
Stat 212b: Topics in Deep Learning
Lecture 7

Joan Bruna
UC Berkeley

1

Objectives

• Properties of CNN representations (cont.)
- Stability
- Redundancy
- Invertibility

• Proximal methods and Deep Neural Networks
- Task Driven Dictionary Learning
- LISTA

• Random forests and Deep Neural Networks.

2

Review:Convolutional Neural Networks

• Architectures vary in terms of
- Number p of layers (from 2 to >100).
- Size of the tensors (typically [3-7 x 3-7 x 16-256])
- Presence/absence and type of pooling operator.

•Recent models tend to avoid non-adaptive pooling.

⇢ 1 P1 ⇢ 2 P2 ⇢ px

�(x)

�(x) = ⇢(⇢(P1(⇢(x ⇤ 1)) ⇤ 2)..)

3

• We can start by analyzing a chunk of the form

• Let us assume that pooling is an average (non-adaptive).
• Consider a thresholding nonlinearity:
• And let us forget (for now) about the convolutional

aspect.

• Redundant linear transform+nonlinearity: scatter the space
into linear chunks

• Pooling: stitch together chunks that belong together.

Review: Geometric Intuition

⇢ 1 P1

xk(u,�) xk+1(ũ, �̃)

⇢(x) = max(0, x� t)

4

CNNs and near-diagonalisation

• Given intermediate layer representation, and a
generic variability model , how to retransform
x?

x(u,�)

{'
⌧,f(x)x}⌧

5

CNNs and near-diagonalisation

• Given intermediate layer representation, and a
generic variability model , how to retransform
x?

• We find linear measurements that factorize variability
model into small eigenspaces:

x(u,�)

{'
⌧,f(x)x}⌧

h'⌧,fx, Tuwki = hx,'⇤
⌧,fTuwki ⇡

X

|v|�,k0

↵v,k0(⌧, f)hx, Tu+vwk0i

6

CNNs and near-diagonalisation

• Given intermediate layer representation, and a
generic variability model , how to retransform
x?

• We find linear measurements that factorize variability
model into small eigenspaces:

• Moreover, in order for non-linearities to be discriminative,
we want sparse.

x(u,�)

{'
⌧,f(x)x}⌧

h'⌧,fx, Tuwki = hx,'⇤
⌧,fTuwki ⇡

X

|v|�,k0

↵v,k0(⌧, f)hx, Tu+vwk0i

{hx, Tuwki}u,k

7

CNN and near-diagonalisation

• Role of each layer : progressive linearization of intra-class
variability.

8

CNN and near-diagonalisation

• Role of each layer : progressive linearization of intra-class
variability.

• Filters play a dual function:
- learn invariants that perform averaging along existing approximate

orbits (learnt pooling).
- map variability to new parallel approximate orbits for the next layer.
- ensure signals are sparse along orbits.

9

Review: Instabilities of Deep Networks
[Szegedy et al, ICLR’14]

correctly
classified

kx� x̃k < 0.01kxk

classified as
ostrich

x

x̃

Alex Krizhevsky’s Imagenet
8 layer Deep ConvNet

10

• Additive Stability is not enforced:

Review: Instabilities of Deep Networks

Layer Size kWik
Conv. 1 3⇥ 11⇥ 11⇥ 96 2.75
Conv. 2 96⇥ 5⇥ 5⇥ 256 10

Conv. 3 256⇥ 3⇥ 3⇥ 384 7

Conv. 4 384⇥ 3⇥ 3⇥ 384 7.5
Conv. 5 384⇥ 3⇥ 3⇥ 256 11

FC. 1 9216⇥ 4096 3.12
FC. 2 4096⇥ 4096 4

FC. 3 4096⇥ 1000 4

k�i(x)� �i(x
0)k  kWi(x� x

0)k  kWik kx� x

0k

11

• Additive Stability is not enforced:

• These adversarial examples are found by explicitly fooling
the network:

• They are robust to different parametrization of and to
different hyper-parameters.

Review: Instabilities of Deep Networks

Layer Size kWik
Conv. 1 3⇥ 11⇥ 11⇥ 96 2.75
Conv. 2 96⇥ 5⇥ 5⇥ 256 10

Conv. 3 256⇥ 3⇥ 3⇥ 384 7

Conv. 4 384⇥ 3⇥ 3⇥ 384 7.5
Conv. 5 384⇥ 3⇥ 3⇥ 256 11

FC. 1 9216⇥ 4096 3.12
FC. 2 4096⇥ 4096 4

FC. 3 4096⇥ 1000 4

k�i(x)� �i(x
0)k  kWi(x� x

0)k  kWik kx� x

0k

min kx� x̃k2 s.t. p(y | �(x̃)) ? p(y | �(x))

�(x)

12

Review: Instabilities of Deep Networks

• However, these examples do not occur in practice.

13

Review: Instabilities of Deep Networks

• However, these examples do not occur in practice.
• A discriminative model does not care about robustness

with respect to the input distribution:
Regret is Pr(

ˆ

f(�(x)) 6= f(x)) (classification)

or E(kf(x)� ˆ

f(�(x))k2) (regression)

It is defined through an input distribution (x, y) ⇠ X
with density h(x, y).

14

Review: Instabilities of Deep Networks

• CNNs do not assume (rightfully) an input distribution
stable to additive noise:

|h(x, y)� h(x+ n, y)| can be large even if knk small

15

Review: Instabilities of Deep Networks

• CNNs do not assume (rightfully) an input distribution
stable to additive noise:

• However, they DO assume an input distribution stable to
geometric noise:

|h(x, y)� h(x+ n, y)| can be large even if knk small

|h(x, y)� h('⌧ (x), y)| small if k⌧k small

16

Stability: Transfer learning

• a CNN trained on a (large enough) dataset generalizes
to other visual tasks:

Figure 4. t-SNE map of 20, 000 Flickr test images based on features extracted from the last layer of an AlexNet trained with K=1, 000.
A full-resolution map is presented in the supplemental material. The inset shows a cluster of sports.

ing one-versus-all logistic loss: using a dictionary of K =

1, 000 words, such a model achieves a precision@10 of
16.43 (compared to 17.98 for multiclass logistic loss). We
surmise this is due to the problems one-versus-all logistic
loss has in dealing with class imbalance: because the num-
ber of negative examples is much higher than the number
of positive examples (for the most frequent class, more than
95.0% of the data is still negative), the rebalancing weight
in front of the positive term is very high, which leads to
spikes in the gradient magnitude that hamper SGD training.
We tried various reweighting schemes to counter this effect,
but nevertheless, multiclass logistic loss consistently out-
performed one-versus-all logistic loss in our experiments.

To investigate the performance of our models as a func-
tion of the amount of training data, we also performed ex-
periments in which we varied the Flickr training set size.
The lefthand side of Figure 2 presents the resulting learn-
ing curves for the AlexNet architecture with K = 1, 000.
The figure shows that there is a clear benefit of training on
larger datasets: the word prediction performance of the net-
works increases substantially when the training set is in-
creased beyond 1 million images (which is roughly the size
of Imagenet); for our networks, it only levels out after ⇠50

million images.
To illustrate the kinds of words for which our models

learn good representations, we show a high-scoring test im-
age for six different words in Figure 3. To obtain more in-
sight into the features learned by the models, we applied
t-SNE [51, 52] to features extracted from the penultimate
layer of an AlexNet trained on 1, 000 words. This produces
maps in which images with similar visual features are close
together; Figure 4 shows such a map of 20, 000 Flickr test
images. The inset shows a “sports” cluster that was formed
by the visual features; interestingly, it contains visually very
dissimilar sports ranging from baseball to field hockey, ice
hockey and rollerskating. Whilst all sports are grouped to-
gether, the individual sports are still clearly separable: the
model can capture this multi-level structure because the im-
ages sometimes occur with the word “sports” and some-

times with the name of the individual sport itself. A model
trained on classification datasets such as Pascal VOC is un-
likely to learn similar structure unless an explicit target tax-
onomy is defined (as in the Imagenet dataset). Our results
suggest that such taxonomies can be learned from weakly
labeled data instead.

4.2. Experiment 2: Transfer Learning

Experimental setup. To assess the quality of the visual fea-
tures learned by our models, we performed transfer-learning
experiments on seven test datasets comprising a range of
computer-vision tasks: (1) the MIT Indoor dataset [38],
(2) the MIT SUN dataset [55], (3) the Stanford 40 Actions
dataset [57], (4) the Oxford Flowers dataset [33], (5) the
Sports dataset [17], (6) the ImageNet ILSVRC 2014 dataset
[42], and (7) the Pascal VOC 2007 dataset [11]. We applied
the same preprocessing as before on all datasets: we resized
the images to 224⇥224 pixels, subtracted their mean pixel
value, and divided by their standard deviation.

Following [40], we compute the output of the penulti-
mate layer for an input image and use this output as a fea-
ture representation for the corresponding image. We eval-
uate features obtained from Flickr-trained networks as well
as Imagenet-trained networks, and we also perform exper-
iments where we combine both features by concatenating
them. We train L2-regularized logistic regressors on the
features to predict the classes corresponding to each of the
datasets. For all datasets except the Imagenet and Pascal
VOC datasets, we report classification accuracies on a sep-
arate, held-out test set. For Imagenet, we report classifica-
tion errors on the validation set. For Pascal VOC, we report
average precisions on the test set as is customary for that
dataset. As before, we use convolutional networks trained
on the Imagenet dataset as baseline. Additional details on
the setup of the transfer-learning experiments are presented
in the supplemental material.
Results. Table 3 presents the classification accuracies—
averaged over 10 runs—of logistic regressors on six datasets
for both fully supervised and weakly supervised feature-

Figure 6. t-SNE map of 10, 000 words based on their embeddings as learned by a weakly supervised convolutional network trained on the
Flickr dataset. Note that all the semantic information represented in the word embeddings is the result of observing that these words are
assigned to images with similar visual content (the model did not observe word co-occurrences during training). A full-resolution version
of the map is provided in the supplemental material.

K Query ! Response k = 1 k = 5 k = 10

English ! French 33.01 50.16 55.34
10, 000 French ! English 23.95 50.16 56.63

English ! French 12.30 22.24 26.50
100, 000 French ! English 10.11 18.78 23.44

Table 6. Precision@k of identifying the French counterpart of an
English word (and vice-versa) for two dictionary sizes, at three
different levels of k. Chance level (with k = 1) is 0.0032 for
K=10, 000 words and 0.00033 for K=100, 000 words. Higher
values are better.

English French English French

oas oea uzbekistan ouzbekistan
infrared infrarouge mushroom champignons
tomatoes tomates filmed serveur
bookshop librairie mauritania mauritanie

server apocalyptique pencils crayons

Table 7. Ten highest-scoring pairs of words, as measured by the
cosine similarity between the corresponding word embeddings.
Correct pairs of words are colored green, and incorrect pairs are
colored red according to the dictionary. The word “oas” is an ab-
breviation for the Organization of American States.

most similar word pairs, measured by the cosine similar-
ity between their word embeddings. These word pairs sug-
gest that models trained on Flickr data find correspondences
between words that have clear visual representations, such
as “tomatoes” or “bookshop”. Interestingly, the identified
English-French matches appear to span a broad set of do-
mains, including objects such as “pencils”, locations such
as “mauritania”, and concepts such as “infrared”.

5. Discussion and Future Work

This study demonstrates that convolutional networks can
be trained from scratch without any manual annotation and
shows that good features can be learned from weakly super-
vised data. Indeed, our models learn features that are nearly
on par with those learned from an image collection with
over a million manually defined labels, and achieve good
results on a variety of datasets. (Obtaining state-of-the-art
results requires averaging predictions over many crops and
models, which is outside the scope of this paper.) More-
over, our results show that weakly supervised models can
learn semantic structure from image-word co-occurrences.

In addition, our results lead to three main recommen-
dations for future work in learning models from weakly
supervised data. First, our results suggest that the best-
performing models on the Imagenet dataset are not opti-
mal for weakly supervised learning. We surmise that cur-
rent models have insufficient capacity for learning from the
complex Flickr dataset. Second, multi-class logistic loss
performs remarkably well in our experiments even though
it is not tailored to multi-label settings. Presumably, our
approximate multiclass loss works very well on large dic-
tionaries because it shares properties with losses known to
work well in that setting [31, 50, 53]. Third, it is essential
to sample data uniformly per class to learn good visual fea-
tures [2]. Uniform sampling per class ensures that frequent
classes in the training data do not dominate the learned fea-
tures, which makes them better suited for transfer learning.

In future work, we aim to combine our weakly su-
pervised vision models with a language model such as
word2vec [31] to perform, for instance, visual question an-
swering [3, 58]. We also intend to further investigate the
ability of our models to learn visual hierarchies, such as the
“sports” example in Section 4.2.

“Learning visual features from Large Weakly supervised Data”, [Joulin et al, ’15]17

Review: Invariance and Covariance
Table 2: Relative variance and intrinsic dimensionality of a
foreground square of one color on a background color. Each
cell: top – rel. variance; bottom – intrinsic dim.

Foreground Background �L

Places, fc7 13.4% 51.1% 35.5%
13 14 216

AlexNet, fc7 19.2% 39.9% 40.8%
14 16 315

VGG, fc7 20.2% 36.9% 42.9%
11 15 216

4.2. Object categories

In this section we want to explore the embedding gener-
ated by the networks for image sets and factors related to
the tasks for which they are trained, namely object category
classification in the case of AlexNet and VGG. We also com-
pare against the CNN trained on Places. We thus select an
object category and, using rendered views of 3D models, we
analyze how the CNN features are influenced by the style
of the specific instances as well as different transformations
and rendering parameters. The parameter sampling for each
experiment is described in section 3.3.

Model–orientation separation. The first variation we
study jointly with style is the rotation of the 3D model. The
first column of figure 2 visualizes the PCA embedding of the
resulting pool5 features. This embedding is hard to interpret
because it mixes information about viewpoint (important for
cars) and instance style (important for chairs). To separate
this information, we perform the decomposition presented in
section 2. The decomposition provides us with embedding
spaces for style and viewpoint and associates to each model
and viewpoint its own descriptor. We visualize the embed-
dings in figure 2; the second column corresponds to style and
the third to viewpoint. Note that the different geometries of
the two categories lead to different embeddings of rotation
in pool5. While a left-facing car typically looks similar to a
right-facing car and is close in the feature space (figure 2g), a
right-facing chair is usually different from left-facing chairs
and is far in the embedding (figure 2c). The last column
shows the viewpoint embedding for fc6. The comparison
of the last two columns indicates that much viewpoint infor-
mation is lost between pool5 and fc6 and that fc6 is largely
left-right flip invariant. A potential interesting future direc-
tion could be to interpret the viewpoint embeddings relative
to classic work on mental rotation [29].

Translation, scale, lighting, color. We repeated the same
experiment for the following factors: 2D translation, scale,
light direction, background color, and object color. For

(a) Car, pool5 (b) Chair, pool5

(c) Car, fc6 (d) Chair, fc6

(e) Car, fc7 (f) Chair, fc7

Figure 3: PCA embeddings for 2D position on AlexNet.

simplicity and computational efficiency, we considered in
all experiments a frontal view of all the instances of the
objects. The framework allows the same analysis using the
object orientation as an additional factor. The embeddings
associated with AlexNet features for translation of cars and
chairs are shown in figure 3. Note that similar to rotations,
the embedding corresponding to cars and chairs are different,
and that the first two components of the fc6 features indicate
a left-right flip-invariant representation. The embeddings for
the pool5 layer of the car category for the other factors are
shown figure 4.

Quantitative analysis: viewpoint. We analyze the rela-
tive variance explained by the 3D rotation, translation, and
scale experiments. While the variance was different for
each factor and category, the variation across the layers and
networks was consistent in all cases. For this reason we
report in table 3 an average of the variance across all five
categories and all three factors. We refer the reader to the
supplementary material for detailed results. The analysis of
table 3 reveals several observations. First, the proportion
of the variance of deeper layers corresponding to viewpoint
information is less important, while the proportion corre-
sponding to style is more important. This corresponds to the

(a) Lighting (b) Scale

(c) Object color (d) Background color

Figure 4: PCA embeddings for different factors using
AlexNet pool5 features on “car” images. Colors in (a) corre-
spond to location of the light source (green – center).

intuition that higher layers are more invariant to viewpoint.
We also note that the residual feature �L is less important
in higher layers, indicating style and viewpoint are more
easily separable in those layers. These observations are con-
sistent with our results of section 4.1. Second, the part of
the variance associated with style is more important in the
fc7 layer for VGG than in AlexNet and Places. Also, the
part associated with the viewpoint and residual is smaller.
Note that this does not hold in pool5, where the residual is
important for the VGG network. This effect may be related
to the difference in the real and intrinsic dimension of the
features. The intrinsic dimension of the style component of
VGG pool5 features is larger and decreases from pool5 to
fc7. On the contrary, the intrinsic dimensionality of AlexNet
has smaller variation across layers. Finally, we note that the
intrinsic dimensionality of the fc7 style feature of Places is
smaller than the other networks. This may indicate that it is
less rich, and may be related to the fact that identifying the
style of an object is less crucial for scene classification. We
believe it would be an interesting direction for future work
to study how the improved performance of VGG for object
classification is related to the observed reduced sensitivity to
viewpoint.

Quantitative analysis: color. We report in table 4 the
average across categories of our quantitative study for object
and background color. The results are different from those of
viewpoint. First, we observe that a larger part of the variance
of the features of the Places network is explained by the

Table 3: Relative variance and intrinsic dimensionality av-
eraged over experiments for different object categories and
viewpoints (3D orientation, translation, and scale). Each cell:
top – rel. variance; bottom – intrinsic dim. We do not report
the intrinsic dim. of �L since it is typically larger than 1K
across the experiments and expensive to compute.

pool5 fc6 fc7
Places 26.8 % 21.4 % 17.8 %

8.5 7.0 5.9
Viewpoint AlexNet 26.4 % 19.4 % 15.6 %

8.3 7.2 6.0
VGG 21.2 % 16.4 % 12.3 %

10.0 7.7 6.2
Places 26.8 % 39.1 % 49.4 %

136.3 105.5 54.6
Style AlexNet 28.2 % 40.3 % 49.4 %

121.1 125.5 96.7
VGG 26.4 % 44.3 % 56.2 %

181.9 136.3 94.2
Places 46.8 % 39.5 % 32.9 %

�L AlexNet 45.0 % 40.3 % 35.0 %
VGG 52.4 % 39.3 % 31.5 %

color in all layers. This may be related to the fact that color
is a stronger indicator of the scene type than it is of an object
category. Second, while the part of the variance explained by
foreground and background color is similar in the fc7 feature
of the Places network, it is much larger for the foreground
object than for the background object in AlexNet and VGG.
Once again, one can hypothesize that it is related to the fact
that the color of an object is more informative than the color
of its background for object classification. Finally, we note
that similarly to our previous experiments, the difference
between networks is present in pool5 and increases in the
higher layers, indicating that the features become more tuned
to the target task in the higher layers of the networks.

4.3. Natural images

Embedding. We used ImageNet [28] images to study the
embeddings of natural images. Since we have no control
over the image content, we cannot perform a detailed anal-
ysis of the different factors similar to the previous sections.
Our only choice is to consider the images altogether. The
direct embedding of natural images is possible but hard to
interpret. We can however project the images in the spaces
discovered in section 4.2. The resulting embeddings for style
and viewpoint are shown in figure 5 and are similar to the
embeddings obtained with the CAD models.

2D-3D instance recognition. The observed similarity of
the embeddings for natural and rendered images motivates

(a) Lighting (b) Scale

(c) Object color (d) Background color

Figure 4: PCA embeddings for different factors using
AlexNet pool5 features on “car” images. Colors in (a) corre-
spond to location of the light source (green – center).

intuition that higher layers are more invariant to viewpoint.
We also note that the residual feature �L is less important
in higher layers, indicating style and viewpoint are more
easily separable in those layers. These observations are con-
sistent with our results of section 4.1. Second, the part of
the variance associated with style is more important in the
fc7 layer for VGG than in AlexNet and Places. Also, the
part associated with the viewpoint and residual is smaller.
Note that this does not hold in pool5, where the residual is
important for the VGG network. This effect may be related
to the difference in the real and intrinsic dimension of the
features. The intrinsic dimension of the style component of
VGG pool5 features is larger and decreases from pool5 to
fc7. On the contrary, the intrinsic dimensionality of AlexNet
has smaller variation across layers. Finally, we note that the
intrinsic dimensionality of the fc7 style feature of Places is
smaller than the other networks. This may indicate that it is
less rich, and may be related to the fact that identifying the
style of an object is less crucial for scene classification. We
believe it would be an interesting direction for future work
to study how the improved performance of VGG for object
classification is related to the observed reduced sensitivity to
viewpoint.

Quantitative analysis: color. We report in table 4 the
average across categories of our quantitative study for object
and background color. The results are different from those of
viewpoint. First, we observe that a larger part of the variance
of the features of the Places network is explained by the

Table 3: Relative variance and intrinsic dimensionality av-
eraged over experiments for different object categories and
viewpoints (3D orientation, translation, and scale). Each cell:
top – rel. variance; bottom – intrinsic dim. We do not report
the intrinsic dim. of �L since it is typically larger than 1K
across the experiments and expensive to compute.

pool5 fc6 fc7
Places 26.8 % 21.4 % 17.8 %

8.5 7.0 5.9
Viewpoint AlexNet 26.4 % 19.4 % 15.6 %

8.3 7.2 6.0
VGG 21.2 % 16.4 % 12.3 %

10.0 7.7 6.2
Places 26.8 % 39.1 % 49.4 %

136.3 105.5 54.6
Style AlexNet 28.2 % 40.3 % 49.4 %

121.1 125.5 96.7
VGG 26.4 % 44.3 % 56.2 %

181.9 136.3 94.2
Places 46.8 % 39.5 % 32.9 %

�L AlexNet 45.0 % 40.3 % 35.0 %
VGG 52.4 % 39.3 % 31.5 %

color in all layers. This may be related to the fact that color
is a stronger indicator of the scene type than it is of an object
category. Second, while the part of the variance explained by
foreground and background color is similar in the fc7 feature
of the Places network, it is much larger for the foreground
object than for the background object in AlexNet and VGG.
Once again, one can hypothesize that it is related to the fact
that the color of an object is more informative than the color
of its background for object classification. Finally, we note
that similarly to our previous experiments, the difference
between networks is present in pool5 and increases in the
higher layers, indicating that the features become more tuned
to the target task in the higher layers of the networks.

4.3. Natural images

Embedding. We used ImageNet [28] images to study the
embeddings of natural images. Since we have no control
over the image content, we cannot perform a detailed anal-
ysis of the different factors similar to the previous sections.
Our only choice is to consider the images altogether. The
direct embedding of natural images is possible but hard to
interpret. We can however project the images in the spaces
discovered in section 4.2. The resulting embeddings for style
and viewpoint are shown in figure 5 and are similar to the
embeddings obtained with the CAD models.

2D-3D instance recognition. The observed similarity of
the embeddings for natural and rendered images motivates

[Aubry & Rusell ’15]
18

Invariance, Linearization and Geodesics

• We related stability with the ability to linearize
deformations:

⌧ 7! �('⌧x) Lipschitz)
�('⌧x) = �(x) +D(� � '·(x))⌧ +O(k⌧k)

19

Invariance, Linearization and Geodesics

• We related stability with the ability to linearize
deformations:

• One can test this property over learnt representations by
inspecting geodesics.
- They become linear paths in feature space under the metric

- [Bengio et al. ’11], [Goroshin et al’15], [Henaff et al ’16]

⌧ 7! �('⌧x) Lipschitz)
�('⌧x) = �(x) +D(� � '·(x))⌧ +O(k⌧k)

d(x, x0) = k�(x)� �(x0)k

20

Invariance, Linearization and Geodesics

• Algorithm from [Henaff & Simoncelli ’16]:

�x0

x1

�(x1)

�(x0)

21

Invariance, Linearization and Geodesics

• Algorithm from [Henaff & Simoncelli ’16]:

�x0

x1

�(x1)

�(x0)

min
�(0)=x0,�(1)=x1

Z 1

0
|�̇(t)|dt+

Z 1

0
| ˙(��)(t)|dt

�(t)

22

Invariance, Linearization and Geodesics
Under review as a conference paper at ICLR 2016

ground truth VGG network, max pooling VGG network, L2 pooling

Figure 3: Comparison of geodesic sequences for VGG network representation with max pooling
(middle column) and VGG network with L2 pooling (right column) with ground truth sequence (left
column). Three different types of geometric transformation are tested: horizontal translation (top),
rotation around the center (middle), dilation about the center (bottom). As in figure 1, square images
are the middle frame from the corresponding sequence, and underneath is the temporal evolution of
three image slices, taken along the red lines shown in the left column. The original VGG network
is unable to linearize these transformations (as indicated by the ‘double exposure’ in the middle
frame, and the discontinuous temporal slices), whereas the same VGG network with L2 pooling
(right column) induces a geodesic that is close to ground truth.

6

[Henaff and Simoncelli’16]

• On pertained CNNs
(VGG oxford net),
linearization is empirically
verified for various
groups.

• Continuous
transformation groups
are better linearized with
energy pooling than with
max-pooling

23

Redundancy in CNNs

• Large-scale networks contain >10 layers and >106
parameters.

• Q: Is there a smaller parametric model that contains
good representations?

�(x) = ⇢(. . . ⇢(x ⇤ 1) · · · ⇤ k)))

24

Redundancy

• “Post-training” model compression:

Ek�(x;⇥)� �̃(x)k is small.
Given parameters ⇥ = (⇥1, . . . ,⇥k), find a

reparametrization

˜

� such that

25

Redundancy

• “Post-training” model compression:

- Useful to accelerate evaluation of large networks ([Denton et al,’14],
[Jaderberg et al’14]) (“Optimal Brain Damage” [LeCun et al,’90])

- Typically we restrict the new class to be

- Explore low-rank tensor factorizations of each convolutional tensor.

Ek�(x;⇥)� �̃(x)k is small.
Given parameters ⇥ = (⇥1, . . . ,⇥k), find a

reparametrization

˜

� such that

�̃(x) = �(x, ⇥̃) , ⇥̃i = F (�i) dim(�i) ⌧ dim(⇥i)

26

Redundancy
• “Post-training” model compression:

- Useful to accelerate evaluation of large networks ([Denton et al,’14],
[Jaderberg et al’14]) (“Optimal Brain Damage” [LeCun et al,’90])

- Typically we restrict the new class to be

- Explore low-rank tensor factorizations of each convolutional tensor.

• “Pre-training” model compression:
- Train directly in the compressed domain ([“Predicting parameters in Deep

Learning”, Denil et al,’13]).
- Mild regularization effect. Interplay between statistical performance and

optimization performance.

Ek�(x;⇥)� �̃(x)k is small.
Given parameters ⇥ = (⇥1, . . . ,⇥k), find a

reparametrization

˜

� such that

�̃(x) = �(x, ⇥̃) , ⇥̃i = F (�i) dim(�i) ⌧ dim(⇥i)

27

Invertibility

• Q: How much information is preserved in a
representation arising from a CNN?

- Under which metric?

- Which training mechanism?

28

Invertibility

• No training and some structure: Scattering.

- For a signal of size N, we can consider J=log(N) to capture the whole
receptive field
•Typically will have less coefficients than input dimensions: compressive

recovery.

� = SJ

29

Invertibility

• No training and some structure: Scattering.

- For a signal of size N, we can consider J=log(N) to capture the whole
receptive field
•Typically will have less coefficients than input dimensions: compressive

recovery.

- Or we can consider a fixed scale J for a localized (and redundant)
representation.
•The recovery guarantees are looser.

� = SJ

30

Scattering Sparse Signal Recovery
Theorem [B,M’15]: Suppose x0(t) =

P
n an�(t�bn) with |bn�bn+1| � �,

and kxk1 = kx0k1, kx ⇤ jk1 = kx0 ⇤ jk1 for all j. If has compact support,

then

x(t) =

X

n

cn�(t� en) , with |en � en+1| & � .

31

Scattering Sparse Signal Recovery

•

• Here, sparsity is encoded in the measurements
themselves.

• In 2D, singular measures (ie curves) require to be
well characterized.

Sx essentially identifies sparse measures,
up to log spacing factors.

m = 2

Theorem [B,M’15]: Suppose x0(t) =
P

n an�(t�bn) with |bn�bn+1| � �,

and kxk1 = kx0k1, kx ⇤ jk1 = kx0 ⇤ jk1 for all j. If has compact support,

then

x(t) =

X

n

cn�(t� en) , with |en � en+1| & � .

32

Scattering Oscillatory Signal Recovery
Theorem [B,M’14]: Suppose cx0(⇠) =

P
n an�(⇠ � bn) with | log bn �

log bn+1| � �, and SJx = SJx0 with m = 2 and J = logN . If

b
 has com-

pact support K  �, then

bx(⇠) =
X

n

cn�(⇠ � en) , with | log en � log en+1| & � .

33

Scattering Oscillatory Signal Recovery

• Oscillatory, lacunary signals are also well captured with
the same measurements.

• It is the opposite set of extremal points from previous
result.

Theorem [B,M’14]: Suppose cx0(⇠) =

P
n an�(⇠ � bn) with | log bn �

log bn+1| � �, and SJx = SJx0 with m = 2 and J = logN . If

b
 has com-

pact support K  �, then

bx(⇠) =
X

n

cn�(⇠ � en) , with | log en � log en+1| & � .

34

Sparse Shape Reconstructions
Original images of N2 pixels:

m = 2, 2

J
= N : reconstruction from O(log

2
2 N) scattering coe↵.

m = 1, 2

J
= N : reconstruction from O(log2 N) scattering coe↵.

35

Invertibility: No training and no structure

• [Giryes, Sapiro and Bronstein,’15]
� = Random Convnet

36

Invertibility: No training and no structure

• [Giryes, Sapiro and Bronstein,’15]
� = Random Convnet

Gaussian mean width of a set K:

!(K) := E
✓

sup
x,y2K

hg, x� yi
◆

, g ⇠ N (0, I)

K

g

x

y

37

Invertibility: No training and no structure

• [Giryes, Sapiro and Bronstein,’15]

• Proxy for the dimensionality of a set.

� = Random Convnet

Gaussian mean width of a set K:

!(K) := E
✓

sup
x,y2K

hg, x� yi
◆

, g ⇠ N (0, I)

K

g

x

y

K: mixture of L gaussians of dimension k: !(K) = O(

p
k + logL).

K: k-sparse signals in a dictionary of size L: !(K) = O(

p
k log(L/k)).

38

Invertibility: No training and no structure

\(x, y) = cos

�1

✓
x

T
y

kxkkyk

◆

�(x, y) = ⇡

�1
(sin(\(x, y))� \(x, y) cos(\(x, y))

��k⇢(Wx)� ⇢(Wy)k2 �
�
0.5kx� yk2 + kxkkyk�(x, y)

���  � .

Theorem [GSB’15]: Let ⇢(·) be the ReLU and K ⇢ Bn
1 the dataset. Ifp

mW 2 Rm⇥n
is a random matrix with iid normally distributed entries and

m � C��4!(K)

4
then with high probability

Moreover, if K is su�cently away from 0, there exists C > 0 such that whp

|cos\(⇢(Wx), ⇢(Wy))� cos(\(x, y))� �(x, y)|  C� .

angle between x and y

39

Interpretation
• If \(x, y) is small, then �(x, y) ⇡ 0:
distances are approx. shrunk by 2, angles are preserved.

40

Interpretation
•

•

If \(x, y) is small, then �(x, y) ⇡ 0:
distances are approx. shrunk by 2, angles are preserved.

If \(x, y) is large, then �(x, y) ⇡ 0.5:
distances are shrunk by a smaller factor.

DISTANCE AND ANGLES DISTORTION

Points with small angles between them become
closer than points with larger angles between them

𝑋 𝜓

Class II
Class I Class IIClass I

points with small angles between them become closer

than points with larger angles between them

[Raja Giryes]

41

Interpretation
•

•

If \(x, y) is small, then �(x, y) ⇡ 0:
distances are approx. shrunk by 2, angles are preserved.

If \(x, y) is large, then �(x, y) ⇡ 0.5:
distances are shrunk by a smaller factor.

DISTANCE AND ANGLES DISTORTION

Points with small angles between them become
closer than points with larger angles between them

𝑋 𝜓

Class II
Class I Class IIClass I

points with small angles between them become closer

than points with larger angles between them

[Raja Giryes]

The result can be cascaded since gaussian mean width is

approximately preserved by each layer.

42

Role of Training?

43

Role of Training?

Compute the distance ratio:
 𝑉− 𝑍
𝑊−𝑉

INTER BOUNDARY POINTS DISTANCE RATIO

Class II
Class I

Class IIClass I

𝑊𝑉

𝑉 is a random point and
𝑊 its closest point from

a different class.

 𝑉

 𝑉 is the output of 𝑉 and 𝑍 the closest
point to 𝑉 at the output from a

different class.

𝑊 − 𝑉
 𝑍

 𝑉 − 𝑍

𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓

[Raja Giryes]

Inter Boundary points distance ratio

44

Role of Training?

Compute the distance ratio:
 𝑉− 𝑍
𝑊−𝑉

INTRA BOUNDARY POINTS DISTANCE RATIO

Class IIClass I Class IIClass I

𝑊

𝑉

Let 𝑉 be a point and 𝑊
its farthest point from

the same class.

 𝑉

Let 𝑉 be the output of 𝑉 and 𝑍 the
farthest point from 𝑉 at the output

from the same class

𝑊 − 𝑉

 𝑍

 𝑉 − 𝑍

𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓

Intra Boundary points distance ratio

[Raja Giryes]

45

Role of Training?

Inter-class Intra-class

 𝑉 − 𝑍
𝑊 − 𝑉

 𝑉 − 𝑍
𝑊 − 𝑉

BOUNDARY DISTANCE RATIO
Boundary distance ratios

measured on Imagenet using VGG oxfordnet

[Raja Giryes]
46

Role of Training?
Inter-class Intra-class

 𝑉 − 𝑍
𝑊 − 𝑉

 𝑉 − 𝑍
𝑊 − 𝑉

BOUNDARY DISTANCE RATIO

[Raja Giryes]

• Training the network does not affect the bulk of distances

47

Role of Training?
Inter-class Intra-class

 𝑉 − 𝑍
𝑊 − 𝑉

 𝑉 − 𝑍
𝑊 − 𝑉

BOUNDARY DISTANCE RATIO

[Raja Giryes]

• Training the network does not affect the bulk of distances
• However, it critically changes the behavior at the

boundary points:
- Inter-class distances expand (as expected).
- Intra-class distances shrink (as expected).

48

Invertibility

• For any W, one can ask whether is
invertible, and how stable the inverse is with respect to a
recovery measure:

�(x) = ⇢(Wx)

cd(x, y)  k�(x)� �(y)k  Cd(x, y) .

d(x, y) = min(kx� yk, kx+ yk)

49

Invertibility

• For any W, one can ask whether is
invertible, and how stable the inverse is with respect to a
recovery measure:

- Ex.

• One can find Lipschitz constants, even when
incorporates a pooling operation [B., Szlam, Lecun,’14].

�(x) = ⇢(Wx)

cd(x, y)  k�(x)� �(y)k  Cd(x, y) .

d(x, y) = min(kx� yk, kx+ yk)

⇢(·)

50

Invertibility

• For any W, one can ask whether is
invertible, and how stable the inverse is with respect to a
recovery measure:

- Ex.

• One can find Lipschitz constants, even when
incorporates a pooling operation [B., Szlam, Lecun,’14].

• However, these constants are unpractical and hard to
interpret.
- When W is random iid they provide recovery guarantees whp for

appropriate redundancies.

�(x) = ⇢(Wx)

cd(x, y)  k�(x)� �(y)k  Cd(x, y) .

d(x, y) = min(kx� yk, kx+ yk)

⇢(·)

51

Empirical Recovery
• Q: How far are these bounds to explaining real behavior?

(i.e. empirical data distribution with non-random, trained
networks)

52

Empirical Recovery
• Q: How far are these bounds to explaining real behavior?

(i.e. empirical data distribution with non-random, trained
networks)

min
x

k�(x)� �(x0)k2 +R(x)

R(x): Regularization with “real” prior (e.g. TV norm)

53

Empirical Recovery
• Q: How far are these bounds to explaining real behavior?

(i.e. empirical data distribution with non-random, trained
networks)

conv1 relu1 mpool1 norm1 conv2 relu2 mpool2

norm2 conv3 relu3 conv4 relu4 conv5 relu5

Figure 9. CNN receptive field. Reconstructions of the image of Fig. 5.a from the central 5⇥ 5 neuron fields at different depths of CNN-A.
The white box marks the field of view of the 5⇥ 5 neuron field. The field of view is the entire image for conv5 and relu5.

conv1-grp1 norm1-grp1 norm2-grp1 conv1-grp1 norm1-grp1 norm2-grp1

conv1-grp2 norm1-grp2 norm2-grp2 conv1-grp2 norm1-grp2 norm2-grp2

Figure 10. CNN neural streams. Reconstructions of the images of Fig. 5.c-b from either of the two neural streams of CNN-A. This figure
is best seen in colour/screen.

responses to be switched off. The locality of the features is
obvious in the figure; what is less obvious is that the effec-
tive receptive field of the neurons is in some cases signifi-
cantly smaller than the theoretical one - shown as a white
box in the image.

Finally, Fig. 10 reconstructs images from a subset of fea-
ture channels. CNN-A contains in fact two subsets of fea-
ture channels which are independent for the first several lay-
ers (up to norm2) [13]. Reconstructing from each subset
individually, clearly shows that one group is tuned towards
low-frequency colour information whereas the second one
is tuned to towards high-frequency luminance components.
Remarkably, this behaviour emerges naturally in the learned
network without any mechanism directly encouraging this
pattern.

6. Summary
This paper proposed an optimisation method to invert

shallow and deep representations based on optimizing an
objective function with gradient descent. Compared to al-
ternatives, a key difference is the use of image priors such as
the V � norm that can recover the low-level image statistics
removed by the representation. This tool performs better

Figure 11. Diversity in the CNN model. mpool5 reconstructions
show that the network retains rich information even at such deep
levels. This figure is best viewed in color/screen (zoom in).

than alternative reconstruction methods for HOG. Applied
to CNNs, the visualisations shed light on the information
represented at each layer. In particular, it is clear that a pro-
gressively more invariant and abstract notion of the image
content is formed in the network.

In the future, we shall experiment with more expres-
sive natural image priors and analyze the effect of network
hyper-parameters on the reconstructions. We shall extract
subsets of neurons that encode object parts and try to estab-
lish sub-networks that capture different details of the image.

8

[Mahendran, Vedaldi,’14]

min
x

k�(x)� �(x0)k2 +R(x)

R(x): Regularization with “real” prior (e.g. TV norm)

54

Empirical Recovery
R(x): Regularization with “learnt” prior

(Generative Adversarial Networks, TBD)

min
x

k�(x)� �(x0)k2 +R(x)

[Dosovitsky & Brox’15]55

Empirical Recovery
R(x): Regularization with “learnt” prior

(Generative Adversarial Networks, TBD)

min
x

k�(x)� �(x0)k2 +R(x)

Images

Reconstruction from CONV5

Our-GAN

Our-simple

[20]

Reconstruction from FC6

Our-GAN

Our-simple

[20]

Reconstruction from FC7

Our-GAN

Our-simple

[20]

Figure 13: Reconstructions from higher layers of AlexNet with the GAN-based version of our method, the simple version of
our method and the method of Mahendran and Vedaldi [20].

[Dosovitsky & Brox’15]56

CNNs and Contractions

• So far, we have been mostly interested in the contraction
properties of CNNs:
- Local invariance = reduce intraclass variability

57

CNNs and Contractions

• So far, we have been mostly interested in the contraction
properties of CNNs:
- Local invariance = reduce intraclass variability

• We mentioned that
INVARIANCE DISCRIMINABILITY

58

Selection Models

• Q: How to increase separation between classes?

59

Selection Models

• Q: How to increase separation between classes?
• The simplest model is K-means clustering:

60

Selection Models

• Q: How to increase separation between classes?
• The simplest model is K-means clustering:

K = 6

Given data X = (x1, . . . , xn), min
c1,...,cK

X

in

min
j

kxi � cjk2

c1

c6

61

Selection Models

• K-means defines a mapping:

c1

c6

x 7! e

k(x) , k(x) = argmin
j

kx� c

j

k
� : Rm ! RK

62

Selection Models

• K-means defines a mapping:

• Assuming power-normalized data (), maximally
separates points falling into different clusters:

c1

c6

x 7! e

k(x) , k(x) = argmin
j

kx� c

j

k

kxk = 1

� : Rm ! RK

�

(h�(x),�(y)i = 0 in that case)

63

Selection Models
• The K-means encoding is extremely naïve: log(K) bits

encoding which region of input space we fall into
(piecewise constant encoding)
- It is nevertheless a very competitive encoding for small image

patches.

64

Selection Models
• The K-means encoding is extremely naïve: log(K) bits

encoding which region of input space we fall into
(piecewise constant encoding)
- It is nevertheless a very competitive encoding for small image

patches.
• A strictly richer model is the union of subspaces model

or dictionary learning:
min

D=(d1,...,dK),kdkk1,z

X

in

kxi �Dzik2 + �R(zi)

R(z): sparsity-promoting

R(z) = kzk0 (NP-Hard)

R(z) = kzk1 (Tractable)

65

Selection Models

• For a given dictionary D, the sparse coding is defined as
the mapping

� : Rm ! RK

x 7! �(x) = argmin
z

kx�Dzk2 + �R(z) .

66

Selection Models

• For a given dictionary D, the sparse coding is defined as
the mapping

• A particularly attractive choice is
- in that case requires solving a convex program.
- Lasso estimator [Tibshirani,’96]
- Rich theory in the statistical community.
- Extensions: Group Lasso, Hierarchical Lasso, etc.

� : Rm ! RK

x 7! �(x) = argmin
z

kx�Dzk2 + �R(z) .

R(z) = kzk1
�(x)

67

Proximal Splitting

• The sparse coding involves minimizing a function of the
form

min
z

h1(z) + h2(z)

h2(z) = �kzk1 convex but non-smooth

h1(z) = kx�Dzk2 convex and smooth (di↵erentiable)

68

Proximal Splitting

• The sparse coding involves minimizing a function of the
form

-
-

• A solution can be obtained by alternatively minimizing
each term:

min
z

h1(z) + h2(z)

h2(z) = �kzk1 convex but non-smooth

h1(z) = kx�Dzk2 convex and smooth (di↵erentiable)

Fact: Let h : Rm ! R be a convex function. For every z 2 Rm
,

min
y

h(y) +
1

2
kz � yk2

has unique solution, denoted proxh(z).

(proxh is a non-expansive operator for all h)

69

Forward-Backward Splitting
• It can be shown that if h1 is convex and di↵erentiable with Lipschitz

gradient, and h2 is convex, then the solutions of

minz h1(z) + h2(z)

are characterized by the fixed points of

z = prox�h2
(z � �rh1(z)) 8 � � 0.

70

Forward-Backward Splitting
•

• These can be found by iterating

- by properly adjusting the rate these method is proven to
converge to its unique solution.

It can be shown that if h1 is convex and di↵erentiable with Lipschitz

gradient, and h2 is convex, then the solutions of

minz h1(z) + h2(z)

are characterized by the fixed points of

z = prox�h2
(z � �rh1(z)) 8 � � 0.

zn+1 = prox�nh2
(zn � �nrh1(zn))

�n

71

Proximal Splitting and ISTA

• When h2(z) = �kzk1, the proximal operator becomes

prox�h2
(z) = max(0, |z|� ��) · sign(z)

: soft thresholding
��

���

⇢��

⇢��

72

Proximal Splitting and ISTA

•

• ISTA algorithm (iterative soft thresholding):

- converges in sublinear time if

When h2(z) = �kzk1, the proximal operator becomes

prox�h2
(z) = max(0, |z|� ��) · sign(z)

: soft thresholding
��

���

zn+1 = prox�nh2
(zn � �nrh1(zn))

rh1(zn) = �D

T (x�Dzn)
zn+1 = ⇢��((1� �D

T
D)zn + �D

T
x)

⇢��

⇢��

O(1/n) � 2 (0, 1/kDTDk)

73

Proximal Splitting and ISTA

•

• ISTA algorithm (iterative soft thresholding):

- converges in sublinear time if
• FISTA [Beck and Teboulle,’09]:

- adds Nesterov momentum.
- proven accelerated convergence

When h2(z) = �kzk1, the proximal operator becomes

prox�h2
(z) = max(0, |z|� ��) · sign(z)

: soft thresholding
��

���

zn+1 = prox�nh2
(zn � �nrh1(zn))

rh1(zn) = �D

T (x�Dzn)
zn+1 = ⇢��((1� �D

T
D)zn + �D

T
x)

⇢��

⇢��

O(1/n2)

O(1/n) � 2 (0, 1/kDTDk)

74

Sparse Coding with (F)ISTA

V z = (1� �D

T
D)z + �D

T
x): linear with bias

⇢: pointwise non-linearity

V ⇢ ⇢ ⇢V V
0

�D

t
x

z = �(x)

75

Sparse Coding with (F)ISTA

• Lasso can be cast as a (very) deep network, with
- Shared weights, adapted to the dictionary.

- Note that is a contraction , but the affine term
may increase the separation:

V z = (1� �D

T
D)z + �D

T
x): linear with bias

⇢: pointwise non-linearity

V ⇢ ⇢ ⇢V V
0

�D

t
x

z = �(x)

A = 1� �DTD , B = �DT

�n+1(x) = ⇢(A�n(x) +Bx)

A (kAxk  kxk)

k�k+1(x)� �k+1(x
0)k  kA(�k(x)� �k(x

0))k+ kB(x� x

0)k
 k�k(x)� �k(x

0)k+ kB(x� x

0)k
76

Geometric Interpretation

• Dictionary learning is a locally linear approximation
model:

77

• Dictionary learning is a locally linear approximation
model:

Geometric Interpretation

x ⇡ Dz =
X

zk 6=0

zkdk

78

Geometric Interpretation

• Orthogonalization of different linear pieces:

x ⇡ Dz =
X

zk 6=0

zkdk

x1 x2

x3

79

Geometric Interpretation

• Orthogonalization of different linear pieces:

-

x ⇡ Dz =
X

zk 6=0

zkdk

x1 x2

x3

If x1 and x2 share most dictionary atoms J , then

If x1 and x3 do not share dictionary atoms, then

h�(x1),�(x3)i ⇡ 0

h�(x1),�(x2)i ⇡ hDT
J x1, D

T
J x2i = hx1, DJD

T
J x2i

80

Sparse Coding and Stability

kx� '⌧xk  kDz �Dz⌧k+ 2✏

=)

kz � z⌧k � kDk�1
1 kDz �Dz⌧k

� kDk�1
1 (kx� '⌧xk � 2✏kxk)

⇠ kDk�1
1 (1� 2✏)kxk

kx�Dzk  ✏kxk , k'⌧x�Dz⌧k  ✏kxk , kx� '⌧xk ⇠ kxk

=)

Linear decoder implies geometric instability is preserved in the sparse decom-

position

81

From unsupervised to supervised selection

• The previous model is unsupervised:
- Why would a dictionary for reconstruction be useful for recognition

or other tasks?
- Pro: it exploits the local regularity of the data.
- Cons: sparse coding unaware of stability, sparse dictionaries might be

not unique.

82

From unsupervised to supervised selection

• The previous model is unsupervised:
- Why would a dictionary for reconstruction be useful for recognition

or other tasks?
- Pro: it exploits the local regularity of the data.
- Cons: sparse coding unaware of stability, sparse dictionaries might be

not unique.

• Q: Can we make a dictionary task-aware? (i.e. supervised
dictionary learning)

83

From unsupervised to supervised selection

• Task-driven dictionary learning [Mairal et al,’12]:
Suppose we want to predict y 2 Y from x 2 X

84

From unsupervised to supervised selection

• Task-driven dictionary learning [Mairal et al,’12]:
Suppose we want to predict y 2 Y from x 2 X

Consider the sparse coding operator

�(x;D) = argmin
z

1

2
kx�Dzk2 + �kzk1 + �2kzk22

It is Lipschitz with respect to both x and D if �2 > 0,

it is di↵erentiable almost everywhere.

85

From unsupervised to supervised selection

• Task-driven dictionary learning [Mairal et al,’12]:
Suppose we want to predict y 2 Y from x 2 X

Consider the sparse coding operator

�(x;D) = argmin
z

1

2
kx�Dzk2 + �kzk1 + �2kzk22

We can construct an estimator ŷ from this sparse code:

ŷ = W

T
�(x;D) (more generally, , ŷ = F (W,�(x;D))

min
D,W

E
x,y

`(y, ŷ(x,W,D))

It is Lipschitz with respect to both x and D if �2 > 0,

it is di↵erentiable almost everywhere.

86

From unsupervised to supervised

• Half-toning Results from [Mairal et al,’12]:

but our approach has two main advantages. First, it is much
easier to use since it does not require complicated heuristic
procedures to select the parameters, and second, it applies to
a wider spectrum of applications such as to regression tasks.

Our second experiment follows [24], where only a few
samples are labeled. We use the semi-supervised formulation
of Section 3.2.2 which exploits unlabeled data. Unlike the first
experiment where the parameters are chosen using a
validation set, and following [24], we make a few arbitrary
choices. Indeed, we use p ¼ 300, !1 ¼ 0:075, and " ¼ 10"5,
which were the parameters chosen in the previous experi-
ment. As in the previous experiment, we have observed that
these parameters lead to sparse vectors ##? with about
15 nonzero coefficients. The dictionaries associated with each
digit class are initialized using the unsupervised formulation
of Section 2. To test our algorithm with different values of $,
we use a continuation strategy: Starting with $ ¼ 1:0, we
sequentially decrease its value by 0.1 until we have $ ¼ 0,
learning with 10,000 iterations for each new value of $. We
report the error rates in Fig. 1, showing that our approach
offers a competitive performance similar to [24]. The best
error rates of our method for n ¼ 300; 1;000; 5;000 labeled
data are, respectively, 5.81, 3.55, and 1.81 percent, which is
similar to [24] who has reported 7.18, 3.21, and 1.52 percent
with the same sets of labeled data.

5.3 Learning a Nonlinear Image Mapping

We now illustrate our method in a regression context by
considering a classical image processing task called “inverse
halftoning.” With the development of several binary display
technologies in the 1970s (including, for example, printers
and PC screens), the problem of converting a grayscale
continuous-tone image into a binary one that looks percep-
tually similar to the original one (“halftoning”) was posed to
the image processing community. Examples of halftoned
images obtained with the classical Floyd-Steinberg algorithm
[47] are presented in the second column of Fig. 2, with
original images in the first column. Restoring these binary
images to continuous-tone ones (“inverse halftoning”) has
become a classical problem (see [48] and references therein).

Unlike most image processing approaches that explicitly
model the halftoning process, we formulate it as a
regression problem, without exploiting any prior on the task.
We use a database of 36 images; 24 are high-quality images
from the Kodak PhotoCD data set10 and are used for
training, and 12 are classical images often used for
evaluating image processing algorithms;11 the first four

(house, peppers, cameraman, lena) are used for validation
and the remaining eight for testing.

We apply the Floyd-Steinberg algorithm implemented in
the LASIP Matlab toolbox12 to the grayscale continuous-tone
images in order to build our training/validation/testing set.
We extract all pairs of patches from the original/halftoned
images in the training set, which provides us with a database
of approximately nine million patches. We then use the
“signal regression” formulation of (12) to learn a dictionary D
and model parameters W by performing two passes of our
algorithm over the nine million training pairs.

At this point, we have learned how to restore a small
patch from an image, but not yet how to restore a full
image. Following other patch-based approaches to image
restoration [2], we extract from a test image all patches
including overlaps, and restore each patch independently so
that we get different estimates for each pixel (one estimate
for each patch the pixel belongs to). These estimates are
then averaged to reconstruct the full image, which has
proven to give very good results in many image restoration
tasks (see, e.g., [2], [4]). The final image is then postpro-
cessed using the denoising algorithm in [4] to remove
possible artifacts.

We then measure how well it reconstructs the contin-
uous-tone images from the halftoned ones in the test set. To
reduce the number of hyperparameters, we have made a few
arbitrary choices: We first use the Lasso formulation for
encoding the signals—that is, we set !2 ¼ 0. With millions of
training samples, our model is unlikely to overfit and the
regularization parameter " is set to 0 as well. The remaining
free parameters are the sizem of the patches, the size p of the

798 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 4, APRIL 2012

Fig. 1. Error rates on MNIST when using n labeled data, for various
values of $.

Fig. 2. From left to right: Original images, halftoned images, recon-
structed images. Even though the halftoned images (center column)
perceptually look relatively close to the original images (left column),
they are binary. Reconstructed images (right column) are obtained by
restoring the halftoned binary images. Best viewed by zooming on a
computer screen.

10. http://r0k.us/graphics/kodak/.
11. The list of these images can be found in [4], where they are used for

the problem of image denoising. 12. http://www.cs.tut.fi/~lasip/.

87

From supervised Lasso to DNNs

• The Lasso (sparse coding operator) can be implemented
as a specific deep network.

88

From supervised Lasso to DNNs

• The Lasso (sparse coding operator) can be implemented
as a specific deep network

• Can we accelerate the sparse inference with a shallower
network, with trained parameters?

V ⇢ ⇢ ⇢V V
0

�D

t
x

z = �(x)

89

From supervised Lasso to DNNs

• The Lasso (sparse coding operator) can be implemented
as a specific deep network

• Can we accelerate the sparse inference with a shallower
network, with trained parameters?

V ⇢ ⇢ ⇢V V
0

�D

t
x

z = �(x)

⇢ ⇢ ⇢0

x

W

S S S

F (x,W, S)

90

• Explicit Sparse encoder trained to predict the output of
the Lasso:

- LISTA adapts to the data distribution and produces much faster
approximate sparse codes.

LISTA [Gregor and LeCun,’10]

min
W,S

1

n

X

in

k�(xi)� F (xi,W, S)k2

Learning Fast Approximations of Sparse Coding

FISTA !4x"
FISTA !1x"
LISTA !4x"
LISTA !1x"

0 1 2 3 5 7
iter

0.5

1

2

5

10

error

Figure 3. Code prediction error as a function of number of
iterations for FISTA (crosses) and for LISTA (dots), for
m = 100 (red) and m = 400 (blue). Note the logarithmic
scales. iter = 0 corresponds to the baseline trainable en-
coder with the shrinkage function. It takes 18 iterations of
FISTA to reach the error fo LISTA with just one iteration
for m = 100, and 35 iteration for m = 400. Hence one can
say that LISTA is roughly 20 times faster than FISTA for
approximate solutions.

80% of connections (cf = 0.2) causes a relatively small
increase in prediction error from about 1.6 to about
2.0. Removing connections also allows efficient com-
putation of the S matrix multiplication when only the
nonzero code units are used.

dim reduction !4x"
elements removal !4x"
dim reduction !1x"
elements removal !1x"

0.01 0.02 0.05 0.1 0.2 0.5 1
cf

1.5

2

2.5

3

3.5

4

error

Figure 4. Prediction error for LISTA with one iteration as
a function of fraction of operations cf required relative to
a full S matrix. The matrix is reduced using a low rang
factorization, or by removing small elements.

LCoD: The prediction results for the learned CoD
are shown in the Figure 5. Each iteration costs O(m)
operations as opposed to LISTA’s O(m2) or O(mk).
The cost of the initial operation WeX is O(nm). It
is remarkable that with only 20 iterations, which adds
a tiny additional cost to the initial calculation WeX,
and much smaller than a single iteration of FISTA or
LISTA, the error is already below 2. It takes 100 itera-
tions of CoD to reach the same error as 5 iterations of

LCoD. For a large number of iterations, LCoD loses to
CoD when the matrices are initialized randomly, but
initializing the matrices with their CoD-prescribed val-
ues improves the performance significantly (open cir-
cles).

CoD !4x"
CoD !1x"
LCoD !4x"
LCoD !1x"

0 1 2 5 10 20 50 100 200
iter

0.2

0.5

1

2

5

10

50

error

Figure 5. Code prediction errors for CoD and LCoD for
varying numbers of iterations. LCoD is about 20 times
faster than CoD for small numbers of iterations. Initial-
izing the matrices with their LCoD values before training
(open circles) improve the performance in the high itera-
tion regime, but seems to degrade it in the low iteration
regime (data not shown).

In the second set of experiments we investigated
whether the improvement in prediction error leads to
a better recognition performance using the MNIST
dataset. In the first experiment, the CoD and LCoD
methods with codes of size 784 were trained on the
whole 28× 28 = 784 pixel images. In the second one,
the CoD and LCoD methods with 256 dimensional
codes were trained on 16× 16 pixel patches extracted
from the MNIST digits. A complete feature vector
consisted of 25 concatenated such vectors, extracted
from all 16× 16 patches shifted by 3 pixels on the in-
put. The features were extracted for all digits using
CoD with exact inference, CoD with a fixed number of
iterations, and LCoD. Additionally a version of CoD
(denoted CoD’) used inference with a fixed number
of iterations during training of the filters, and used
the same number of iterations during test (same com-
plexity as LCoD). A logistic regression classifier was
trained on the features thereby obtained.

Classification errors on the test set are shown in Ta-
bles 2 and 3. While the error rate decreases with the
number of iterations for all methods, the error rate
of LCoD with 10 iterations is very close to the opti-
mal (differences in error rates of less than 0.1% are
insignificant on MNIST)1.

1cpu times assume efficient implementation of the WeX
that is not available for the argmax of (L)CoD: 1.6x speed
up for Table 2 (vector) and 5x for Table 3 (batch).

91

From supervised sparse coding to DNN

• The fast approximation of a sparse code can be plugged-
in in a supervised regression or classification task.

• For example, [Sprechmann, Bronstein & Sapiro,’12] in
speaker identification experiments using non-negative
matrix factorization:

Table 3: Speaker identification success rate.

Noise Exact
RNMF Encoders

(Supervised) (Discriminative)

street 0.86 0.91 0.91

restaurant 0.91 0.89 0.90

car 0.90 0.91 0.96

exhibition 0.93 0.91 0.95

train 0.93 0.88 0.96

airport 0.92 0.85 0.98

average 0.91 0.89 0.94

7 Conclusions and future work

In this work we have developed a comprehensive framework for process-centric

parsimonious modeling. By combining ideas from convex optimization with

multi-layer neural networks, we have shown how to produce deterministic func-

tions capable of faithfully approximating the optimization-based solution of

parsimonious models at a fraction of the computational time. Furthermore,

at almost the same computational cost, the framework includes di↵erent objec-

tive functions that allow the encoders to be trained in a discriminative fashion

or solve challenging alignment problems. We conducted empirical experiments

in di↵erent settings and real applications such as image modeling, robust face

modeling, audio sources separation and robust speaker recognition. A simple

unoptimized implementation already achieves often several order of magnitude

speedups when compared to exact solvers.

While we limited our attention to synthesis models, the proposed framework

can be naturally extended to analysis cosparse models [52, 53], in which the

signal is known to be sparse in a transformed domain. Specifically, given a

“sensing” matrix M 2 Rn⇥q and an analysis dictionary ⌦ 2 Rp⇥m, in an

analysis counterpart of (21), one looks for a function f 2 F , where again F is

a space of functions with certain desired properties, that minimizes

min
f2F

1

2

NX

i=1

kxi � Mf(xi)k2 + � k⌦f(xi)k
1

. (30)

The space F can be set by truncating suitable iterative optimization algorithms

such as the augmented Lagrangian methods of multipliers (ADMM) [21].

30

92

