
Stat 212b: Topics in Deep Learning
Lecture 6

Joan Bruna 
UC Berkeley

1



• Local averaging kernel:
– locally translation invariant
– stable to additive and geometric deformations
– loss of high-frequency information.

• Recover lost information:
– Point-wise, non-expansive non-linearities: maintain stability.
– Complex modulus maps energy towards low-frequencies.

• Cascade the “recovery” operator:

• Scattering coefficient along a path   

UJ(x) = {x ? �J , |x ?  �|}�2⇤J .

U2
J(x) = {x ? �J , |x ?  �|?�J , ||x ?  �| ?  �0 |}�,�02⇤J .

p = (�1, . . . ,�m) :

SJ [p]x(u) = |||x ?  �1 | ?  �2 | ? . . . | ?  �m | ? �J(u) .

Review: Separable Scattering Operators
x ? �J

2



Review: Scattering Geometric Stability

• Geometric Stability: kSJxk2 =
X

p2PJ

kSJ [p]xk2

Theorem (Mallat’10): There exists C such that for all x 2 L

2
(R

d
) and

all m, the m-th order scattering satisfies

kSJ'⌧x� SJxk  Cmkxk(2�J |⌧ |1 + kr⌧k1 + kH⌧k1) .

'⌧x |d'⌧x| SJ'⌧x3



Review: Limitations of Separable Scattering

• No feature dimensionality reduction
- The number of features increases exponentially with depth and 

polynomially with scale.

• We are indirectly assuming that each wavelet band is 
deformed independently
– We cannot capture the joint deformation structure of feature maps
– Loss of discriminability. 

• The deformation model is rigid and non-adaptive
– We cannot adapt to each class
– Wavelets are hard to define a priori on high-dimensional domains. 

4



Review: Joint Scattering

• We start by lifting the image with spatial wavelet 
convolutions: stable and covariant to roto-translations. 

• We then adapt the second wavelet operator to its input 
joint variability structure.

• More discriminability.
• Requires defining wavelets on more complicated domains

�(x)U1
x0(u)

x1(u, j, ✓)
U2

5



Example: Roto-Translation Scattering
• [Sifre and Mallat’13]

sentation R(x) of x is invariant to the action of G if it is not
modified by the action of any g ∈ G: R(g.x) = R(x). It is
covariant to G if R(g.x) = g.R(x), where g acts on R(x)
by shifting its coefficients. A separable invariant on a group
product G = G1�G2 combines a first operator R1, which is
invariant to the action of G1 and covariant to the action G2,
with a second operator R2 which is invariant to the action
of G2. Indeed for all g1.g2 ∈ G1 �G2 and all images x(u):

R2(R1(g1.g2.x)) = R2(g2.R1(x)) = R2(R1(x)) .
However, such separable invariants do not capture the joint
property of the action of G2 relatively to G1, and may lose
important information. This is why two-dimensional trans-
lation invariant representations are not computed by cascad-
ing invariants to horizontal and vertical translations. It is
also important for rotations and translations. Let us consider
for example the two texture patches of Figure 1. A separa-
ble product of translation and rotation invariant operators
can represent the relative positions of the vertical patterns,
and the relative positions of the horizontal patterns, up to
global translations. However, it can not represent the po-
sitions of horizontal patterns relatively to vertical patterns,
because it is not sensitive to a relative shift between these
two sets of oriented structures. It loses the relative positions
of different orientations, which is needed to be sensitive to
curvature, crossings and corners. Such a separable invariant
thus can not discriminate the two textures of Figure 1.

Figure 1: The left and right textures are not discriminated
by a separable invariant along rotations and translations, but
can be discriminated by a joint roto-translation invariant.

Several authors [6, 7, 8] have proposed to take into ac-
count the joint structure of roto-translation operators in im-
age processing, particularly to implement diffusion oper-
ators. Computing a joint invariant between rotations and
translations also means taking into account the joint rela-
tive positions and orientations of image structures, so that
the textures of Figure 1 can be discriminated. Section 3
introduces a roto-translation scattering operator, which is
computed by cascading wavelet transforms on the roto-
translation group.

Calculating joint invariants on large non-commutative
groups may however become very complex. Keeping a sep-
arable product structure is thus desirable as long as it does

not lose too much information. This is the case for scaling.
Indeed, local image structures are typically spread across
scales, with a power law decay. This is the case for con-
tours, singularities and most natural textures. As a result of
this strong correlation across scales, one can use a separa-
ble invariant along scales, with little loss of discriminative
information.

2.2. Hierarchical Architecture

We now explain how to build an affine invariant repre-
sentation, with a hierarchical architecture. We separate vari-
abilities of potentially large amplitudes such as translations,
rotations and scaling, from smaller amplitude variabilities,
but which may belong to much higher dimensional groups
such as shearing and general diffeomorphisms. These small
amplitude deformations are linearized to remove them with
linear projectors.

Image variabilities typically differ over domains of dif-
ferent sizes. Most image representations build localized in-
variants over small image patches, for example with SIFT
descriptors [15]. These invariant coefficients are then ag-
gregated into more invariant global image descriptors, for
example with bag of words [10] or multiple layers of deep
neural network [4, 5]. We follow a similar strategy by first
computing invariants over image patches and then aggregat-
ing them at the global image scale. This is illustrated by the
computational architecture of Figure 2.

x
roto-trans.

patch
scattering

log
global

space-scale
averaging

deformat.
invariant

linear proj.

Figure 2: An affine invariant scattering is computed by ap-
plying a roto-translation scattering on image patches, a log-
arithmic non-linearity and a global space-scale averaging.
Invariants to small shearing and deformations are computed
with linear projectors optimized by a supervised classifier.

Within image patches, as previously explained, one must
keep the joint information between positions and orienta-
tions. This is done by calculating a scattering invariant on
the joint roto-translation group. Scaling invariance is then
implemented with a global scale-space averaging between
patches, described in Section 4. A logarithmic non-linearity
is first applied to invariant scattering coefficients to linearize
their power law behavior across scales. This is similar to the
normalization strategies used by bag of words [10] and deep
neural networks [5].

Because of three dimensional surface curvature in the vi-
sual scene, the image patches are also deformed. A scat-
tering transform was proved to be stable to deformations
[9]. Indeed, it is computed with a cascade of wavelet trans-

Fast computations of roto-translation convolutions with
separable wavelet filters  ✓2,j2,k2(u, ✓) =  ✓2,j2(u) k2

(✓)
are performed by factorizing

Y � ✓2,j2,k2(u, ✓)
=�

✓′
��

u′
Y (u′, ✓′) ✓2,j2(r−✓′(u − u′))�  k2

(✓ − ✓′) .
It is thus computed with a two-dimensional convolution of
Y (u, ✓′) with  ✓2,j2(r−✓u) along u = (u1, u2), followed
by a convolution of the output and a one-dimensional cir-
cular convolution of the result with  k2

along ✓. Figure 5
illustrates this convolution which rotates the spatial support
 ✓2,j2(u) by ✓ while multiplying its amplitude by  k2

(✓).

θ

u1
u2

ψθ2,j2(u1, u2)

ψk2
(θ)

Figure 5: A three dimensional roto-translation convolution
with a wavelet  ✓2,j2,k2(u1, u2, ✓) can be factorized into a
two dimensional convolution with  ✓2,j2(u1, u2) rotated by
✓ and a one dimensional convolution with  k2

(✓) .

Applying�W3 =�W2 to U2x computes second order scat-
tering coefficients as a convolution of Y (g) = U2x(g, p2)
with �J(g), for p2 fixed:

S2x(p2) = U2(., p2)x��J(g) . (18)

It also computes the next layer of coefficients U3x with
a roto-translation convolution of U2x(g, p2) with the
wavelets (13,14,15). In practice, we stop at the second or-
der because the coefficients of U3x carry a small amount of
energy, and have little impact on classification. One can in-
deed verify that the energy of Umx decreases exponentially
to zero as m increases.

The output roto-translation of a second order scattering
representation is a vector of coefficients:

Sx = �S0x(u) , S1x(p1) , S2x(p2)� , (19)

with p1 = (u, ✓1, j1) and p2 = (u, ✓1, j1, ✓2, j2, k2). The
spatial variable u is sampled at intervals 2

J which corre-
sponds to the patch size. If x is an image of N2 pixels,

there are thus 2

−2JN2 coefficients in S0x and 2

−2JN2J
coefficients in S1x. Second order coefficients have a negli-
gible amplitude if j2 ≤ j1. If the wavelet are rotated along
K angles ✓ then one can verify that S2x has approxima-
tively 2

−2JN2J(J − 1)K log2K�2 coefficients. The to-
tal roto-translatation patch scattering Sx is of dimension
341N2�1024 for J = 5 and K = 8. The overall complexity
to compute this roto-translation scattering representation is
O(K2N2

logN).
4. Scaling Invariance of Log Scattering

Roto-translation scattering is computed over image
patches of size 2

J . Above this size, perspective effects pro-
duce important scaling variations for different patches. A
joint scale-rotation-translation invariant must therefore be
applied to the scattering representation of each patch vector.
This is done with an averaging along the scale and transla-
tion variables, with a filter which is rotationally symmetric.
One could recover the high frequencies lost by this averag-
ing and compute a new layer of invariant through convo-
lutions on the joint scale-rotation-translation group. How-
ever, adding this supplementary information does not im-
prove texture classification, so this last invariant is limited
to a global scale-space averaging.

The roto-translation scattering representations of all
patches at a scale 2

J is given by

Sx = �x � �J(u) , U1x��J(p1) , U2x��J(p2)� ,
with p1 = (u, ✓1, j1) and p2 = (u, ✓1, j1, ✓2, j2, k2). This
scattering vector Sx is not covariant to scaling. If xi(u) =
x(2iu) then

Sxi = �x � �J+i(2iu) , U1x��J+i(2i.p1)
U2x��J+i(2i.p2)� .

with 2

i.p1 = (2iu, ✓1, j1 + i) and 2

i.p2 = (2iu, ✓1, j1 +
i, ✓2, j2+ i, k2). A covariant representation to scaling stores
the minimal subset of coefficients needed to recover all Sxi.
It thus require to compute the scattering coefficients for all
scales j1+i and j2+i for all averaging kernels �J+i or�J+i,
similarly to spatial pyramid [16].

One can show that scattering coefficient amplitudes have
a power law decay as a function of the scales 2

j1 and 2

j2 .
To estimate an accurate average from a uniform sampling of
the variables j1 and j2, it is necessary to bound uniformly
the variations of scattering coefficient as a function of j1 and
j2. This is done by applying a logarithm to each coefficient
of Sx, which nearly linearizes the dependency upon j1 and
j2. This logarithm plays a role which is similar to renor-
malizations used in bag of words [10] and deep convolution
networks [5].

second layer wavelets constructed 
by a separable product on spatial 

and rotational wavelets
 �(u, ✓) =  �1(u) �2(✓)

example of patterns that are 
discriminated by joint scattering 

but not with separable 
scattering.

6



Classification with Scattering

• State-of-the art on pattern and texture recognition using 
separable scattering followed by SVM: 
– MNIST, USPS [Pami’13]

– Texture (CUREt) [Pami’13]

– Music Genre Classification (GTZAN) [IEEE Acoustic ’13]

7



• Joint Scattering Improves Performance:
– More complicated Texture (KTH,UIUC,UMD) [Sifre&Mallat, 

CVPR’13]

– Small-mid scale Object Recognition (Caltech, CIFAR) 
[Oyallon&Mallat, CVPR’15]
– ~17% error on Cifar-10

Classification with Scattering

A joint scaling, rotation and translation invariant is com-
puted with a scale-space averaging of logSxi along the
scale and spatial indices (i, u):

Sx =�
i,u

log(Sxi(u, .))�I(i) . (20)

The precision of this averaging is improved by sampling i
at half integers. It require to compute twice more scatter-
ing coefficients at scales 2j1�2 and 2

j2�2. If 2I is the length
of the averaging kernel �I(i) then 2

J+2I must be smaller
than the image size. In texture applications, these averages
can only be computed on a small range of scales 2

I = 2.
One could recover the information lost by the scale-space
averaging (20) through convolutions with wavelets defined
on the joint scale-rotation-translation group, and define a
new scattering cascade. This is needed to characterize very
large scale texture structures, which is not done in this pa-
per. The invariant image representation Sx is of dimension
536 if computed over image patches of size 2

J = 2

5 = 32

with K = 8 wavelet orientations. This relatively small fea-
ture vector does not depend upon the image size, which is
usually larger than 10

5 pixels.

5. Deformation Invariant Projectors
Shearing and image deformations are typically of

smaller amplitudes than translations, rotations and scal-
ing. A scattering transform is stable and hence linearizes
small deformations. A set of small image deformations thus
produces scattering coefficients which belong to an affine
space. Linear projectors which are orthogonal to this affine
space are invariant to these small deformations. These in-
variants can be adapted to each signal class by optimizing
a linear kernel at the supervised classification stage. This
may be done by an SVM but we shall rather use a gener-
ative PCA classifier as in [1]. Such classifiers can indeed
perform better when the training set is small.

Each signal class is represented by a random vector xc

for 1 ≤ c ≤ C, whose realizations are images in the class
c. The scattering transform Sxc is a random vector. It’s
expected value is written E(Sxc). A PCA diagonalizes
the covariance matrix of Sxc. Let Vc be the linear space
generated by the D eigenvectors of the covariance matrix
of largest eigenvalues. Approximating Sxc − E(Sxc) by
its projection in Vc gives a minimum mean-square error,
among all projections in linear spaces of dimension D. The
space Vc includes the variability directions produced by de-
formations of textures in the class. Let V⊥c be its orthogonal
complement. The orthogonal projection PV⊥c is an invariant
operator which filters out these main intra-class variability.
If x is in the class c then �PV⊥c(Sx − ESxc)� is typically
small because most of the energy of Sx −E(Sxc) is in Vc.

As in [1], we use a simple quadratic classifier which as-
sociates to each signal x the class index ĉ which minimizes

Figure 6: Each row shows images from the same texture
class in the UIUC database [10], with important rotation,
scaling and deformation variability.

the projected distance to the class centroid:

ĉ(x) = arg min

1≤c≤C �PV⊥c(Sx −ESxc)�2 . (21)

It finds the class centroid E(Sxc)which is the closest to Sx,
after eliminating the first D principal variability directions.

6. Texture Classification Experiments
This section gives scattering classification results on

KTH-TIPS [17], UIUC [10, 18] and UMD [19] texture
datasets, and comparison with state of the art algorithms.
We first review state of the art approaches based on differ-
ent types of invariants.

Most state of the art algorithms use separable invariants
to define a translation and rotation invariant algorithms, and
thus lose joint information on positions and orientations.
This is the case of [10] where rotation invariance is ob-
tained through histograms along concentric circles, as well
as Log Gaussian Cox processes (COX) [11] and Basic Im-
age Features (BIF) [12] which use rotation invariant patch
descriptors calculated from small filter responses. Sorted
Random Projection (SRP) [14] replaces histogram with a
similar sorting algorithm and adds fine scale joint informa-
tion between orientations and spatial positions by calculat-
ing radial and angular differences before sorting. Wavelet
Multifractal Spectrum (WMFS) [13] computes wavelet de-
scriptors which are averaged in space and rotations, and are
similar to first order scattering coefficients S1x.

We compare the best published results [10, 11, 12, 13,
14] and scattering invariants on KTH-TIPS (table 1), UIUC
(table 2) and UMD (table 3) texture databases. For each
database, Tables 1,2,3 give the mean classification rate and

8



Limitations of Joint Scattering

• Variability from physical world expressed in the language 
of transformation groups and deformations
- However, there are not many possible groups: essentially the affine 

group and its subgroups. 

9



Limitations of Joint Scattering

• Variability from physical world expressed in the language 
of transformation groups and deformations
- However, there are not many possible groups: essentially the affine 

group and its subgroups. 

• As a new wavelet layer is introduced, we create new 
coordinates, but we do not destroy existing coordinates
- Hard to scale: dimensionality reduction is needed.
- Wavelet design complicated beyond roto-translation groups.

10



Limitations of Joint Scattering

• Variability from physical world expressed in the language 
of transformation groups and deformations
- However, there are not many possible groups: essentially the affine 

group and its subgroups. 

• As a new wavelet layer is introduced, we create new 
coordinates, but we do not destroy existing coordinates
- Hard to scale: dimensionality reduction is needed.
- Wavelet design complicated beyond roto-translation groups.

• Beyond physics, many deformations are class-specific and 
not small. 
- Learning filters from data rather than designing them. 

11



Objectives

• Convolutional Neural Networks
- Review of supervised learning
- Modular interpretation
- Streamlining 
- Layer-wise vs Global model.

• Properties of CNN representations
- Invariance and Covariance
- Stability and Discriminability
- Redundancy.
- Transfer Learning
- Weakly supervised learning.

12



From Scattering to CNNs

•  Given x(u,�) and a group G acting on both u and �,

we defined wavelet convolutions over G as

x ?G  �0(u,�) =

Z

v

Z

↵
 �(R�↵(u� v))x(v,↵)dvd↵

13



From Scattering to CNNs

•  

•  

• Which in general is a convolutional tensor.

Given x(u,�) and a group G acting on both u and �,

we defined wavelet convolutions over G as

In discrete coordinates,

x ?G  �0(u,�) =

Z

v

Z

↵
 �(R�↵(u� v))x(v,↵)dvd↵

x ?G  �0(u,�) =
X

v

X

↵

 �0(u� v,↵,�)x(v,↵)

14



Convolutional Neural Networks

•  
•  
Let x(u,�) be signal, with u 2 {1, . . . , N}⇥ {1, . . . , N}, � 2 ⇤.

Convolutional Tensor:

x ⇤ (u,�0) :=
X

v

X

�

x(u� v,�) (v,�,�0)

=
X

�

(x(·,�) ?  (·,�,�0))(u)

Given  = { (v,�,�0)} with v 2 {1, N}2,
� 2 ⇤, �0 2 ⇤0

, the tensor convolution is

15



Convolutional Neural Networks

•  
•  
Let x(u,�) be signal, with u 2 {1, . . . , N}⇥ {1, . . . , N}, � 2 ⇤.

Convolutional Tensor:

x ⇤ (u,�0) :=
X

v

X

�

x(u� v,�) (v,�,�0)

=
X

�

(x(·,�) ?  (·,�,�0))(u)

Given  = { (v,�,�0)} with v 2 {1, N}2,
� 2 ⇤, �0 2 ⇤0

, the tensor convolution is

x ⇢ ⇢(x ⇤ )

(⇢ point-wise non-linearity)

L2({1, N}2 ⇥ ⇤) L2({1, N}2 ⇥ ⇤0)

16



Convolutional Neural Networks

•   Downsampling or Pooling operator:

reduce spatial and/or feature resolution

17



Convolutional Neural Networks

•  

-  

-  

Downsampling or Pooling operator:

reduce spatial and/or feature resolution

�c: lowpass averaging kernel

Non-adaptive and non-linear:

x̃(ũ,

˜

�) = max|v|c,|�|c x(cũ� v, c

˜

�� �)

Adaptive and linear:
x̃(ũ, �̃) = x ⇤ (cũ, c�̃)

x

x̃

P

Non-adaptive and linear:

x̃(ũ,

˜

�) =

P
v

P
� �c(v,�)x(cũ� v, c�

˜

�� �)

L2({1, N/c}2 ⇥ ⇤̃)L2({1, N}2 ⇥ ⇤)
18



Convolutional Neural Networks

⇢ 1 P1 ⇢ 2 P2 ⇢ px

�(x)

�(x) = ⇢(⇢(P1(⇢(x ⇤ 1)) ⇤ 2)..)

19



Convolutional Neural Networks

• Architectures vary in terms of
- Number p of layers (from 2 to >100).
- Size of the tensors (typically [3-7 x 3-7 x 16-256] )
- Presence/absence and type of pooling operator.

•Recent models tend to avoid non-adaptive pooling.

⇢ 1 P1 ⇢ 2 P2 ⇢ px

�(x)

�(x) = ⇢(⇢(P1(⇢(x ⇤ 1)) ⇤ 2)..)

20



CNNs for Classification

• When task is classification,        estimates the class label 
of    , 

• The conditional probability             is modeled with a 
multinomial distribution with parameters  

�(x)

x

y 2 {1,K}
p(y | x)

⇡k(�(x)) , k  K.

21



CNNs for Classification

• When task is classification,        estimates the class label 
of    , 

• The conditional probability             is modeled with a 
multinomial distribution with parameters  

• If the last layer has K feature maps, we parametrize using 
the softmax distribution: 

�(x)

x

y 2 {1,K}
p(y | x)

⇡k(�(x)) , k  K.

p(y = k | x) = e

�k(x)

P
jK

e

�j(x)
,

�j(x): spatial average of output channel j

22



CNN for Classification
• We optimize the parameters of the model via Maximum 

Likelihood (multinomial logistic regression):
Given iid training data (xi, yi)i, the negative joint log-likelihood is

E( ) =
X

i

log p(y = y

i

|x
i

) =

X

i

0

@
�

yi(xi

)� log

0

@
X

j

e

�j(xi)

1

A

1

A

23



CNN for Classification
• We optimize the parameters of the model via Maximum 

Likelihood (multinomial logistic regression):

• Other parametrizations of the multinomial are possible
- See for example http://arxiv.org/abs/1506.08230 , where a contrast-

invariant loss replaces multinomial logistic regression.

Given iid training data (xi, yi)i, the negative joint log-likelihood is

E( ) =
X

i

log p(y = y

i

|x
i

) =

X

i

0

@
�

yi(xi

)� log

0

@
X

j

e

�j(xi)

1

A

1

A

24

http://arxiv.org/abs/1506.08230


• We can start by analyzing a chunk of the form 

Geometric Interpretations

⇢ 1 P1

xk(u,�) xk+1(ũ, �̃)

25



• We can start by analyzing a chunk of the form 

• Let us assume that pooling is an average (non-adaptive).
• Consider a thresholding nonlinearity:
• And let us forget (for now) about the convolutional 

aspect.

Geometric Interpretations

⇢ 1 P1

xk(u,�) xk+1(ũ, �̃)

⇢(x) = max(0, x� t)

26



• We can start by analyzing a chunk of the form 

• Let us assume that pooling is an average (non-adaptive).
• Consider a thresholding nonlinearity:
• And let us forget (for now) about the convolutional 

aspect.

• What is the role of this operator? Intuition?

Geometric Interpretations

⇢ 1 P1

xk(u,�) xk+1(ũ, �̃)

⇢(x) = max(0, x� t)

27



Geometric Interpretations

• Intraclass variability is highly nonlinear. 
• But we are attempting to progressively linearize it by 

cascading instances of the previous operator.

class 1
class 2
class 3

high-dimensional space

28



Geometric Interpretations

• 1: “trap” intraclass variability within low-dimensional affine 
subspaces appropriately chosen.

class 1
class 2
class 3

high-dimensional space

x 7! W

T
x with a redundant (fat) matrix

29



Geometric Interpretations

• 1: “trap” intraclass variability within low-dimensional affine 
subspaces appropriately chosen.
• In this example we are not sharing models, but later we 

will see that parallel models are key for generalization.

class 1
class 2
class 3

high-dimensional space

x 7! W

T
x with a redundant (fat) matrix

30



Geometric Interpretations

• 2. detect distance to each affine model with a 
thresholding
– Thresholding operates along 1-dimensional subspaces (complex 

modulus instead looks at 2-dimensional)

class 1
class 2
class 3

high-dimensional space

x 7! W

T
x with a redundant (fat) matrix

31



Geometric Interpretations

• 3:  “stitch” different linear pieces together by pooling the 
output of the two subspace detectors.
– Can be done by smoothing or by computing any statistic (max-

pooling)

class 1
class 2
class 3

high-dimensional space

x 7! W

T
x with a redundant (fat) matrix

32



Geometric Interpretation

• But in high-dimensional image recognition, this operator 
alone is not sufficient: there are exponentially many linear 
pieces required: curse of dimensionality. 

33



Geometric Interpretation

• But in high-dimensional image recognition, this operator 
alone is not sufficient: there are exponentially many linear 
pieces required: curse of dimensionality. 

• Intra-class variability model (i.e. deformation model):

– Besides small geometric deformations, we must include clutter and 
large class-specific variability (for example, chair styles). 

– It is a high-dimensional variability model

f

�
{'

⌧,f(x)x}
�
⇡ f(x)

34



• Adjoint deformation operator:

Geometric Interpretation

The adjoint '⇤
of a linear operator ' is such that

8 x,w , h'x,wi = hx,'⇤
wi

(in finite dimension, it is just the transpose of a matrix)

�
hAx,wi = w

T (Ax) = x

T (AT
w) = hx,AT

wi
�

35



• Adjoint deformation operator:

• Our linear measurements W interact with deformations 
as
- We want measurements that factorize variability.
- If       are localized, they factorize deformations in local 

neighborhoods: each measure “sees” approximately a translation

Geometric Interpretation

The adjoint '⇤
of a linear operator ' is such that

8 x,w , h'x,wi = hx,'⇤
wi

(in finite dimension, it is just the transpose of a matrix)

�
hAx,wi = w

T (Ax) = x

T (AT
w) = hx,AT

wi
�

h'⌧x,wki = hx,'⇤
⌧wki

wk

hx,'⇤
⌧wki = hx, Tvwki+ ✏ Tv: translation

36



Geometric Interpretation

LearningStable,GroupInvariantRepresentationswithConvolutionalNetworks
Joan Bruna, Yann LeCun and Arthur Szlam

bruna@cims.nyu.edu

Summary
Deep Networks construct invariant representations by cascading linear decompositions, point-wise nonlinearities and pooling operators. Convolutional Networks put a constraint on the
linear decompositions, inducing structured invariance: stable group invariance.
Transformation groups, modeling translations, rotations, viewpoint changes, etc. are low-dimensional manifolds. In presence of rigid group transformations, shallow networks are su�cient
to achieve group invariance under appropriate conditions. However, in presence of non-rigid deformations, deep networks become necessary to obtain stable, locally invariant representations.
Transformation groups can be combined to create larger, more general forms of variability. By cascading di↵erent convolutional layers corresponding to each of the factors, deep
convolutional networks have the capacity to extend local invariance to these larger groups.

Group Convolutional Network
Although deep Convolutional Networks are usually associated with the translation group, they can be generalized to any compact group by defining the convolution appropriately.

• Group Convolution. Given a discrete transformation group G acting on a signal x(u) via x(g�1.u) for g 2 G, and a filter h(g) , g 2 G,

x ?
G

h(u) :=
X

g2G

x(g�1.u)h(g) .

x ? h covariant to the action of G.

• Group Filter Bank. Given L filters h1, . . . , hL

defined on G, and input x(u),

z(1)(u,�) = x ? h
�

(u) , � = 1, . . . , L .

• Group Pooling. Given an input z(i)(u), u = (u,�1, . . . ,�i

), and neighborhoods Nū (ū subsampling of u),

y(i)(ū) = kz(i)(u0) , u0 2 N
ū

k
p

. (1)

x(u) Filters
h(1)

�

(g) Point-wise
non-linearity

Pooling
F1

Point-wise
non-linearity

Filters
h(2)

�

(g)
Pooling
F2

y(1)(ū, �̄1) y(2)(ū, �̄1, �̄2)

1st layer 2nd layer

Stable Group Invariance

Given a G-covariant dictionary D = {�
i

(g�1.u) , i 2 I, g 2 G}, we encode x(u) =
P

i2I z
i

?
G

�
i

(u) . (stable, invertible frame).

• Rigid transformation: T
g

x(u) =
P

i2I z
i

?
G

�
i

(g�1.u) (global, low-dimensional variability)

• Non-rigid deformation: L
⌧

x(u) =
P

i2I
P

h2G

z
i

(h)�
i

(⌧(i,h)�1.u), ⌧(i, h) 2 G. (local, high dimensional variability)

k⌧k
G,D measures the regularity of ⌧(i) (depends on both G and D).

• Stable Group Invariance: A representation �(x) is stable wrt G if

8 x, ⌧ , k�(x) � �(L
⌧

x)k  Ckxkk⌧k
G,D .

Example: G: translations. D = {�(u � k) , k 2 Z

2}. k⌧k := kr⌧k1 , elastic deformation metric .

One-Parameter Groups

• A family {U
t

}
t2R of unitary, linear operators of L2 such that lim

t!t0 U
t

x = U
t0x

8 x 2 L2, and U
t

U
s

= U
t+s

.

(ex: Translations, Rotations, Frequency transpositions, etc.)

• Theorem (Stone, 1932): One-parameter groups are uniquely generated by a self-
adjoint operator:

U
t

= eitA , t 2 R , A self-adjoint .

In finite dimensions, U
t

= O�1diag(eitp(!))O, O: complex orthogonal matrix. i.e., G
has a “Fourier” basis.

• Consequence: Representation invariant to G: �(x) = |Ox| (single layer network).

• Caveat: This only applies to groups G = U1
t

⇥ U2
t

⇥ ... ⇥ Uk

t

. In particular, non-
commutative groups do not admit decomposition into one-parameter groups.

x0

U
t1x0

U
t2x0

U
tnx0

x1

U
t

0x1

U
t

0
2
x1

U
t

00
2
x2

x2

U
t

00x2

�
�(U

t

x0) = �(x0)

�(U
t

x1) = �(x1)

�(U
t

x2) = �(x2)

low-dimensional manifolds

Presence of Deformations

• No deformations: There exists o1, ..., oN

diagonalizing the group action: T
g

o
k

=
eigpko

k

, k = 1..N, 8g 2 G.

In general, there is no decomposition which diagonalizes all deformations.

• Alternative: look for localized vectors which nearly diagonalize deformations: { 
�

(u)}
�

such that

8� , 8⌧ , L
⌧

 
�

⇡ C 
�

(g�1.u) , for some g 2 G , (2)

It results that L
⌧

x ?  
�

⇡ CL
⌧

(x ?  
�

),

) convolutions by  
�

, �, followed by pooling are stable measures.

• Role of group convolutions: create covariance with respect to G:

(T
g

x) ?  
�

= T
g

(x ?  
�

) . (3)

• Role of pooling: Capture the subspace spread by L
⌧

 
�

for typical deformations ⌧ .
Thanks to (2) and (3), this subspace is well approximated by the neighborhoods Nū

from (1).

• Deformable template model. Data is generated as a mixture of K deformable templates:

x(u) =
KX

k=1

⇡
k

X

i2I
z
i�⌧(i),k�i

(u) , where

– ⇡ is a mixture variable: ⇡
k

= 0, 1,
P

k

⇡
k

= 1.

– ⌧ is a random, smooth displacement field in I.

Direct inference impractical: it requires estimating deformations between samples. Al-
ternative: Stable, Invariant representations with Convolutional Networks.

High dimensional variability

x0

L
⌧1x0

L
⌧j x0

L
⌧j x1

L
⌧

0
j
x1

L
⌧

0
j
x2

L
⌧j x2

P
��

P
��0

low-dimensional group variability

hL
⌧

x, 
�

i ⇡ hx, T
g

 
�

i = hT�g

x, 
�

i

Group Factorizations
• Direct product:

K = G ⇥ H , k = (g, h) , (g1, h1).(g2, h2) := (g1.g2, h1.h2) .

Example: T

d

: translation group in d-dimensions. T

d

= T1 ⇥ · · · ⇥ T1.

• Semidirect product:
K = G o H , k = (g, h) , (g1, h1).(g2, h2) := (g1.h1(g2), h1.h2) .

Example: Roto-translation group in 2d: Ro SO(2).

• Cascaded stable group invariance with Deep Convolutional networks

Group filter bank
non-linearity

pooling

Group filter bank
non-linearity

pooling

Group filter bank
non-linearity

pooling

Group filter bank
non-linearity

pooling

Group filter bank
non-linearity

pooling

G1 G2

x(u) z
x

(ū, p)

If z
x

(ū, p) is invariant to the action of G1 and covariant to the action of G2, then, if x̃ = T
g1x, g1 2 G1, and x̂ = T

g2x, g2 2 G2,

8ū, p , z
x

(ū, p) = z
x̃

(ū, p) , z
x̂

(ū, p) = z
x

(ū, g2.p)

It results that the convolutional cascade is invariant to G1 o G2.

Example: Learning one-parameter groups

• Model: Deformable templates under rotations:

C
k

= {R
✓

x
k

, ✓ ⇠ U [0, 2⇡]} , k = 1 . . . K .

• Complex decomposition diagonalising group action:

min
U

T
U=1

X

k

var
xi2Ck(|Ux

i

|) . (4)

If U is the “Fourier” basis of the one-parameter group, then E(hu
k

, xihu
k

0 , xi⇤) =
|Ux|

k

�(k � k0) (since ✓ ⇠ U [0, 2⇡]). ) A solution for (4) can be obtained by di-
agonalizing class-conditional covariance (PCA) and grouping eigenvectors with same
eigenvalue.

• Rigid rotations: One-layer network creates an invariant representation: �(x) = |Ux|.

• In presence of deformations (ie, non-rigid rotations), this representation is not e�cient,
since it is not stable to deformations. Deep networks are required.

 

 

1000 2000 3000 4000 5000 6000

1000

2000

3000

4000

5000

6000 0

0.5

1

1.5

2

2.5

3

x 106

 

 

1000 2000 3000 4000 5000 6000

1000

2000

3000

4000

5000

6000

x0 R
✓

x0 x1

kx
i

� x
j

k k|Ux
i

| � |Ux
j

|k

500 1000 1500 2000 2500 3000

500

1000

1500

2000

2500

3000500 1000 1500 2000 2500 3000

500

1000

1500

2000

2500

3000

L
✓

x0 L
✓

0x0 L
✓

00x1

R
✓

0x1

x1

References

[1] S. Mallat, Group Invariant Scattering In CMAP, 2012.

[2] L. Sifre, S. Mallat, Rotation, Scaling and Deformation Invariant Scattering for Texture Discrimination In CVPR, 2013.

[3] M.H Stone One-parameter Groups in Hilbert Spaces In Annals of Math, 1932.

37



Geometric Interpretation

• The measurements are shared for every input:
– Factors need to be useful across different inputs.
– At the same time, measurements need to capture joint 

dependencies in order to preserve discriminability.

• However, large variability might be class-specific, object-
specific:
– We will see that thresholding and sparsity inducing filters create 

specialized invariants.

38



Streamlining CNNs

• Previous CNN models also contained local contrast 
normalization layers: 

x̃(u,�) =
x(u,�)

S(u,�)
, S(u,�) = ✏+

0

@
X

|v|C,|�0|C0|

|x(u+ v,�+ �

0)|q
1

A
1/q

.

39



Streamlining CNNs

• Previous CNN models also contained local contrast 
normalization layers: 

• Provides invariance to amplitude changes.
• Can improve gradient flow towards initial layers.
• However, modern CNNs do not use it: contrast 

invariance is low-dimensional, it can be learnt by the 
classifier

• And there are other optimization improvements that 
attenuate the “vanishing gradient” problem.

x̃(u,�) =
x(u,�)

S(u,�)
, S(u,�) = ✏+

0

@
X

|v|C,|�0|C0|

|x(u+ v,�+ �

0)|q
1

A
1/q

.

40



Streamlining CNNs

• An important parameter is the spatial kernel size: how to 
choose it?

41



Streamlining CNNs

• An important parameter is the spatial kernel size: how to 
choose it?

• Previous CNNs explored the parameter space: typically 
kernel sizes < 10. 

h1, h2 of size L+ 1 each

Then h1 ? h2 is of size 2L+ 1

w of size 2L+ 1

⇠ (2L+ 1)2 parameters ⇠ 2(L+ 1)2 parameters

?

42



Streamlining CNNs

• Modern CNNs prefer to replace larger spatial kernels by 
a cascade of small (3x3, or even 1x3, 3x1) kernels.

• It sacrifices frequency resolution in favor of smaller 
parameter size.

h1, h2 of size L+ 1 each

Then h1 ? h2 is of size 2L+ 1

w of size 2L+ 1

⇠ (2L+ 1)2 parameters ⇠ 2(L+ 1)2 parameters

?

43



• Another recent trend is to use “skip-connections”: 

Streamlining CNNs

⇢ 1 P1 ⇢ 2 P2 ⇢ p

U

44



• Another recent trend is to use “skip-connections”: 

• The operator U is as simple as a linear projection or 
even the identity (if there are no downsampling layers in 
between)
- Deep Residual Learning (K. He et al ’15)
- Highway Networks (Srivastava et al ’15) use slightly more 

complicated U modules with “gating”.

Streamlining CNNs

⇢ 1 P1 ⇢ 2 P2 ⇢ p

U

45



•  

⇢ 1 P1 ⇢ 2 P2 ⇢ p

U

Streamlining CNNs

xk+L = xk + �k(xk)

xk xk+L

Each subnetwork �k is thus learning a residual representation

46



•  
• This allows for training much deeper networks effectively

- We will come back to this phenomena later.
- The subnetworks can concentrate on low-dimensional projections 

without loss of discriminability. 

⇢ 1 P1 ⇢ 2 P2 ⇢ p

U

Streamlining CNNs

xk+L = xk + �k(xk)

xk xk+L

Each subnetwork �k is thus learning a residual representation

47



Some Famous CNNs

• “LeNet” for handwritten digit recognition:

- Uses sigmoidal non-linearities
- 5 layer network with no explicit pooling (trainable).

INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

[LeCun, Bottou, Bengio & Hafner ’98]

48



Some Famous CNNs

• AlexNet [Krizhevsky et al, ’12]:

- 5 convolutional layers and 2 “fully connected” layers.
- Employs local normalization.
- Trained on Imagenet with Dropout. 

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

with magnitudes proportional to the corresponding eigenvalues times a random variable drawn from
a Gaussian with mean zero and standard deviation 0.1. Therefore to each RGB image pixel I

xy

=

[I

R

xy

, I

G

xy

, I

B

xy

]

T we add the following quantity:

[p
1

,p
2

,p
3

][↵

1

�

1

,↵

2

�

2

,↵

3

�

3

]

T

where p
i

and �

i

are ith eigenvector and eigenvalue of the 3 ⇥ 3 covariance matrix of RGB pixel
values, respectively, and ↵

i

is the aforementioned random variable. Each ↵

i

is drawn only once
for all the pixels of a particular training image until that image is used for training again, at which
point it is re-drawn. This scheme approximately captures an important property of natural images,
namely, that object identity is invariant to changes in the intensity and color of the illumination. This
scheme reduces the top-1 error rate by over 1%.

4.2 Dropout

Combining the predictions of many different models is a very successful way to reduce test errors
[1, 3], but it appears to be too expensive for big neural networks that already take several days
to train. There is, however, a very efficient version of model combination that only costs about a
factor of two during training. The recently-introduced technique, called “dropout” [10], consists
of setting to zero the output of each hidden neuron with probability 0.5. The neurons which are
“dropped out” in this way do not contribute to the forward pass and do not participate in back-
propagation. So every time an input is presented, the neural network samples a different architecture,
but all these architectures share weights. This technique reduces complex co-adaptations of neurons,
since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to
learn more robust features that are useful in conjunction with many different random subsets of the
other neurons. At test time, we use all the neurons but multiply their outputs by 0.5, which is a
reasonable approximation to taking the geometric mean of the predictive distributions produced by
the exponentially-many dropout networks.

We use dropout in the first two fully-connected layers of Figure 2. Without dropout, our network ex-
hibits substantial overfitting. Dropout roughly doubles the number of iterations required to converge.

Figure 3: 96 convolutional kernels of size
11⇥11⇥3 learned by the first convolutional
layer on the 224⇥224⇥3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

5 Details of learning

We trained our models using stochastic gradient descent
with a batch size of 128 examples, momentum of 0.9, and
weight decay of 0.0005. We found that this small amount
of weight decay was important for the model to learn. In
other words, weight decay here is not merely a regularizer:
it reduces the model’s training error. The update rule for
weight w was

v

i+1

:= 0.9 · v
i

� 0.0005 · ✏ · w
i

� ✏ ·
⌧
@L

@w

��
wi

�

Di

w

i+1

:= w

i

+ v

i+1

where i is the iteration index, v is the momentum variable, ✏ is the learning rate, and
D

@L

@w

��
wi

E

Di

is
the average over the ith batch D

i

of the derivative of the objective with respect to w, evaluated at
w

i

.

We initialized the weights in each layer from a zero-mean Gaussian distribution with standard de-
viation 0.01. We initialized the neuron biases in the second, fourth, and fifth convolutional layers,
as well as in the fully-connected hidden layers, with the constant 1. This initialization accelerates
the early stages of learning by providing the ReLUs with positive inputs. We initialized the neuron
biases in the remaining layers with the constant 0.

We used an equal learning rate for all layers, which we adjusted manually throughout training.
The heuristic which we followed was to divide the learning rate by 10 when the validation error
rate stopped improving with the current learning rate. The learning rate was initialized at 0.01 and

6

49



Some Famous CNNs

• ResNet [He et al, ’15]:

- Trained with linear skip connections.

7
x

7
 
c
o

n
v

,
 
6

4
,
 
/
2

p
o

o
l
,
 
/
2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 1

2
8

,
 /

2

3
x

3
 
c
o

n
v

,
 
1

2
8

3
x

3
 
c
o

n
v

,
 
1

2
8

3
x

3
 
c
o

n
v

,
 
1

2
8

3
x

3
 
c
o

n
v

,
 
1

2
8

3
x

3
 
c
o

n
v

,
 
1

2
8

3
x

3
 
c
o

n
v

,
 
1

2
8

3
x

3
 
c
o

n
v

,
 
1

2
8

3
x

3
 c

o
n

v
,
 2

5
6

,
 /

2

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 c

o
n

v
,
 5

1
2

,
 /

2

3
x

3
 
c
o

n
v

,
 
5

1
2

3
x

3
 
c
o

n
v

,
 
5

1
2

3
x

3
 
c
o

n
v

,
 
5

1
2

3
x

3
 
c
o

n
v

,
 
5

1
2

3
x

3
 
c
o

n
v

,
 
5

1
2

a
v

g
 
p

o
o

l

f
c

 1
0

0
0

i
m

a
g

e

3
x

3
 c

o
n

v
,
 5

1
2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

p
o

o
l
,
 
/
2

3
x

3
 
c
o

n
v

,
 
1

2
8

3
x

3
 
c
o

n
v

,
 
1

2
8

p
o

o
l
,
 
/
2

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 
c
o

n
v

,
 
2

5
6

p
o

o
l
,
 
/
2

3
x

3
 
c
o

n
v

,
 
5

1
2

3
x

3
 
c
o

n
v

,
 
5

1
2

3
x

3
 
c
o

n
v

,
 
5

1
2

p
o

o
l
,
 
/
2

3
x

3
 
c
o

n
v

,
 
5

1
2

3
x

3
 
c
o

n
v

,
 
5

1
2

3
x

3
 
c
o

n
v

,
 
5

1
2

3
x

3
 
c
o

n
v

,
 
5

1
2

p
o

o
l
,
 
/
2

f
c

 4
0

9
6

f
c

 4
0

9
6

f
c

 1
0

0
0

i
m

a
g

e

o
u

t
p

u
t
 

s
iz

e
:
 
1

1
2

o
u

t
p

u
t
 

s
iz

e
:
 
2

2
4

o
u

t
p

u
t
 

s
i
z
e

:
 5

6

o
u

t
p

u
t
 

s
i
z
e

:
 2

8

o
u

t
p

u
t
 

s
i
z
e

:
 1

4

o
u

t
p

u
t
 

s
iz

e
:
 7

o
u

t
p

u
t
 

s
iz

e
:
 1

V
G

G
-
1

9
3

4
-
l
a

y
e

r
 p

l
a

in

7
x

7
 
c
o

n
v

,
 
6

4
,
 
/
2

p
o

o
l
,
 /

2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 1

2
8

,
 /

2

3
x

3
 
c
o

n
v

,
 
1

2
8

3
x

3
 
c
o

n
v

,
 
1

2
8

3
x

3
 
c
o

n
v

,
 
1

2
8

3
x

3
 
c
o

n
v

,
 
1

2
8

3
x

3
 
c
o

n
v

,
 
1

2
8

3
x

3
 
c
o

n
v

,
 
1

2
8

3
x

3
 
c
o

n
v

,
 
1

2
8

3
x

3
 c

o
n

v
,
 2

5
6

,
 /

2

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 
c
o

n
v

,
 
2

5
6

3
x

3
 c

o
n

v
,
 5

1
2

,
 /

2

3
x

3
 
c
o

n
v

,
 
5

1
2

3
x

3
 
c
o

n
v

,
 
5

1
2

3
x

3
 
c
o

n
v

,
 
5

1
2

3
x

3
 
c
o

n
v

,
 
5

1
2

3
x

3
 
c
o

n
v

,
 
5

1
2

a
v

g
 
p

o
o

l

f
c

 1
0

0
0

im
a

g
e

3
4

-
la

y
e

r
 r

e
s
id

u
a

l

Fi
gu

re
3.

Ex
am

pl
e

ne
tw

or
k

ar
ch

ite
ct

ur
es

fo
rI

m
ag

eN
et

.
L

ef
t:

th
e

V
G

G
-1

9
m

od
el

[4
1]

(1
9.

6
bi

lli
on

FL
O

Ps
)

as
a

re
fe

re
nc

e.
M

id
-

dl
e:

a
pl

ai
n

ne
tw

or
k

w
ith

34
pa

ra
m

et
er

la
ye

rs
(3

.6
bi

lli
on

FL
O

Ps
).

R
ig

ht
:

a
re

si
du

al
ne

tw
or

k
w

ith
34

pa
ra

m
et

er
la

ye
rs

(3
.6

bi
lli

on
FL

O
Ps

).
Th

e
do

tte
d

sh
or

tc
ut

si
nc

re
as

e
di

m
en

si
on

s.
Ta

bl
e

1
sh

ow
s

m
or

e
de

ta
ils

an
d

ot
he

rv
ar

ia
nt

s.

R
es

id
ua

lN
et

w
or

k.
B

as
ed

on
th

e
ab

ov
e

pl
ai

n
ne

tw
or

k,
w

e
in

se
rt

sh
or

tc
ut

co
nn

ec
tio

ns
(F

ig
.

3,
rig

ht
)

w
hi

ch
tu

rn
th

e
ne

tw
or

k
in

to
its

co
un

te
rp

ar
tr

es
id

ua
lv

er
si

on
.

Th
e

id
en

tit
y

sh
or

tc
ut

s
(E

qn
.(1

))
ca

n
be

di
re

ct
ly

us
ed

w
he

n
th

e
in

pu
ta

nd
ou

tp
ut

ar
e

of
th

e
sa

m
e

di
m

en
si

on
s

(s
ol

id
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

.W
he

n
th

e
di

m
en

si
on

si
nc

re
as

e
(d

ot
te

d
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

,w
e

co
ns

id
er

tw
o

op
tio

ns
:

(A
)

Th
e

sh
or

tc
ut

st
ill

pe
rf

or
m

s
id

en
tit

y
m

ap
pi

ng
,w

ith
ex

tra
ze

ro
en

tri
es

pa
dd

ed
fo

ri
nc

re
as

in
g

di
m

en
si

on
s.

Th
is

op
tio

n
in

tro
du

ce
s

no
ex

tra
pa

ra
m

et
er

;(
B

)T
he

pr
oj

ec
tio

n
sh

or
tc

ut
in

Eq
n.

(2
)i

su
se

d
to

m
at

ch
di

m
en

si
on

s
(d

on
e

by
1⇥

1
co

nv
ol

ut
io

ns
).

Fo
r

bo
th

op
tio

ns
,w

he
n

th
e

sh
or

tc
ut

s
go

ac
ro

ss
fe

at
ur

e
m

ap
s

of
tw

o
si

ze
s,

th
ey

ar
e

pe
rf

or
m

ed
w

ith
a

st
rid

e
of

2.

3.
4.

Im
pl

em
en

ta
tio

n

O
ur

im
pl

em
en

ta
tio

n
fo

r
Im

ag
eN

et
fo

llo
w

s
th

e
pr

ac
tic

e
in

[2
1,

41
].

Th
e

im
ag

e
is

re
si

ze
d

w
ith

its
sh

or
te

r
si

de
ra

n-
do

m
ly

sa
m

pl
ed

in
[2
56

,4
80

]
fo

r
sc

al
e

au
gm

en
ta

tio
n

[4
1]

.
A

22
4⇥

22
4

cr
op

is
ra

nd
om

ly
sa

m
pl

ed
fr

om
an

im
ag

e
or

its
ho

riz
on

ta
lfl

ip
,w

ith
th

e
pe

r-
pi

xe
lm

ea
n

su
bt

ra
ct

ed
[2

1]
.T

he
st

an
da

rd
co

lo
ra

ug
m

en
ta

tio
n

in
[2

1]
is

us
ed

.W
e

ad
op

tb
at

ch
no

rm
al

iz
at

io
n

(B
N

)
[1

6]
rig

ht
af

te
r

ea
ch

co
nv

ol
ut

io
n

an
d

be
fo

re
ac

tiv
at

io
n,

fo
llo

w
in

g
[1

6]
.

W
e

in
iti

al
iz

e
th

e
w

ei
gh

ts
as

in
[1

3]
an

d
tra

in
al

lp
la

in
/re

si
du

al
ne

ts
fr

om
sc

ra
tc

h.
W

e
us

e
SG

D
w

ith
a

m
in

i-b
at

ch
si

ze
of

25
6.

Th
e

le
ar

ni
ng

ra
te

st
ar

ts
fr

om
0.

1
an

d
is

di
vi

de
d

by
10

w
he

n
th

e
er

ro
rp

la
te

au
s,

an
d

th
e

m
od

el
sa

re
tra

in
ed

fo
ru

p
to

60
⇥
10

4
ite

ra
tio

ns
.W

e
us

e
a

w
ei

gh
td

ec
ay

of
0.

00
01

an
d

a
m

om
en

tu
m

of
0.

9.
W

e
do

no
tu

se
dr

op
ou

t[
14

],
fo

llo
w

in
g

th
e

pr
ac

tic
e

in
[1

6]
.

In
te

st
in

g,
fo

rc
om

pa
ris

on
st

ud
ie

s
w

e
ad

op
tt

he
st

an
da

rd
10

-c
ro

p
te

st
in

g
[2

1]
.

Fo
r

be
st

re
su

lts
,w

e
ad

op
tt

he
fu

lly
-

co
nv

ol
ut

io
na

l
fo

rm
as

in
[4

1,
13

],
an

d
av

er
ag

e
th

e
sc

or
es

at
m

ul
tip

le
sc

al
es

(im
ag

es
ar

e
re

si
ze

d
su

ch
th

at
th

e
sh

or
te

r
si

de
is

in
{2

24
,2
56

,3
84

,4
80

,6
40

}).

4.
E

xp
er

im
en

ts
4.

1.
Im

ag
eN

et
C

la
ss

ifi
ca

tio
n

W
e

ev
al

ua
te

ou
rm

et
ho

d
on

th
e

Im
ag

eN
et

20
12

cl
as

si
fi-

ca
tio

n
da

ta
se

t[
36

]t
ha

tc
on

si
st

so
f1

00
0

cl
as

se
s.

Th
e

m
od

el
s

ar
e

tra
in

ed
on

th
e

1.
28

m
ill

io
n

tra
in

in
g

im
ag

es
,a

nd
ev

al
u-

at
ed

on
th

e
50

k
va

lid
at

io
n

im
ag

es
.

W
e

al
so

ob
ta

in
a

fin
al

re
su

lt
on

th
e

10
0k

te
st

im
ag

es
,r

ep
or

te
d

by
th

e
te

st
se

rv
er

.
W

e
ev

al
ua

te
bo

th
to

p-
1

an
d

to
p-

5
er

ro
rr

at
es

.

Pl
ai

n
N

et
w

or
ks

.
W

e
fir

st
ev

al
ua

te
18

-la
ye

r
an

d
34

-la
ye

r
pl

ai
n

ne
ts

.T
he

34
-la

ye
rp

la
in

ne
ti

s
in

Fi
g.

3
(m

id
dl

e)
.T

he
18

-la
ye

rp
la

in
ne

ti
s

of
a

si
m

ila
rf

or
m

.
Se

e
Ta

bl
e

1
fo

rd
e-

ta
ile

d
ar

ch
ite

ct
ur

es
.

Th
e

re
su

lts
in

Ta
bl

e
2

sh
ow

th
at

th
e

de
ep

er
34

-la
ye

rp
la

in
ne

th
as

hi
gh

er
va

lid
at

io
n

er
ro

r
th

an
th

e
sh

al
lo

w
er

18
-la

ye
r

pl
ai

n
ne

t.
To

re
ve

al
th

e
re

as
on

s,
in

Fi
g.

4
(le

ft)
w

e
co

m
-

pa
re

th
ei

rt
ra

in
in

g/
va

lid
at

io
n

er
ro

rs
du

rin
g

th
e

tra
in

in
g

pr
o-

ce
du

re
.

W
e

ha
ve

ob
se

rv
ed

th
e

de
gr

ad
at

io
n

pr
ob

le
m

-
th

e

4

50



Some Famous CNNs
• “Revolution of Depth” (from Kaiming slides)

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 128, /2

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 256, /2

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 512, /2

3x3 conv, 512

1x1 conv, 2048

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2048

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2048

ave pool, fc 1000

7x7 conv, 64, /2, pool/2

AlexNet, 8 layers
(ILSVRC 2012)

Revolution of Depth
ResNet, 152 layers

(ILSVRC 2015)

3x3 conv, 64

3x3 conv, 64, pool/2

3x3 conv, 128

3x3 conv, 128, pool/2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256, pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

fc, 4096

fc, 4096

fc, 1000

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

fc, 4096

fc, 1000

VGG, 19 layers
(ILSVRC 2014)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.

51



Properties of learnt CNN representations

52



Invariance and Covariance

• Do CNNs effectively linearize variability from common 
transformation groups as a byproduct of supervised 
training?

53



Invariance and Covariance

• Do CNNs effectively linearize variability from common 
transformation groups as a byproduct of supervised 
training?

- [Aubry & Rusell ’15] studied this question empirically: 

For each layer k, consider �k(x) = xk(u,�k)

Given a transformation '(✓) parametrized by ✓,

perform PCA on {�
k

('(✓)x)}
x,✓

54



• Principal components corresponding to different factors 
at different layers:

Invariance and Covariance

(a) Chair, pool5 (b) Chair, pool5, style (c) Chair, pool5, rotation (d) Chair, fc6, rotation

(e) Car, pool5 (f) Car, pool5, style (g) Car, pool5, rotation (h) Car, fc6, rotation

Figure 2: Best viewed in the electronic version. PCA embeddings (dims. 1,2) of AlexNet features for “chairs” (first row)
and “cars” (second row). Column 1 – Direct embedding of the rendered images without viewpoint-style separation. Columns
2,3 – Embeddings associated with style (for all rotations) and rotation (for all styles). Column 4 – Rotation embedding for fc6,
which is qualitatively different than pool5. Colors correspond to orientation and can be interpreted via the example images in
columns 3,4. Similar results for other categories and PCA dimensions are available in the supplementary material.

constant at 0.262 of the image area. We consider the position
and aspect ratio as two factors of variation and sample 36
positions on a grid and 12 aspect ratios on a log scale. The
variance explained by each factor for the different layers of
AlexNet is presented in table 1. For all three networks the
relative variance associated to the position decreases, which
quantitatively supports the idea that the higher layers have
more translation invariance. In contrast the relative variance
associated to the aspect ratio increases for the higher CNN
layers. For AlexNet, less than 10% of the relative variance
for pool5 is explained by the aspect ratio alone, while it
explains 37% of the relative variance for fc7. Also, the
relative variance associated with the residual decreases for
the higher CNN layers, which indicates the two factors are
more easily linearly separated in the higher layers.

Center and surrounding color. Similar to the experi-
ments presented in the previous paragraph, we considered
a square of one color on a background of a different color.
We chose the size of the central square to be half the image
size. Quantitative results for the fc7 features of the different
networks are presented in table 2. Results for the other lay-

ers are in the supplementary material. A first observation is
that the features do not separate as well the foreground and
background colors in the representation as the aspect ratio
and position in the previous experiment. We also observe
that for all the networks the variance associated to the back-
ground color is higher than the variance associated to the
foreground. The difference is more striking for the Places
fc7 layer (3.8x versus 2x for AlexNet fc7 and 1.8x for VGG
fc7). Future work could determine if the background color
of an image is especially important for scene classification,
while the foreground color is less important.

Remarks. As the CNNs were not trained on the 2D arti-
ficial stimuli presented in this section, we find it somewhat
surprising that the embeddings resulting from the above fea-
ture analysis is meaningful. From our experiments we saw
that the CNNs learn a rich representation of colors, identi-
fying in particular variations similar to hue and saturation.
Moreover, the last layers of the network better encode trans-
lation invariance, focusing on shape. These results will be
confirmed and generalized on more realistic stimuli in the
next sections.

[Aubry & Rusell ’15] 
55



Invariance and Covariance 
Table 2: Relative variance and intrinsic dimensionality of a
foreground square of one color on a background color. Each
cell: top – rel. variance; bottom – intrinsic dim.

Foreground Background �L

Places, fc7 13.4% 51.1% 35.5%
13 14 216

AlexNet, fc7 19.2% 39.9% 40.8%
14 16 315

VGG, fc7 20.2% 36.9% 42.9%
11 15 216

4.2. Object categories

In this section we want to explore the embedding gener-
ated by the networks for image sets and factors related to
the tasks for which they are trained, namely object category
classification in the case of AlexNet and VGG. We also com-
pare against the CNN trained on Places. We thus select an
object category and, using rendered views of 3D models, we
analyze how the CNN features are influenced by the style
of the specific instances as well as different transformations
and rendering parameters. The parameter sampling for each
experiment is described in section 3.3.

Model–orientation separation. The first variation we
study jointly with style is the rotation of the 3D model. The
first column of figure 2 visualizes the PCA embedding of the
resulting pool5 features. This embedding is hard to interpret
because it mixes information about viewpoint (important for
cars) and instance style (important for chairs). To separate
this information, we perform the decomposition presented in
section 2. The decomposition provides us with embedding
spaces for style and viewpoint and associates to each model
and viewpoint its own descriptor. We visualize the embed-
dings in figure 2; the second column corresponds to style and
the third to viewpoint. Note that the different geometries of
the two categories lead to different embeddings of rotation
in pool5. While a left-facing car typically looks similar to a
right-facing car and is close in the feature space (figure 2g), a
right-facing chair is usually different from left-facing chairs
and is far in the embedding (figure 2c). The last column
shows the viewpoint embedding for fc6. The comparison
of the last two columns indicates that much viewpoint infor-
mation is lost between pool5 and fc6 and that fc6 is largely
left-right flip invariant. A potential interesting future direc-
tion could be to interpret the viewpoint embeddings relative
to classic work on mental rotation [29].

Translation, scale, lighting, color. We repeated the same
experiment for the following factors: 2D translation, scale,
light direction, background color, and object color. For

(a) Car, pool5 (b) Chair, pool5

(c) Car, fc6 (d) Chair, fc6

(e) Car, fc7 (f) Chair, fc7

Figure 3: PCA embeddings for 2D position on AlexNet.

simplicity and computational efficiency, we considered in
all experiments a frontal view of all the instances of the
objects. The framework allows the same analysis using the
object orientation as an additional factor. The embeddings
associated with AlexNet features for translation of cars and
chairs are shown in figure 3. Note that similar to rotations,
the embedding corresponding to cars and chairs are different,
and that the first two components of the fc6 features indicate
a left-right flip-invariant representation. The embeddings for
the pool5 layer of the car category for the other factors are
shown figure 4.

Quantitative analysis: viewpoint. We analyze the rela-
tive variance explained by the 3D rotation, translation, and
scale experiments. While the variance was different for
each factor and category, the variation across the layers and
networks was consistent in all cases. For this reason we
report in table 3 an average of the variance across all five
categories and all three factors. We refer the reader to the
supplementary material for detailed results. The analysis of
table 3 reveals several observations. First, the proportion
of the variance of deeper layers corresponding to viewpoint
information is less important, while the proportion corre-
sponding to style is more important. This corresponds to the

(a) Lighting (b) Scale

(c) Object color (d) Background color

Figure 4: PCA embeddings for different factors using
AlexNet pool5 features on “car” images. Colors in (a) corre-
spond to location of the light source (green – center).

intuition that higher layers are more invariant to viewpoint.
We also note that the residual feature �L is less important
in higher layers, indicating style and viewpoint are more
easily separable in those layers. These observations are con-
sistent with our results of section 4.1. Second, the part of
the variance associated with style is more important in the
fc7 layer for VGG than in AlexNet and Places. Also, the
part associated with the viewpoint and residual is smaller.
Note that this does not hold in pool5, where the residual is
important for the VGG network. This effect may be related
to the difference in the real and intrinsic dimension of the
features. The intrinsic dimension of the style component of
VGG pool5 features is larger and decreases from pool5 to
fc7. On the contrary, the intrinsic dimensionality of AlexNet
has smaller variation across layers. Finally, we note that the
intrinsic dimensionality of the fc7 style feature of Places is
smaller than the other networks. This may indicate that it is
less rich, and may be related to the fact that identifying the
style of an object is less crucial for scene classification. We
believe it would be an interesting direction for future work
to study how the improved performance of VGG for object
classification is related to the observed reduced sensitivity to
viewpoint.

Quantitative analysis: color. We report in table 4 the
average across categories of our quantitative study for object
and background color. The results are different from those of
viewpoint. First, we observe that a larger part of the variance
of the features of the Places network is explained by the

Table 3: Relative variance and intrinsic dimensionality av-
eraged over experiments for different object categories and
viewpoints (3D orientation, translation, and scale). Each cell:
top – rel. variance; bottom – intrinsic dim. We do not report
the intrinsic dim. of �L since it is typically larger than 1K
across the experiments and expensive to compute.

pool5 fc6 fc7
Places 26.8 % 21.4 % 17.8 %

8.5 7.0 5.9
Viewpoint AlexNet 26.4 % 19.4 % 15.6 %

8.3 7.2 6.0
VGG 21.2 % 16.4 % 12.3 %

10.0 7.7 6.2
Places 26.8 % 39.1 % 49.4 %

136.3 105.5 54.6
Style AlexNet 28.2 % 40.3 % 49.4 %

121.1 125.5 96.7
VGG 26.4 % 44.3 % 56.2 %

181.9 136.3 94.2
Places 46.8 % 39.5 % 32.9 %

�L AlexNet 45.0 % 40.3 % 35.0 %
VGG 52.4 % 39.3 % 31.5 %

color in all layers. This may be related to the fact that color
is a stronger indicator of the scene type than it is of an object
category. Second, while the part of the variance explained by
foreground and background color is similar in the fc7 feature
of the Places network, it is much larger for the foreground
object than for the background object in AlexNet and VGG.
Once again, one can hypothesize that it is related to the fact
that the color of an object is more informative than the color
of its background for object classification. Finally, we note
that similarly to our previous experiments, the difference
between networks is present in pool5 and increases in the
higher layers, indicating that the features become more tuned
to the target task in the higher layers of the networks.

4.3. Natural images

Embedding. We used ImageNet [28] images to study the
embeddings of natural images. Since we have no control
over the image content, we cannot perform a detailed anal-
ysis of the different factors similar to the previous sections.
Our only choice is to consider the images altogether. The
direct embedding of natural images is possible but hard to
interpret. We can however project the images in the spaces
discovered in section 4.2. The resulting embeddings for style
and viewpoint are shown in figure 5 and are similar to the
embeddings obtained with the CAD models.

2D-3D instance recognition. The observed similarity of
the embeddings for natural and rendered images motivates

(a) Lighting (b) Scale

(c) Object color (d) Background color

Figure 4: PCA embeddings for different factors using
AlexNet pool5 features on “car” images. Colors in (a) corre-
spond to location of the light source (green – center).

intuition that higher layers are more invariant to viewpoint.
We also note that the residual feature �L is less important
in higher layers, indicating style and viewpoint are more
easily separable in those layers. These observations are con-
sistent with our results of section 4.1. Second, the part of
the variance associated with style is more important in the
fc7 layer for VGG than in AlexNet and Places. Also, the
part associated with the viewpoint and residual is smaller.
Note that this does not hold in pool5, where the residual is
important for the VGG network. This effect may be related
to the difference in the real and intrinsic dimension of the
features. The intrinsic dimension of the style component of
VGG pool5 features is larger and decreases from pool5 to
fc7. On the contrary, the intrinsic dimensionality of AlexNet
has smaller variation across layers. Finally, we note that the
intrinsic dimensionality of the fc7 style feature of Places is
smaller than the other networks. This may indicate that it is
less rich, and may be related to the fact that identifying the
style of an object is less crucial for scene classification. We
believe it would be an interesting direction for future work
to study how the improved performance of VGG for object
classification is related to the observed reduced sensitivity to
viewpoint.

Quantitative analysis: color. We report in table 4 the
average across categories of our quantitative study for object
and background color. The results are different from those of
viewpoint. First, we observe that a larger part of the variance
of the features of the Places network is explained by the

Table 3: Relative variance and intrinsic dimensionality av-
eraged over experiments for different object categories and
viewpoints (3D orientation, translation, and scale). Each cell:
top – rel. variance; bottom – intrinsic dim. We do not report
the intrinsic dim. of �L since it is typically larger than 1K
across the experiments and expensive to compute.

pool5 fc6 fc7
Places 26.8 % 21.4 % 17.8 %

8.5 7.0 5.9
Viewpoint AlexNet 26.4 % 19.4 % 15.6 %

8.3 7.2 6.0
VGG 21.2 % 16.4 % 12.3 %

10.0 7.7 6.2
Places 26.8 % 39.1 % 49.4 %

136.3 105.5 54.6
Style AlexNet 28.2 % 40.3 % 49.4 %

121.1 125.5 96.7
VGG 26.4 % 44.3 % 56.2 %

181.9 136.3 94.2
Places 46.8 % 39.5 % 32.9 %

�L AlexNet 45.0 % 40.3 % 35.0 %
VGG 52.4 % 39.3 % 31.5 %

color in all layers. This may be related to the fact that color
is a stronger indicator of the scene type than it is of an object
category. Second, while the part of the variance explained by
foreground and background color is similar in the fc7 feature
of the Places network, it is much larger for the foreground
object than for the background object in AlexNet and VGG.
Once again, one can hypothesize that it is related to the fact
that the color of an object is more informative than the color
of its background for object classification. Finally, we note
that similarly to our previous experiments, the difference
between networks is present in pool5 and increases in the
higher layers, indicating that the features become more tuned
to the target task in the higher layers of the networks.

4.3. Natural images

Embedding. We used ImageNet [28] images to study the
embeddings of natural images. Since we have no control
over the image content, we cannot perform a detailed anal-
ysis of the different factors similar to the previous sections.
Our only choice is to consider the images altogether. The
direct embedding of natural images is possible but hard to
interpret. We can however project the images in the spaces
discovered in section 4.2. The resulting embeddings for style
and viewpoint are shown in figure 5 and are similar to the
embeddings obtained with the CAD models.

2D-3D instance recognition. The observed similarity of
the embeddings for natural and rendered images motivates

[Aubry & Rusell ’15] 
56



Invariance and Covariance

• Besides viewpoint and illumination, another major source 
of variability is clutter :

57



Clutter Robustness

• Clutter : High-dimensional variability
- The model needs to detect a particular object and discard most of 

the signal energy.
- The object of interest is localized at a certain scale.
- Thresholding is an efficient operator to perform detection.

• Are CNNs robust to clutter?

58



Clutter 

• [Zeiler and Fergus, ’14] 

- Detection probability as a function of occluding square
- The network effectively captures 

59



(Un)Stability

• The weakest form of stability is additive: 

- We saw that this can be enforced by having convolution tensors with 
operator norm                 .

• Do CNNs possess this form of stability? 
• Does it matter? 

k�(x+ w)� �(x)k  kwk

k kk  1

60



Instabilities of Deep Networks
[Szegedy et al, ICLR’14]

correctly
classified

kx� x̃k < 0.01kxk

classified as 
ostrich

x

x̃

Alex Krizhevsky’s Imagenet
8 layer Deep ConvNet

61



• Additive Stability is not enforced. 

Instabilities of Deep Networks

Layer Size kWik
Conv. 1 3⇥ 11⇥ 11⇥ 96 2.75
Conv. 2 96⇥ 5⇥ 5⇥ 256 10

Conv. 3 256⇥ 3⇥ 3⇥ 384 7

Conv. 4 384⇥ 3⇥ 3⇥ 384 7.5
Conv. 5 384⇥ 3⇥ 3⇥ 256 11

FC. 1 9216⇥ 4096 3.12
FC. 2 4096⇥ 4096 4

FC. 3 4096⇥ 1000 4

k�i(x)� �i(x
0)k  kWi(x� x

0)k  kWik kx� x

0k

[joint work with Szegedy et al, ICLR’14]

62



(Un)Stability

• These adversarial examples are found by explicitly fooling 
the network:

• They are robust to different parametrization of        and 
to different hyperparameters. 

• However, these examples do not occur in practice.

min kx� x̃k2 s.t. p(y | �(x̃)) ? p(y | �(x))

�(x)

63


