points for part c. A final confidence es-
timate is given as a sum of the pixel weights reaching each
mode. This proved more reliable than taking the modal den-
sity estimate.

The detected modes lie on the surface of the body. Each
mode is therefore pushed back into the scene by a learned
z offset ⇣c to produce a final joint position proposal. This
simple, efficient approach works well in practice. The band-
widths bc, probability threshold �c, and surface-to-interior
z offset ⇣c are optimized per-part on a hold-out validation
set of 5000 images by grid search. (As an indication, this
resulted in mean bandwidth 0.065m, probability threshold
0.14, and z offset 0.039m).

4. Experiments
In this section we describe the experiments performed to

evaluate our method. We show both qualitative and quan-
titative results on several challenging datasets, and com-
pare with both nearest-neighbor approaches and the state
of the art [13]. We provide further results in the supple-
mentary material. Unless otherwise specified, parameters
below were set as: 3 trees, 20 deep, 300k training images
per tree, 2000 training example pixels per image, 2000 can-
didate features ✓, and 50 candidate thresholds ⌧ per feature.
Test data. We use challenging synthetic and real depth im-
ages to evaluate our approach. For our synthetic test set,
we synthesize 5000 depth images, together with the ground
truth body part labels and joint positions. The original mo-
cap poses used to generate these images are held out from
the training data. Our real test set consists of 8808 frames of
real depth images over 15 different subjects, hand-labeled
with dense body parts and 7 upper body joint positions. We
also evaluate on the real depth data from [13]. The results
suggest that effects seen on synthetic data are mirrored in
the real data, and further that our synthetic test set is by far
the ‘hardest’ due to the extreme variability in pose and body
shape. For most experiments we limit the rotation of the
user to ±120

� in both training and synthetic test data since
the user is facing the camera (0�) in our main entertainment
scenario, though we also evaluate the full 360� scenario.
Error metrics. We quantify both classification and joint
prediction accuracy. For classification, we report the av-
erage per-class accuracy, i.e. the average of the diagonal of
the confusion matrix between the ground truth part label and
the most likely inferred part label. This metric weights each

Figure 5. Example inferences. Synthetic (top row); real (middle); failure modes (bottom). Left column: ground truth for a neutral pose as
a reference. In each example we see the depth image, the inferred most likely body part labels, and the joint proposals show as front, right,
and top views (overlaid on a depth point cloud). Only the most confident proposal for each joint above a fixed, shared threshold is shown.

To keep the training times down we employ a distributed
implementation. Training 3 trees to depth 20 from 1 million
images takes about a day on a 1000 core cluster.

3.4. Joint position proposals
Body part recognition as described above infers per-pixel

information. This information must now be pooled across
pixels to generate reliable proposals for the positions of 3D
skeletal joints. These proposals are the final output of our
algorithm, and could be used by a tracking algorithm to self-
initialize and recover from failure.

A simple option is to accumulate the global 3D centers
of probability mass for each part, using the known cali-
brated depth. However, outlying pixels severely degrade
the quality of such a global estimate. Instead we employ a
local mode-finding approach based on mean shift [10] with
a weighted Gaussian kernel.

We define a density estimator per body part as

fc(ˆx) /
NX

i=1

wic exp

�
����
ˆ

x� ˆ

xi

bc

����
2
!

, (7)

where ˆ

x is a coordinate in 3D world space, N is the number
of image pixels, wic is a pixel weighting, ˆxi is the reprojec-
tion of image pixel xi into world space given depth dI(xi),
and bc is a learned per-part bandwidth. The pixel weighting
wic considers both the inferred body part probability at the
pixel and the world surface area of the pixel:

wic = P (c|I,xi) · dI(xi)
2 . (8)

This ensures density estimates are depth invariant and gave
a small but significant improvement in joint prediction ac-
curacy. Depending on the definition of body parts, the pos-
terior P (c|I,x) can be pre-accumulated over a small set of
parts. For example, in our experiments the four body parts
covering the head are merged to localize the head joint.

Mean shift is used to find modes in this density effi-
ciently. All pixels above a learned probability threshold �c

are used as starting points for part c. A final confidence es-
timate is given as a sum of the pixel weights reaching each
mode. This proved more reliable than taking the modal den-
sity estimate.

The detected modes lie on the surface of the body. Each
mode is therefore pushed back into the scene by a learned
z offset ⇣c to produce a final joint position proposal. This
simple, efficient approach works well in practice. The band-
widths bc, probability threshold �c, and surface-to-interior
z offset ⇣c are optimized per-part on a hold-out validation
set of 5000 images by grid search. (As an indication, this
resulted in mean bandwidth 0.065m, probability threshold
0.14, and z offset 0.039m).

4. Experiments
In this section we describe the experiments performed to

evaluate our method. We show both qualitative and quan-
titative results on several challenging datasets, and com-
pare with both nearest-neighbor approaches and the state
of the art [13]. We provide further results in the supple-
mentary material. Unless otherwise specified, parameters
below were set as: 3 trees, 20 deep, 300k training images
per tree, 2000 training example pixels per image, 2000 can-
didate features ✓, and 50 candidate thresholds ⌧ per feature.
Test data. We use challenging synthetic and real depth im-
ages to evaluate our approach. For our synthetic test set,
we synthesize 5000 depth images, together with the ground
truth body part labels and joint positions. The original mo-
cap poses used to generate these images are held out from
the training data. Our real test set consists of 8808 frames of
real depth images over 15 different subjects, hand-labeled
with dense body parts and 7 upper body joint positions. We
also evaluate on the real depth data from [13]. The results
suggest that effects seen on synthetic data are mirrored in
the real data, and further that our synthetic test set is by far
the ‘hardest’ due to the extreme variability in pose and body
shape. For most experiments we limit the rotation of the
user to ±120

� in both training and synthetic test data since
the user is facing the camera (0�) in our main entertainment
scenario, though we also evaluate the full 360� scenario.
Error metrics. We quantify both classification and joint
prediction accuracy. For classification, we report the av-
erage per-class accuracy, i.e. the average of the diagonal of
the confusion matrix between the ground truth part label and
the most likely inferred part label. This metric weights each

[Shotton et al., CVPR 2011]

(figure from Ch. Wolf slides)

Real-Time Pose
Estimation
from Kinect

measurements
(CVPR’11)

Random Forests and CNNs

• Random Forests thus also consider piecewise linear
regions of the input space.

• However the encoding of these regions is different from
that of a deep ReLU network.

• Computationally more efficient
• No gradient descent training
• Less expressive

72

Random Forests and CNNs

• Random Forests thus also consider piecewise linear
regions of the input space.

• However the encoding of these regions is different from
that of a deep ReLU network.

• Computationally more efficient
• No gradient descent training
• Less expressive

73

