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_Objectives

* Properties of CNN representations (cont.)
_ Stability
- Redundancy
- Invertibility

* Proximal methods and Deep Neural Networks

- Task Driven Dictionary Learning
- LISTA

* Random forests and Deep Neural Networks.



~ Review:Convolutional Neural Networks

L — -~

®(x) = plp(Pr(p(x * W1)) * Va)..)

* Architectures vary in terms of
- Number p of layers (from 2 to >100).
- Size of the tensors (typically [3-7 x 3-7 x 16-256] )

- Presence/absence and type of pooling operator.
* Recent models tend to avoid non-adaptive pooling.



* We can start by analyzing a chunk of the form

~S

T (U, A) {k+1 (1, A)
Z U,

* Let us assume that pooling Is an average (non-adaptive).

» Consider a thresholding nonlinearity: p(z) = max(0, z — ¢)

* And let us forget (for now) about the convolutional
aspect.

* Redundant linear transform-+nonlinearity: scatter the space
into linear chunks

* Pooling: stitch together chunks that belong together.
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* Given z(u, A) Intermediate layer representation, and a
generic variability model {¢, )2}, how to retransform
X!



* Given z(u, A) Intermediate layer representation, and a
generic variability model {¢, )2}, how to retransform
X!

* We find linear measurements that factorize variability
model into small eigenspaces:

<907',f$7 Tuwk> — <$7 Sp;k-,fTuwk> ~ Z Xy, K/ (7_7 f) <CU, Tu+vwk’>
|v]| <6,k




CNNs and near-diagonalisation

* Given z(u, A) Intermediate layer representation, and a
generic variability model {¢, )2}, how to retransform

X!

* We find linear measurements that factorize variability
model into small eigenspaces:

(pr r2, Tywy) = (@ SOT,fTuwk Z 0w, ( Zs T Wi )

[v] <6,k

e Moreover, in order for non-linearities to be discriminative,

we want

sparse.



* Role of each layer: progressive linearization of intra-class
variability.



* Role of each layer: progressive linearization of intra-class
variability.

* Filters play a dual function:

- learn invariants that perform averaging along existing approximate
orbits (learnt pooling).

- map variability to new parallel approximate orbits for the next layer.

- ensure signals are sparse along orbits.



~ Review: Instabilities of Deep Networks
" [Szegedy et al, ICLR'14]

Alex Krizhevsky's Imagenet

8 layer Deep ConvNet

|z — z|| < 0.01||z|]

correctly classified as
classified ostrigh



» Addrtive Stability 1s not enforced:
[®i(x) — @s(2") || < [[Wile — ") || < [[Wil| ||z — 27|

Layer Size al
Conv. 1| 3x11 x11 x 96 2.75
Conv. 2 | 96 X 5 X 5 x 256 10
Conv. 3 | 256 x 3 x 3 x 384 7
Conv. 4 | 384 x 3 x 3 x 384 7.5
Conv. 5 | 384 x 3 x 3 x 256 11

FC. 1 9216 x 4096 3.12

FC. 2 4096 x 4096 4

FC. 3 4096 x 1000 4
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* Addrtive Stablility 1s not enforced:

[Pi(x) = Pi(2")|| < Wiz —2")|| < Wil [l — 27|

Layer Size al
Conv. 1| 3x11 x11 x 96 2.75
Conv. 2 | 96 X 5 X 5 x 256 10
Conv. 3 | 256 x 3 x 3 x 384 7
Conv. 4 | 384 x3x3x384 | 7.5
Conv. 5 | 384 x 3 x 3 x 256 11

FC. 1 9216 x 4096 3.12

FC. 2 4096 x 4096 4

FC. 3 4096 x 1000 4

* These adversarial examples are found by explicitly fooling

the network:
min ||x

* [hey are robus

—z|* st p(y | ©(z)) Lpy | 2(z))

- to different parametrization of ®(z)and to

different hyper-parameters.
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* However, these examples do not occur In practice.
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» However, these examples do not occur In

dractice.

e A discriminative model does not care about robustness

with respect to the input distribution:

A

Regret is Pr(f(®(x)) # f(x)) (classification)

A

or E(|| f(z) — f(®(2))[]*) (regression)

It is defined through an input distribution (z,y) ~ X

with density h(x,y).

| 4



* CNINs do not assume (rightfully) an input distribution
stable to additive noise:

h(x,y) — h(z + n,y)| can be large even if ||n|| small
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* CNINs do not assume (rightfully) an input distribution
stable to additive noise:

h(x,y) — h(z + n,y)| can be large even if ||n|| small

 However, t
geometric

ney DO assume an input distribution stable to

nolse:

h(z,y) — h(o,-(z),y)| small if ||7|| small

|16



* a CNN trained on a (large enough) dataset generalizes

ner visual tasks:

“Learning visual features from Large \/\/eqdfly supervised Data’”, [Joulin et al, [ 5]
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(b) Scale

Viewpoint

Places

26.8 %
8.5

21.4 %
7.0

Dbject color (d) Background color

AlexNet

26.4 %
8.3

19.4 %
7.2

VGG

21.2 %
10.0

16.4 %
7.7

Style

Places

26.8 %
136.3

39.1 %
105.5

AlexNet

28.2 %
121.1

40.3 %
125.5

VGG

26.4 %
181.9

44.3 %
136.3

AL

Places

46.8 %

39.5 %

AlexNet

45.0 %

40.3 %

VGG g

52.4 %

39.3 %

[Aubry & Rusell "I 5]




* We related stability with the ablility to linearize
deformations:

T — ®(p,x) Lipschitz =
O(prz) = (x) + D(®o@.(z))7 + O(|7]])

|19



~Invariance, Linearization and Geodesics

* We related stability with the ablility to linearize
deformations:

T — ®(p,x) Lipschitz =
O(prz) = (x) + D(®o@.(z))7 + O(|7]])

* One can test this property over learnt representations by
inspecting geodesics.

- They become linear paths in feature space under the metric

d(z,z') = [|®(x) — ®(z')]

- [Bengio et al. | |], [Goroshin et al'| 5], [Henaff et al " | 6]
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Invariance, Linearization and Geodesics

* Algorithm from [Henaff & Simoncelli "1 6];

21



Invariance, Linearization and Geodesics

* Algorithm from [Henaff & Simoncelli "1 6];

min / 5(t)]dt + / (@) (8)]dt

’Y(O):x())f)/(l):xb



~Invariance, Linearization and Geodesics

* On pertained CNNs
(VGG oxford net),
inearization 1s empirically
verified for various
oroups.

 Continuous e
transformation groups = pmmimmm s e
are better linearized with
energy pooling than with
max-pooling

A /NI W ) AT m st .
I_l ff d S ”! | 6 N/ \\v -i"_\-'*‘f.llli'- N/ Y\m
I: enart an IMOonceilil :| ) 3 ground truth VGG network, max pooling VGG network, L, pooling



O(x) = p(...p(x*W1)- - * Vg)))

* Large-scale networks contain >10 layers and >10°
Darameters.

* Q:ls there a smaller parametric model that contains
oo00d representations?
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* "Post-training” model compression:

Given parameters © = (O1,...,0y), find a
reparametrization ® such that E||®(x;0) — ®(z)| is small.
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* "Post-training” model compression:

Given parameters © = (O1,...,0y), find a
reparametrization ® such that E||®(x;0) — ®(z)| is small.

- Useful to accelerate evaluation of large networks ([Denton et al; [4],
[Jaderberg et al' 14]) ("Optimal Brain Damage™ [LeCun et al,90] )

- Typically we restrict the new class to be

®(z) = ®(x,0), 6, = F(5;) dim(s;) < dim(O;)

- Explore low-rank tensor factorizations of each convolutional tensor.

26



Redundancy

* "Post-training” model compression:

Given parameters © = (0©1,...,0;), find a
reparametrization ® such that E||®(x;©) — &(z)| is small.
- Useful to accelerate evaluation of large networks ([Denton et al, [4],
[Jaderberg et al' | 4]) ("Optimal Brain Damage” [LeCun et al,90] )
- Typically we restrict the new class to be
O(z) = (2,0), ©;=F(5)  dim(f;) < dim(6;)

- Explore low-rank tensor factorizations of each convolutional tensor.

* “"Pre-training’ model compression:

- Train directly in the compressed domain ([ “Predicting parameters in Deep
Learning”, Denll et al,; | 3]).

- Mild regularization effect. Interplay between statistical performance and
optimization performance.

27



e O

ow Mmuch informa

lon 1s preserved In a

representation arising from a CNN/?

- Under which metric!

- Which training mechanism?

28



* No training and some structure: & = §; Scattering.

- For a signal of size N, we can consider [=log(N) to capture the whole
receptive field

* Typically will have less coefficients than input dimensions: compressive
recovery.

29



* No training and some structure: & = §; Scattering.

- For a signal of size N, we can consider [=log(N) to capture the whole
receptive field

* Typically will have less coefficients than input dimensions: compressive
recovery.

- Or we can consider a fixed scale | for a localized (and redundant)
representation.

* [he recovery guarantees are looser.

30



Theorem [B,M’15]|: Suppose zo(t) = > and(t—by) with |b, —bpy1| > A,
and [lzlls = [2olls, [l2 * %11 = o * ;[}x for all 5. Tf 1 has compact support,
then

p(t) =Y cal(t —ey) , with [en — enq1]| 2 A .

n
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Scattering Sparse Signal Recovery

Theorem [B,M’15]|: Suppose zo(t) = > and(t—by) with |b, —bpy1| > A,
and [lzlls = [2olls, [l2 * %11 = o * ;[}x for all 5. Tf 1 has compact support,
then

p(t) =Y cal(t —ey) , with [en — enq1]| 2 A .

n

e Sz essentially identifies sparse measures,
up to log spacing factors.

* Here, sparsity 1s encoded In the measurements
themselves.

* In 2D, singular measures (le curves) require m = 2 to be
well characterized.
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Theorem [B,M’14]|: Suppose zg(§) = > and0(§ — b,) with |logb, —
logb,1| > A, and Syjxr = Sjyxg with m = 2 and J = log N. If ¢ has com-
pact support K < A, then

Z(6) = cnd(€ —en) , with [loge, —logenti| 2 A .

n
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Scattering Osclllatory Signal Recovery

Theorem [B,M’14]: Suppose zg(§) = > and(§ — b,) with |logb, —
logb,1| > A, and Syjxr = Sjyxg with m = 2 and J = log N. If ¢ has com-
pact support K < A, then

Z(6) = cnd(€ —en) , with [loge, —logenti| 2 A .

n

* Osclllatory, lacunary signals are also well captured with
the same measurements.

* [t Is the opposite set of extremal points from previous
result.

34



Sparse Shape Reconstructions

Original images of N? pixels:
Y - 1
P |
/7 A e
P
PO

=1,27 = N: reconstructlon from O( log2 ) scattering coeff.

m = 2, 27 = N: reconstruction from O( log2 ) scattering coeff.

M
M
(7 | Z.
M
M




_Invertibility: No training and no structure

<I> Random Convne

* [Giryes, Sapiro and Bronstein, | 5]
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_Invertibility: No training and no structure

<I> Rana om Convnet

* [Giryes, Sapiro and Bronstein, | 5]

Gaussian mean width of a set K:

o) = sup g2 3)) g~ NO.D

x,yc K

37



Invertibility: No training and no structure

® = Random Convnet

* [Giryes, Sapiro and Bronstein, | 5]
Gaussian mean width of a set K:

w(K) := *3< sup <g,w—y>> , g~ N(0,T)

x,yc K

* Proxy for the dimensionality of a set.
K: mixture of L gaussians of dimension k: w(K) = O(vk + log L).
K: k-sparse signals in a dictionary of size L: w(K) = O(y/klog(L/k)).

38



Theorem [GSB’15|: Let p(-) be the ReLU and K C B} the dataset. If
vmW € R™*™ is a random matrix with iid normally distributed entries and
m > C5 *w(K)* then with high probability

p(Wz) = p(Wy) 2 = (05l — yl|> + 2/l 1yll B, )| <6

Moreover, if K is sufficently away from 0, there exists C' > 0 such that whp
cos Z(p(Wx), p(Wy)) — cos(L(z,y)) — Bz, y)| < C9 .

$Ty

el

/(x,y) = cos™ ( ) angle between x and y

B(x,y) =7 (sin(L(z,y)) — ZL(x,y) cos(L(z,y))

39



o If /(x,y) is small, then B(z,y) =~ O:
distances are approx. shrunk by 2, angles are preserved.
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o If /(x,y) is small, then B(x,y) =~ O:
distances are approx. shrunk by 2, angles are preserved.

If Z(x,y) is large, then 5(a;,y? ~ 0.5:

* distances are shrunk by a smaller factor.

Q Class I

[Raja Giryes]

points with small angles between them become closer
than points with larger angles between them
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o If /(x,y) is small, then B(x,y) =~ O:
distances are approx. shrunk by 2, angles are preserved.

If Z(x,y) is large, then 5(a;,y? ~ 0.5:

* distances are shrunk by a smaller factor.

Q Class I

[Raja Giryes]
points with small angles between them become closer

than points with larger angles between them

The result can be cascaded since gaussian mean width is

approximately preserved by each layer.
42



43



Inter Boundary points distance ratio

Class | \ uul
lw —v|| £ Classl |V — 7|/ Class

V¢) Y4

V is the output of V and Z the closest
point to IV at the output from a
different class.

I/ is a random point and
W its closest point from
a different class.

IV-Z||
Iw=Vl|

Compute the distance ratio:

[Raja Giryes]




Intra Boundary points distance ratio

Xt v X

\W —\VII
Class'| Class I Class I

|

\
Let V be a point and W

its farthest point from
the same class.

Let V be the output of VV and Z the
farthest point from V' at the output
from the same class

IV-Z||
W=V

Compute the distance ratio:

[Raja Giryes]




Boundary distance ratios
measured on Imagenet using VGG oxfordnet

Inter-class Intra-class

—Random ——Random
——Trained ——Trained

[Raja Giryes]
46



Inter-class Intra-class

—F{ar_ldom —Random
——Trained ——Trained

vV —ZI IV —Z|

W =Vl W =Vl [Raja Giryes]

* Training the network does not affect the bulk of distances

47



* [raining the network does not

Inter-class Intra-class

—Random
——Trained

—Random
——Trained

vV —ZI
W=Vl

af

owever, It critically changes t

boundary polints:

- Inter-class distances expand (as expected).

48

NE

IV —Z|

= | [Raja Giryes]

ect the bulk of distances

behavior at the

- Intra-class distances shrink (as expected).



-or any W, one can ask whether &(z) = p(Wx)Is
invertible, and how stable the inverse Is with respect to a
recovery measure:

cd(z,y) < [|[®(z) — @(y)|| < Cd(z,y) .
d(z,y) = min(|lz —y|, |z +yl|)

49



* For any W, one can ask whether &(z) = p(Wx)Is
invertible, and how stable the inverse Is with respect to a
recovery measure:

cd(z,y) < [|®(z) — ®(y)|| < Cd(z,y) .

- Exd(z,y) = min(||lz — y||, ||z + y||)

* One can find Lipschitz constants, even when p(-)
Incorporates a pooling operation [B., Szlam, Lecun, 14].

50



Invertibility

-or any W, one can ask whether &(z) = p(Wx)Is

FECOVEry measure.

cd(z,y) < ||®(z) — 2(y)|]
- Ex.d(x,y) = min(||x — y||, || + y||)

invertible, and how stable the inverse Is with respect to a

< Cd(z,y) .

* One can find Lipschitz constants, even when p(-)

Incorporates a pooling operation

—-lowever, these constants are unp
interpret.

B., Szlam, Lecun, [4].

ractical and hard to

- When W is random iid they provide recovery guarantees whp for

appropriate redundancies.

51



» Q: How far are these bounds to explaining real behavior?
(.e. empirical data distribution with non-random, trained
networks)
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» Q: How far are these bounds to explaining real behavior?
(.e. empirical data distribution with non-random, trained

networks)
min || ©(z) — ®(zo)||* + R(x)

R(z): Regularization with “real” prior (e.g. TV norm)

53



~ Empirical Recovery

» Q: How far are these bounds to explaining real behavior?
(1.e. empirical data distribution with non-random, trained
networks)

min || () — ®(zo)|* + R(x)

R(x): Regularization with “real” prior (e.g. TV norm)

[Mahendran, Vedaldi,"| 4]
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: - 2 R(x): Regularization with “learnt” prior
m@}n H(I)(:E) (I)(ZEO) H T R(SL‘) (Generative Adversarial Networks, TBD)

5 [Dosovitsky & Brox’'| 5]



~ Empirical Recovery

mxin |P(z) — D(x0)

”2 4 R( :IZ') R(x): Regularization with “learnt” prior

~ (Generative Adversarial Networks, TBD)

5l 2 )
1 - e *

Reconstruction from CONVS

Our-GAN

Our-simple |

[20]

Pha L

Reconstruction fro FC6

Our-GAN § el &

Our-simple

[20]

Dosovitsky & Brox'| 5]




* S0 far, we have been mostly interested in the contraction
properties of CNNs:

- Local invariance = reduce intraclass variability
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* S0 far, we have been mostly interested in the contraction
properties of CNNs:

- Local invariance = reduce intraclass variability

* WWe mentioned that

INVARIANCE §Ss @ WITI-IOU'I' DISCRIMINABILITY

\_%
-m:‘




ow to Increase separation between classes!
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e Q: How to Increase separation between classes!

* [he simplest model 1s K-means clustering:

60



e Q: How to Increase separation between classes!

* [he simplest model 1s K-means clustering:

@
@
@ @ @ o -
Clem® © ¢ _
© o ® e
@ ® @ 6
@
&
@ - @ 3
«
. ® - 2
Given data X = (x1,...,x,), min E min ||z; — ¢; ||
Cl1,...,.CK . J
1<n

6|
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» K-means defines a mapping:

d : R™ o R¥
T — e(z) , k(r) = argmin ||z — ¢
J
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» K-means defines a mapping:

d : R™ - RE

T ep(z) » k() = arg mjiﬂ |z — ¢

* Assuming power-normalized data (

separates points falling into different

((P(x), P(y)) = 0 in that case)

63

7|
C

= 1), ® maximally
usters:



Selection Models

. The K—means encodmg S e><tremely naive: Iog(K) b|ts
encoding which region of input space we fall into
(plecewise constant encoding)

- It 1s nevertheless a very competitive encoding for small image
patches.

64



Selection Models

* [he K-means encoding Is extremely naive: log(K) brts
encoding which region of input space we fall into
(plecewise constant encoding)

- It 1s nevertheless a very competitive encoding for small image
patches.

* A strictly richer model is the union of subspaces model
or dictionary learning:
min > s — Dzl + AR ()

D=(dq,....dg),||dr|| <1,z “
1<n

R(z): sparsity-promoting
R(z) = ||z|lo (NP-Hard)
R(z) = ||z]|1 (Tractable)

65



-or a given dictionary D, the sparse coding Is defined as
the mapping

¢ : R — R"
r — ®(z) = argmin ||z — Dz||* + AR(z2) .

66



* For a given dictionary D, the sparse coding Is defined as
the mapping

¢ : R — R"
r — ®(z) = argmin ||z — Dz||* + AR(z2) .

* A particularly attractive choice 1s R(z) = ||z||1
- in that case ®(x) requires solving a convex program.

- Lasso estimator [ Tibshirani, 96]

- Rich theory In the statistical coommunity.

- Extensions: Group Lasso, Hierarchical Lasso, etc.

67



* [he sparse coding involves minimizing a function of the

form
min hl (Z) -+ hg (Z)

z

hi(z) = ||z — Dz||* convex and smooth (differentiable)
ho(z) = Al|z||1 convex but non-smooth

68



* [he sparse coding involves minimizing a function of the

form
min hl (Z) -+ hg (Z)

z

|z — Dz||* convex and smooth (differentiable)

- h1 (Z)
- ha(2)

A||z]|1 convex but non-smooth

* A solution can be obtained by alternatively minimizing
each term:

Fact: Let h: R™ — R be a convex function. For every z € R™
, 1
mini(y) + 5[z =yl
has unique solution, denoted prox; (z).

(prox, is a non-expansive operator for all h)

69



e It can be shown that if h; is convex and differentiable with Lipschitz
oradient, and ho is convex, then the solutions of

IIliIlz hl (Z) —+ hQ(Z)

are characterized by the fixed points of

z = proxX,y, (2 —vyVhi(z)) Vv > 0.

70



e It can be shown that if h; is convex and differentiable with Lipschitz
oradient, and ho is convex, then the solutions of

HliIlz hl (Z) —+ hQ(Z)

are characterized by the fixed points of

z = proxX,y, (2 —vyVhi(z)) Vv > 0.

* These can be found by rterating

Znt1 = Prox, p.(zn — mVhi(z,))

- by properly adjusting the rate Vn these method Is proven to
converge to Its unigue solution.,

71



* When ho(z) = A||z]|1, the proximal operator becomes

prox. ;. (z) = max(0, |z| — yA) - sign(z) 1Py

—7A

P~ X : soft thresholding

72



* When hs(z) = Al|z||1, the proximal operator becomes

prox. ;. (z) = max(0, |z| — yA) - sign(z) 1Py

—7A

P~ X : soft thresholding

* |STA algorithm (iterative soft thresholding):
Znt1 = ProX, p.(zn — 1 Vhi(zn))
Vhi(z,) = —D*'(z — Dz,)
Znt1 = pya((1 =yD* D)z, +yD" )

- converges in sublinear time O(1/n) if v € (0, 1/HDTDH)
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* When hs(z) = Al|z||1, the proximal operator becomes

prox. ;. (z) = max(0, |z| — yA) - sign(z) 1Py

—7A

P~ X : soft thresholding

* |STA algorithm (iterative soft thresholding):
Znt1 = ProX, p.(zn — 1 Vhi(zn))
Vhi(z,) = —D*'(z — Dz,)
Znt1 = pya((1 =yD* D)z, +yD" )

- converges in sublinear time O(1/n) if v € (0,1/||D* D||)
* FISTA [Beck and Teboulle,'09|;

- adds Nesterov momentum.

- proven accelerated convergence O(1/n?)
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W@
D'z 1

Y 1

Vz=(1—-~D'D)z+~D'z): linear with bias
p: pointwise non-linearity
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Sparse Coding with (F)ISTA

O_’V ,0 V p .................. | V 10 >
~vD'x 1 I !

Vz=(1—-~vD!''D)z+ D' x): linear with bias
p: pointwise non-linearity

* | asso can be cast as a (very) deep network, with

- Shared weights, adapted to the dictionary.
A=1—~+D"D , B=~D"
D41 (x) = p(A®,(x) + Ba)

- Note that A is a contraction (||Az|| < ||z|]), but the affine term

may Increase the separation:
| ®pt1(2) = Prgr ()| < [A(Pr(z) — Pp (")) ]| + || B(z — 27)|

< | @xfe) — i) + | Bz — )|




Dictionary learning is a locally linear approximation
model:
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* Dictionary learning is a locally linear approximation
model:
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* Orthogonalization of different linear pieces:
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* Orthogonalization of different linear pieces:

Zk#O

-If 1 and x5 share most dictionary atoms J, then
(@(a1), ®(22)) = (D1, Dlas) = (21, DyDlas)
If 1 and 3 do not share dictionary atoms, then
(®(z1), P(z3)) =~ 0
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Linear decoder implies geometric instability is preserved in the sparse decom-
position

lv — Dz|| < ellzf] , [lorz = Dzr|| < ellz| , |lz—przf ~ [z

|

|z = prx| < |[Dz — Dzr|| 4 2¢

|2 — 27| 2 [ID]| | Dz — Dz
> | Dl (= = @rzl| — 2¢]z])
(1 = 2¢)||
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- unsupervised to supervised selection

* [he previous model Is unsupervised:

- Why would a dictionary for reconstruction be useful for recognition
or other tasks!

- Pro: it exploits the local regularity of the data.

- Cons: sparse coding unaware of stabllity, sparse dictionaries might be
not unique.
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- unsupervised to supervised selection

* [he previous model Is unsupervised:

- Why would a dictionary for reconstruction be useful for recognition
or other tasks!

- Pro: it exploits the local regularity of the data.

- Cons: sparse coding unaware of stabllity, sparse dictionaries might be
not unique.

* Q: Can we make a dictionary task-aware! (1.e. supervised
dictionary learning)
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- unsupervised to supervised selection

* Task-driven dictionary learning [Mairal et al, [ 2]:

Suppose we want to predict y € Y from x € X
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B unsupervised to supervised selection

* Task-driven dictionary learning [Mairal et al, [ 2]:

Suppose we want to predict y € Y from x € X

Consider the sparse coding operator
O(x; D) = argmzin §Hx — Dz||* + X|z|l1 + X223

It is Lipschitz with respect to both x and D if Ay > 0,
it is differentiable almost everywhere.
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~ From unsupervised to supervised selection

* Task-driven dictionary learning [Mairal et al, [ 2]:

Suppose we want to predict y € Y from x € X

Consider the sparse coding operator
O(x; D) = argmzin §H$ — Dz||* + X|z|l1 + X223

It is Lipschitz with respect to both x and D if Ay > 0,
it is differentiable almost everywhere.

We can construct an estimator y from this sparse code:
= W' ®(x; D) (more generally, ,9j = F(W, ®(x; D))

gl,iml} Loy 0y, §(x, W, D))
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* The Lasso (sparse coding operator) can be implemented
as a specific deep network.
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From supervised Lasso to DNNs

* The Lasso (sparse coding operator) can be implemented
as a specific deep network

* Can we accelerate the sparse inference with a shallower
network, with trained parameters?

) z = ®(x)
N v 0 V P i, S Ve P >

D'z i 1
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* [he Lasso (sparse coding operator) can be implemented
as a specific deep network

* Can we accelerate the sparse inference with a shallower
network, with trained parameters?

z = ®(x)
B EEE -
VD ] 1

F(x,W,5)
] |
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LISTA [Gregor and LeCun, | O]

_><p||C|t Sparse encoder trained to predict the output of
the Lasso:

E , ‘I 7 2
W.,5 n
CITro
X X
X i X y
10 x X
’t
, ¢ ° °
2 . ° o
°
I -| x FISTA (4x) o
X FISTA (1x) o
05 )
® LISTA (4x)
® LISTA (1x)

- jter

- LISTA adapts to the data distribution and produces much faster
approximate sparse codes.
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* For example, [Sprec
speaker identificatio
matrix factorization:

NMa

N €EX

NN,

Bronstein & Sapiro, |2

Der

* [he fast approximation of a sparse code can be plugged-
N 1N a supervised regression or classification task.

N

ments using non-nega

RNMF Encoders

Noise Exact , . .
(Supervised) (Discriminative)
street 0.86 0.91 0.91
restaurant 0.91 0.89 0.90
car 0.90 0.91 0.96
exhibition 0.93 0.91 0.95
train 0.93 0.88 0.96
airport 0.92 0.85 0.98
average 0.91 0.89 0.94
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