# Stat 212b:Topics in Deep Learning Lecture 6

Joan Bruna UC Berkeley



### Review: Separable Scattering Operators

- Local averaging kernel:  $x \star \phi_J$ 
  - -locally translation invariant
  - -stable to additive and geometric deformations
  - -loss of high-frequency information.
- Recover lost information:  $U_J(x) = \{x \star \phi_J, |x \star \psi_\lambda|\}_{\lambda \in \Lambda_J}$ . - Point-wise, non-expansive non-linearities: maintain stability. - Complex modulus maps energy towards low-frequencies.
- Cascade the "recovery" operator:

 $\mathcal{U}_J^2(x) = \{ x \star \phi_J, |x \star \psi_\lambda| \star \phi_J, ||x \star \psi_\lambda| \star \psi_{\lambda'}| \}_{\lambda, \lambda' \in \Lambda_J} .$ 

Scattering coefficient along a path

 $p = (\lambda_1, \ldots, \lambda_m)$ :

$$S_J[p]x(u) = |||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \dots | \star \psi_{\lambda_m}| \star \phi_J(u) .$$

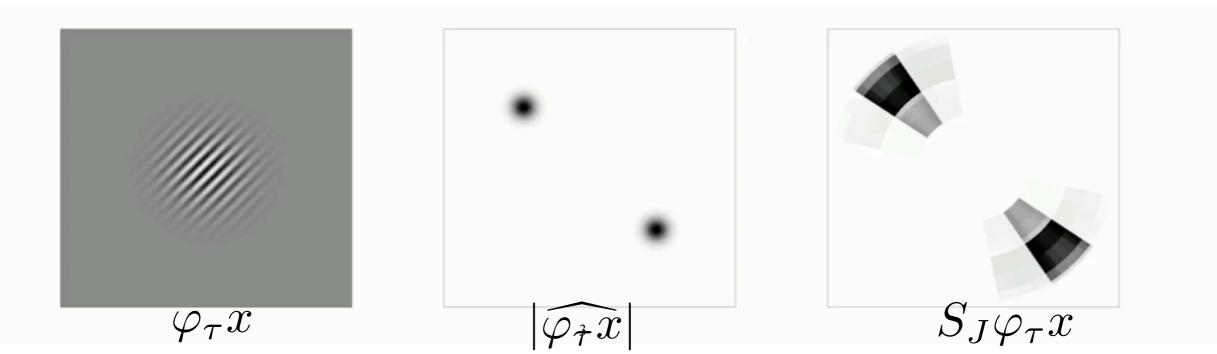
#### Review: Scattering Geometric Stability

Geometric Stability:

$$||S_J x||^2 = \sum_{p \in \mathcal{P}_J} ||S_J[p] x||^2$$

**Theorem** (Mallat'10): There exists C such that for all  $x \in L^2(\mathbb{R}^d)$  and all m, the m-th order scattering satisfies

$$||S_J \varphi_\tau x - S_J x|| \le Cm ||x|| (2^{-J} |\tau|_\infty + ||\nabla \tau||_\infty + ||H\tau||_\infty)$$



# Review: Limitations of Separable Scattering

- No feature dimensionality reduction
  - The number of features increases exponentially with depth and polynomially with scale.
- We are indirectly assuming that each wavelet band is deformed independently

We cannot capture the *joint* deformation structure of feature maps
 Loss of discriminability.

- The deformation model is rigid and non-adaptive
  - We cannot adapt to each class
  - Wavelets are hard to define *a priori* on high-dimensional domains.

### **Review: Joint Scattering**

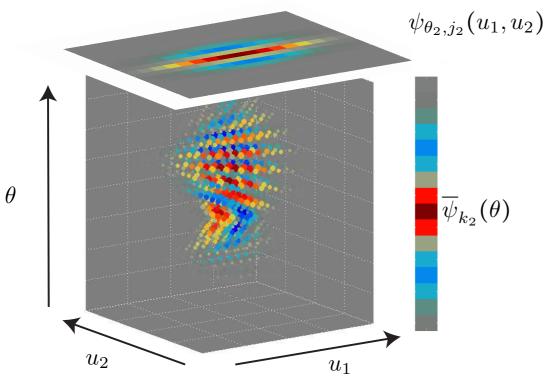
• We start by *lifting* the image with spatial wavelet convolutions: stable and covariant to roto-translations.

$$\xrightarrow{x_0(u)} \boxed{U_1} \xrightarrow{x_1(u, j, \theta)} \boxed{U_2} \xrightarrow{\Phi(x)}$$

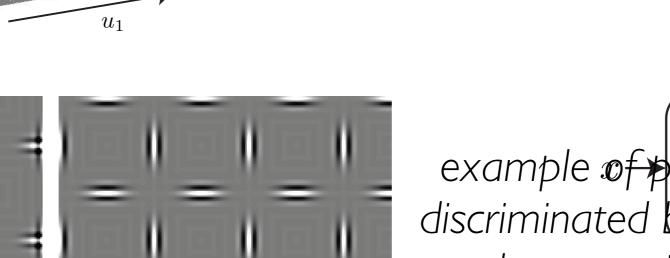
- We then adapt the second wavelet operator to its input joint variability structure.
- More discriminability.
- Requires defining wavelets on more complicated domains

#### **Example: Roto-Translation Scattering**

• [Sifre and Mallat' I 3]



second layer wavelets constructed by a separable product on spatial and rotational wavelets  $\Psi_{\lambda}(u,\theta) = \psi_{\lambda_1}(u)\psi_{\lambda_2}(\theta)$ 



example of patterns. discriminated by pointing attering but not with separable scattering. Classification with Scattering

 State-of-the art on pattern and texture recognition using separable scattering followed by SVM:

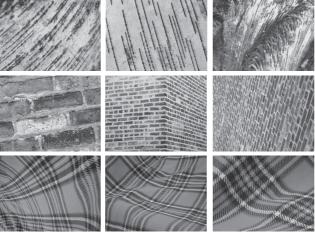
– MNIST, USPS [Pami' I 3]

-Texture (CUREt) [Pami'I3]

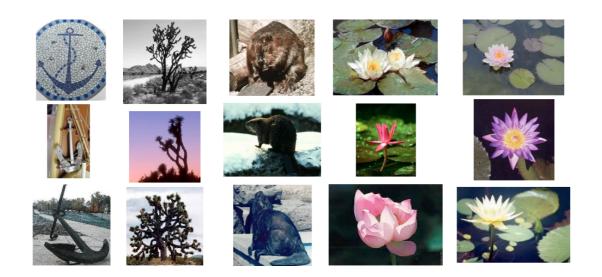
-Music Genre Classification (GTZAN) [IEEE Acoustic 'I3]

# Classification with Scattering

 Joint Scattering Improves Performance: – More complicated Texture (KTH,UIUC,UMD) [Sifre&Mallat, CVPR'13]



Small-mid scale Object Recognition (Caltech, CIFAR)
 [Oyallon&Mallat, CVPR'15]
 airplane
 airplane
 automobile
 bird



| Sand I | X  | -     | X            | *                | 1    | 2  | -1  | -       | <u> 181</u> |
|--------|----|-------|--------------|------------------|------|----|-----|---------|-------------|
| -      | -  |       |              | -                | No.  |    |     | -       | *           |
| 10     | ſ  | 12    |              |                  | 4    | 17 | Y   | and and | 1           |
|        |    | 2     | 3            |                  | 1    | 2  | 1   | N.      | 10          |
| 1      | 49 | X     | R            | 1                | Y    | Y  | 1   |         | <u>\$</u>   |
| 19.    | 1. | -     | ٩.           | 1                |      |    | 1   | 1       | 14          |
|        | 1  | -     |              | <b>.</b> ?       | ٢    |    | 37. |         | 4           |
|        | ŧ. | (M)   | $\mathbf{h}$ | 1                | ICAN | 28 | 24  | 6       | t,          |
|        |    | din . | ~            | , <sup>111</sup> | -    | Ż  | 10  | p-      | <u>a</u>    |
|        | S. | 1     | ġ,           |                  | 22   |    | 1   |         | and the     |
|        |    |       |              |                  |      |    |     |         |             |

cat

deer

dog

frog

horse

ship

truck

# Limitations of Joint Scattering

- Variability from physical world expressed in the language of transformation groups and deformations
  - However, there are not many possible groups: essentially the affine group and its subgroups.

# Limitations of Joint Scattering

- Variability from physical world expressed in the language of transformation groups and deformations
  - However, there are not many possible groups: essentially the affine group and its subgroups.
- As a new wavelet layer is introduced, we create new coordinates, but we do not destroy existing coordinates
  - Hard to scale: dimensionality reduction is needed.
  - Wavelet design complicated beyond roto-translation groups.

# Limitations of Joint Scattering

- Variability from physical world expressed in the language of transformation groups and deformations
  - However, there are not many possible groups: essentially the affine group and its subgroups.
- As a new wavelet layer is introduced, we create new coordinates, but we do not destroy existing coordinates
  - Hard to scale: dimensionality reduction is needed.
  - Wavelet design complicated beyond roto-translation groups.
- Beyond physics, many deformations are class-specific and not small.
  - Learning filters from data rather than designing them.

# Objectives

- Convolutional Neural Networks
  - Review of supervised learning
  - Modular interpretation
  - Streamlining
  - Layer-wise vs Global model.
- Properties of CNN representations
  - Invariance and Covariance
  - Stability and Discriminability
  - Redundancy.
  - Transfer Learning
  - Weakly supervised learning.

### From Scattering to CNNs

• Given  $x(u, \lambda)$  and a group G acting on both u and  $\lambda$ , we defined wavelet convolutions over G as

$$x \star_G \psi_{\lambda'}(u,\lambda) = \int_v \int_\alpha \psi_\lambda(R_{-\alpha}(u-v)) x(v,\alpha) dv d\alpha$$

### From Scattering to CNNs

• Given  $x(u, \lambda)$  and a group G acting on both u and  $\lambda$ , we defined wavelet convolutions over G as

$$x \star_G \psi_{\lambda'}(u,\lambda) = \int_v \int_\alpha \psi_\lambda(R_{-\alpha}(u-v)) x(v,\alpha) dv d\alpha$$

• In discrete coordinates,

$$x \star_G \psi_{\lambda'}(u,\lambda) = \sum_v \sum_\alpha \overline{\psi}_{\lambda'}(u-v,\alpha,\lambda) x(v,\alpha)$$

• Which in general is a convolutional tensor.

- Let  $x(u, \lambda)$  be signal, with  $u \in \{1, \ldots, N\} \times \{1, \ldots, N\}, \lambda \in \Lambda$ .
- Convolutional Tensor:

Given  $\Psi = \{\psi(v, \lambda, \lambda')\}$  with  $v \in \{1, N\}^2$ ,  $\lambda \in \Lambda, \lambda' \in \Lambda'$ , the tensor convolution is

$$x * \Psi(u, \lambda') := \sum_{v} \sum_{\lambda} x(u - v, \lambda) \psi(v, \lambda, \lambda')$$
$$= \sum_{\lambda} (x(\cdot, \lambda) \star \psi(\cdot, \lambda, \lambda'))(u)$$

- Let  $x(u, \lambda)$  be signal, with  $u \in \{1, \ldots, N\} \times \{1, \ldots, N\}, \lambda \in \Lambda$ .
- Convolutional Tensor:

Given  $\Psi = \{\psi(v, \lambda, \lambda')\}$  with  $v \in \{1, N\}^2$ ,  $\lambda \in \Lambda, \lambda' \in \Lambda'$ , the tensor convolution is

$$x * \Psi(u, \lambda') := \sum_{v} \sum_{\lambda} x(u - v, \lambda) \psi(v, \lambda, \lambda')$$
$$= \sum_{\lambda} (x(\cdot, \lambda) \star \psi(\cdot, \lambda, \lambda'))(u)$$

$$x \longrightarrow \rho \Psi \longrightarrow \rho(x * \Psi)$$
$$L^{2}(\{1, N\}^{2} \times \Lambda) \qquad L^{2}(\{1, N\}^{2} \times \Lambda')$$

16

( $\rho$  point-wise non-linearity)

• Downsampling or Pooling operator: reduce spatial and/or feature resolution

- Downsampling or Pooling operator: reduce spatial and/or feature resolution
  - Non-adaptive and linear:  $\phi_c$ : lowpass averaging kernel  $\tilde{x}(\tilde{u}, \tilde{\lambda}) = \sum_v \sum_\lambda \phi_c(v, \lambda) x(c\tilde{u} v, c_\lambda \tilde{\lambda} \lambda)$
  - Non-adaptive and non-linear:  $\tilde{x}(\tilde{u}, \tilde{\lambda}) = \max_{|v| \le c, |\lambda| \le c} x(c\tilde{u} - v, c\tilde{\lambda} - \lambda)$

Adaptive and linear:  $\tilde{x}(\tilde{u}, \tilde{\lambda}) = x * \Psi(c\tilde{u}, c\tilde{\lambda})$ 

$$L^{2}(\{1,N\}^{2} \times \Lambda) \xrightarrow{P} L^{2}(\{1,N/c\}^{2} \times \tilde{\Lambda})$$

$$x \longrightarrow \rho \Psi_1 \longrightarrow P_1 \longrightarrow \rho \Psi_2 \longrightarrow P_2 \longrightarrow \dots \longrightarrow \rho \Psi_p \longrightarrow \Phi(x)$$
$$\Phi(x) = \rho(\rho(P_1(\rho(x * \Psi_1)) * \Psi_2)..)$$

$$x \longrightarrow \rho \Psi_1 \longrightarrow P_1 \longrightarrow \rho \Psi_2 \longrightarrow P_2 \longrightarrow \rho \Psi_p \longrightarrow \Phi(x)$$
$$\Phi(x) = \rho(\rho(P_1(\rho(x * \Psi_1)) * \Psi_2)..)$$

- Architectures vary in terms of
  - Number p of layers (from 2 to >100).
  - Size of the tensors (typically  $[3-7 \times 3-7 \times 16-256]$ )
  - Presence/absence and type of pooling operator.
    - Recent models tend to avoid non-adaptive pooling.

### CNNs for Classification

- When task is classification,  $\Phi(x)$  estimates the class label of x ,  $y \in \{1, K\}$
- The conditional probability  $p(y \mid x)$  is modeled with a multinomial distribution with parameters  $\pi_k(\Phi(x))$ ,  $k \leq K$ .

### CNNs for Classification

- When task is classification,  $\Phi(x)$  estimates the class label of x ,  $y \in \{1, K\}$
- The conditional probability  $p(y \mid x)$  is modeled with a multinomial distribution with parameters  $\pi_k(\Phi(x))$ ,  $k \leq K$ .
- If the last layer has K feature maps, we parametrize using the softmax distribution:

$$p(y = k \mid x) = \frac{e^{\overline{\Phi_k(x)}}}{\sum_{j \le K} e^{\overline{\Phi_j(x)}}} ,$$

 $\overline{\Phi_j(x)}$ : spatial average of output channel j

### CNN for Classification

• We optimize the parameters of the model via Maximum Likelihood (multinomial logistic regression):

Given iid training data  $(x_i, y_i)_i$ , the negative joint log-likelihood is

$$\mathcal{E}(\Psi) = \sum_{i} \log p(y = y_i | x_i) = \sum_{i} \left( \overline{\Phi_{y_i}(x_i)} - \log \left( \sum_{j} e^{\overline{\Phi_j(x_i)}} \right) \right)$$

### CNN for Classification

• We optimize the parameters of the model via Maximum Likelihood (multinomial logistic regression):

Given iid training data  $(x_i, y_i)_i$ , the negative joint log-likelihood is

$$\mathcal{E}(\Psi) = \sum_{i} \log p(y = y_i | x_i) = \sum_{i} \left( \overline{\Phi_{y_i}(x_i)} - \log \left( \sum_{j} e^{\overline{\Phi_j(x_i)}} \right) \right)$$

- Other parametrizations of the multinomial are possible
  - See for example <u>http://arxiv.org/abs/1506.08230</u>, where a contrastinvariant loss replaces multinomial logistic regression.

• We can start by analyzing a chunk of the form

$$x_k(u,\lambda) \xrightarrow{\rho \Psi_1} P_1 \xrightarrow{\gamma} x_{k+1}(\tilde{u},\tilde{\lambda})$$

• We can start by analyzing a chunk of the form

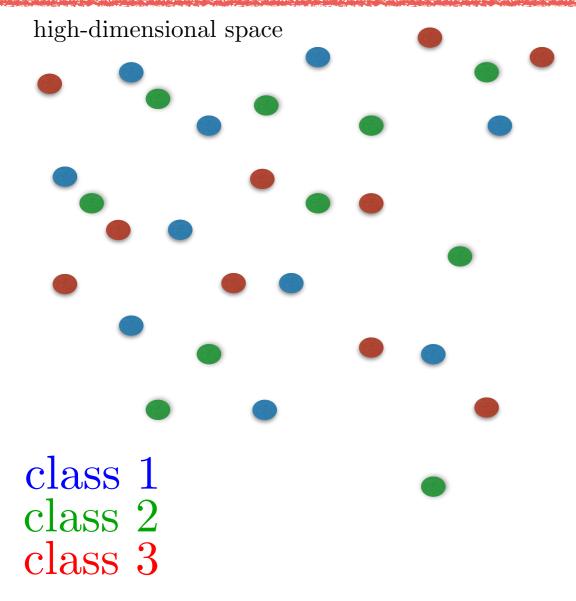
$$x_k(u,\lambda) \xrightarrow{\rho \Psi_1} P_1 \xrightarrow{\gamma} x_{k+1}(\tilde{u},\tilde{\lambda})$$

- Let us assume that pooling is an average (non-adaptive).
- Consider a thresholding nonlinearity:  $\rho(x) = \max(0, x t)$
- And let us forget (for now) about the convolutional aspect.

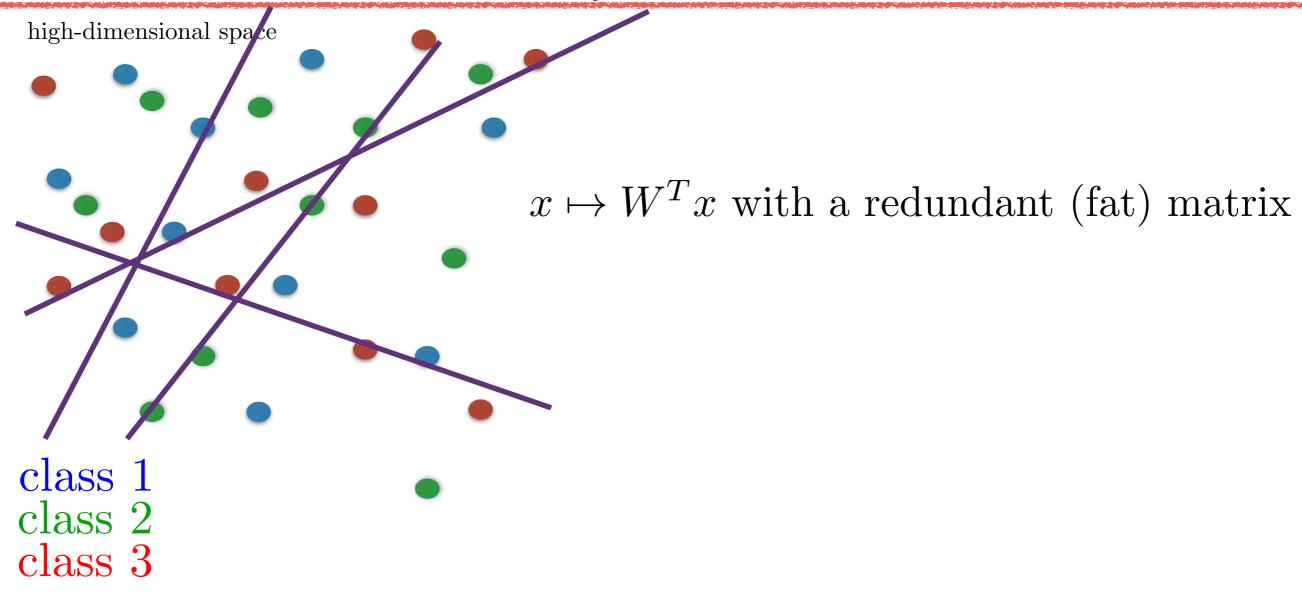
• We can start by analyzing a chunk of the form

$$x_k(u,\lambda) \xrightarrow{\rho \Psi_1} P_1 \xrightarrow{\gamma} x_{k+1}(\tilde{u},\tilde{\lambda})$$

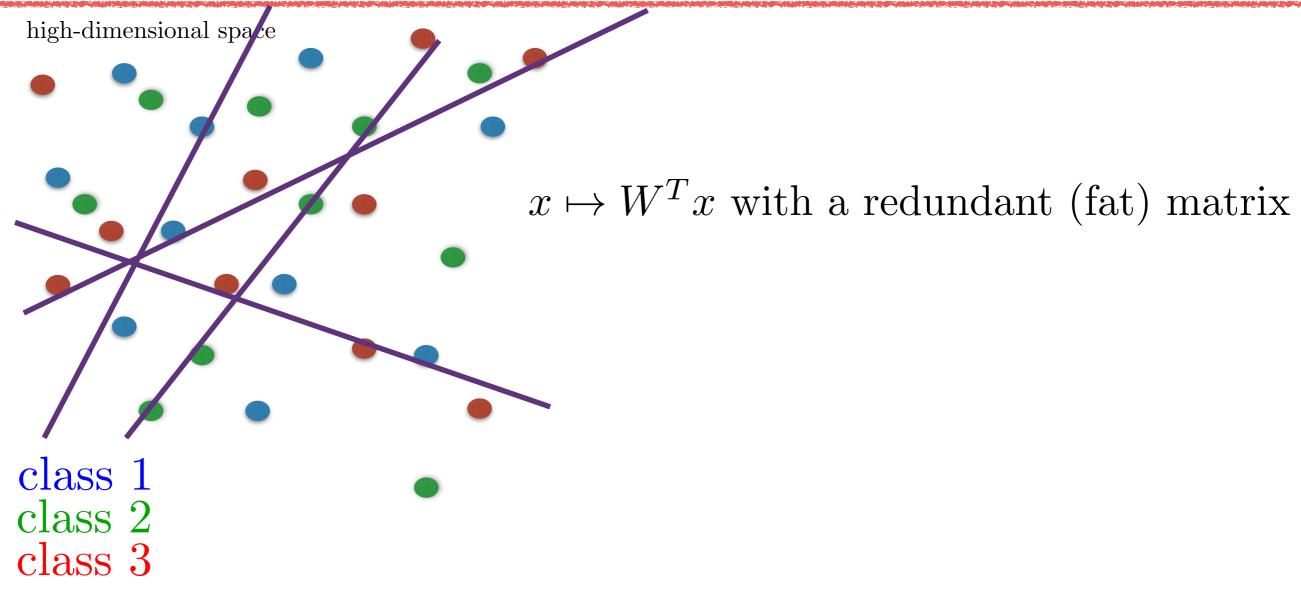
- Let us assume that pooling is an average (non-adaptive).
- Consider a thresholding nonlinearity:  $\rho(x) = \max(0, x t)$
- And let us forget (for now) about the convolutional aspect.
- What is the role of this operator? Intuition?



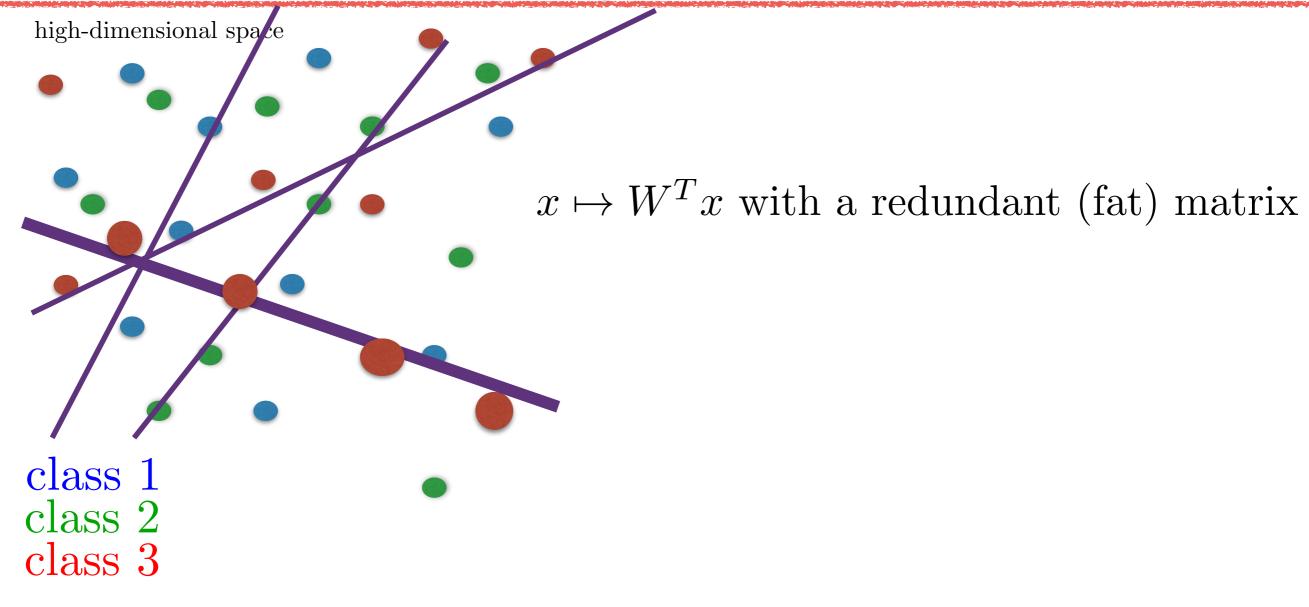
- Intraclass variability is highly nonlinear.
- But we are attempting to progressively linearize it by cascading instances of the previous operator.



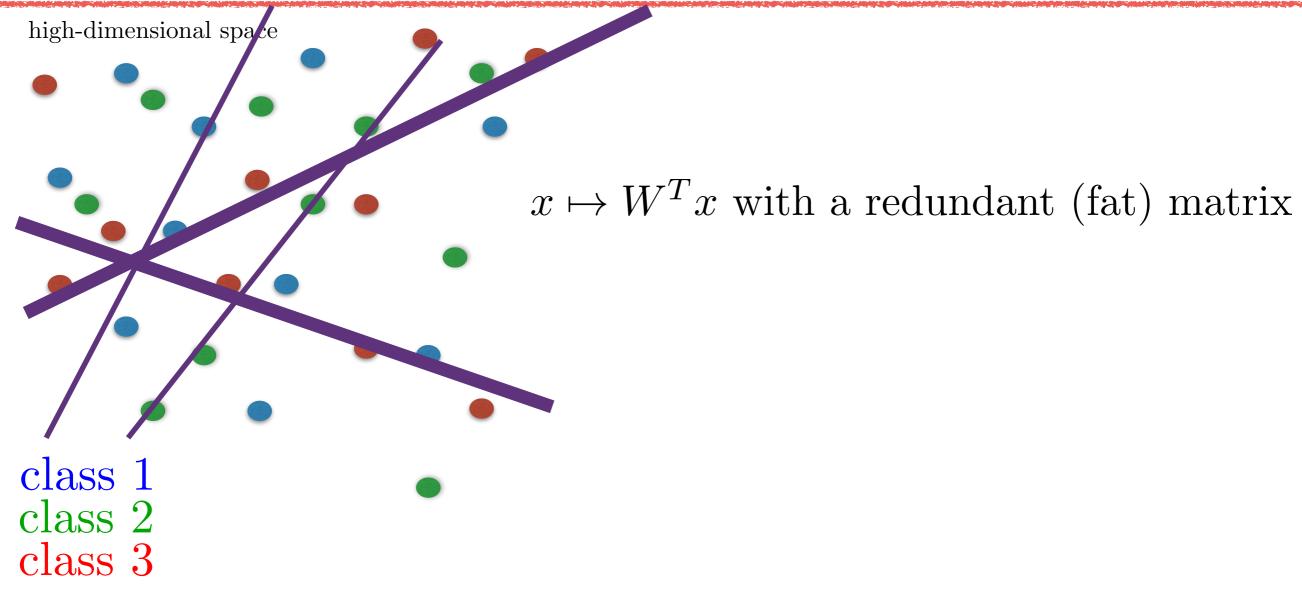
• I: "trap" intraclass variability within low-dimensional affine subspaces appropriately chosen.



- I: 'trap'' intraclass variability within low-dimensional affine subspaces appropriately chosen.
  - In this example we are not sharing models, but later we will see that *parallel* models are key for generalization.



- 2. detect distance to each affine model with a thresholding
  - -Thresholding operates along I-dimensional subspaces (complex modulus instead looks at 2-dimensional)



- 3: "stitch" different linear pieces together by pooling the output of the two subspace detectors.
  - Can be done by smoothing or by computing any statistic (maxpooling)

• But in high-dimensional image recognition, this operator alone is not sufficient: there are exponentially many linear pieces required: curse of dimensionality.

 But in high-dimensional image recognition, this operator alone is not sufficient: there are exponentially many linear pieces required: curse of dimensionality.

• Intra-class variability model (i.e. deformation model):

 $f\left(\{\varphi_{\tau,f(x)}x\}\right) \approx f(x)$ 

- Besides small geometric deformations, we must include clutter and large class-specific variability (for example, chair styles).
- It is a high-dimensional variability model

Adjoint deformation operator:

The adjoint  $\varphi^*$  of a linear operator  $\varphi$  is such that

$$\forall x, w , \langle \varphi x, w \rangle = \langle x, \varphi^* w \rangle$$

(in finite dimension, it is just the transpose of a matrix)

$$\left(\langle Ax, w \rangle = w^T(Ax) = x^T(A^Tw) = \langle x, A^Tw \rangle\right)$$

Adjoint deformation operator:

The adjoint  $\varphi^*$  of a linear operator  $\varphi$  is such that

$$\forall x, w , \langle \varphi x, w \rangle = \langle x, \varphi^* w \rangle$$

(in finite dimension, it is just the transpose of a matrix)

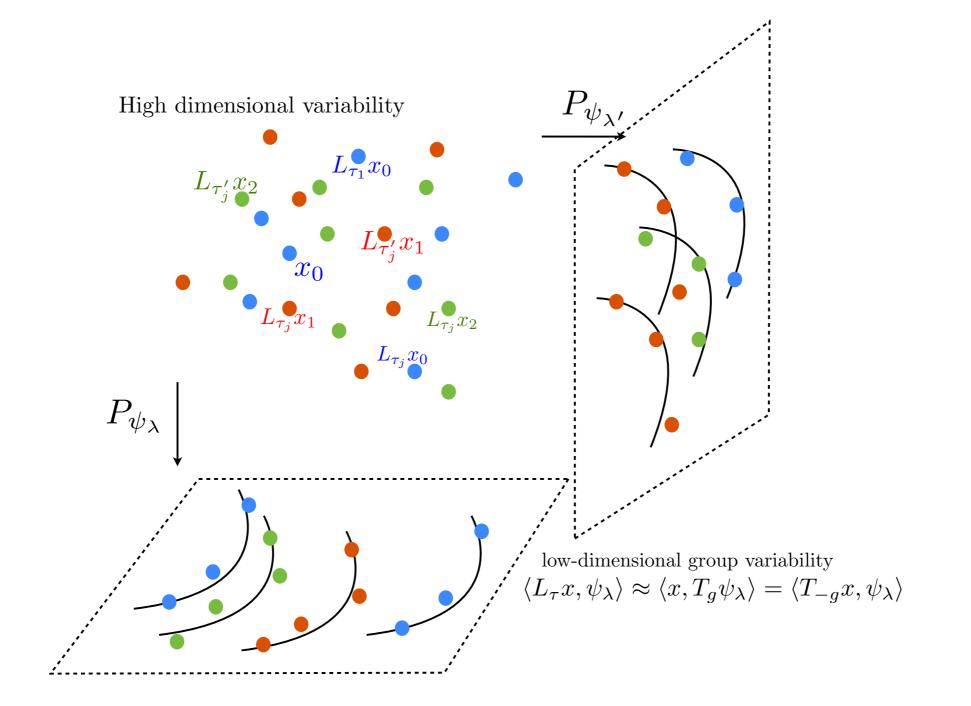
$$(\langle Ax, w \rangle = w^T (Ax) = x^T (A^T w) = \langle x, A^T w \rangle)$$

- Our linear measurements W interact with deformations as  $\langle \varphi_{\tau} x, w_k \rangle = \langle x, \varphi_{\tau}^* w_k \rangle$ 
  - We want measurements that factorize variability.
  - If  $w_k$  are localized, they factorize deformations in local neighborhoods: each measure "sees" approximately a translation

$$\langle x, \varphi_{\tau}^* w_k \rangle = \langle x, T_v w_k \rangle + \epsilon$$

 $T_v$ : translation

#### Geometric Interpretation



## Geometric Interpretation

- The measurements are shared for every input:
  - Factors need to be useful across different inputs.
  - At the same time, measurements need to capture joint dependencies in order to preserve discriminability.
- However, large variability might be class-specific, objectspecific:
  - We will see that thresholding and sparsity inducing filters create specialized invariants.

• Previous CNN models also contained *local contrast normalization* layers:

$$\tilde{x}(u,\lambda) = \frac{x(u,\lambda)}{S(u,\lambda)} , \ S(u,\lambda) = \epsilon + \left( \sum_{|v| \le C, |\lambda'| \le C'|} |x(u+v,\lambda+\lambda')|^q \right)^{1/q}$$

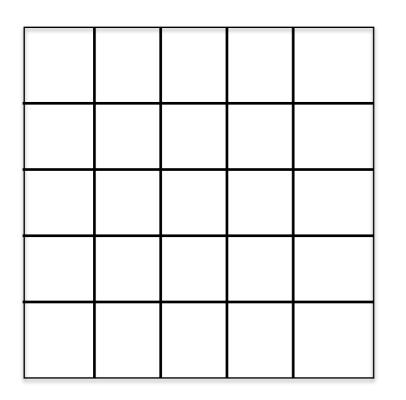
• Previous CNN models also contained local contrast normalization layers:

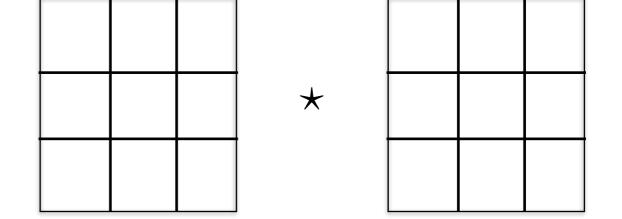
$$\tilde{x}(u,\lambda) = \frac{x(u,\lambda)}{S(u,\lambda)} , \ S(u,\lambda) = \epsilon + \left( \sum_{|v| \le C, |\lambda'| \le C'|} |x(u+v,\lambda+\lambda')|^q \right)^{1/q}$$

- Provides invariance to amplitude changes.
- Can improve gradient flow towards initial layers.
- However, modern CNNs do not use it: contrast invariance is low-dimensional, it can be learnt by the classifier
- And there are other optimization improvements that attenuate the "vanishing gradient" problem.

• An important parameter is the spatial kernel size: how to choose it?

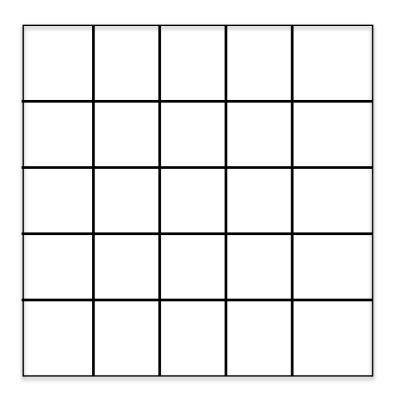
- An important parameter is the spatial kernel size: how to choose it?
- Previous CNNs explored the parameter space: typically kernel sizes < 10.

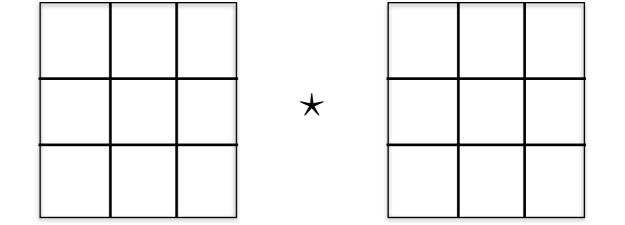




w of size 2L + 1~  $(2L + 1)^2$  parameters  $h_1, h_2$  of size L + 1 each Then  $h_1 \star h_2$  is of size 2L + 1 $\sim 2(L+1)^2$  parameters

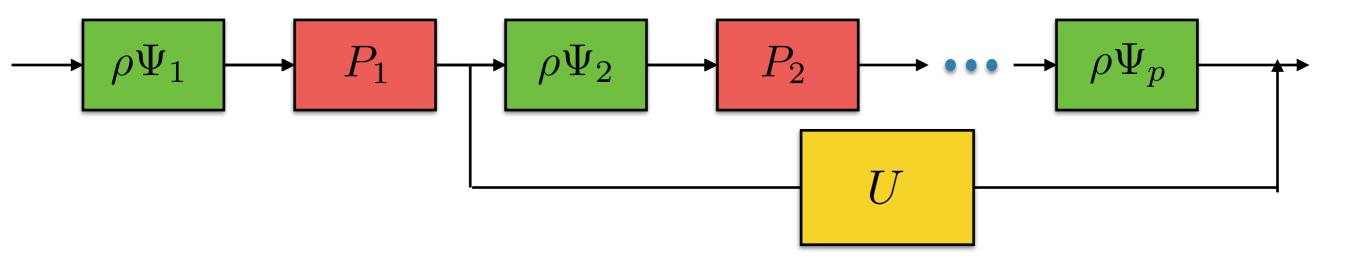
- Modern CNNs prefer to replace larger spatial kernels by a cascade of small (3x3, or even 1x3, 3x1) kernels.
- It sacrifices frequency resolution in favor of smaller parameter size.



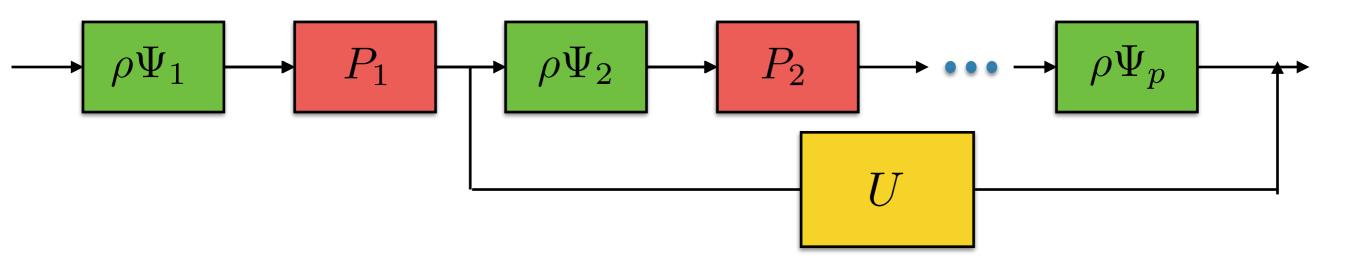


w of size 2L + 1~  $(2L + 1)^2$  parameters  $h_1, h_2$  of size L + 1 each Then  $h_1 \star h_2$  is of size 2L + 1 $\sim 2(L+1)^2$  parameters

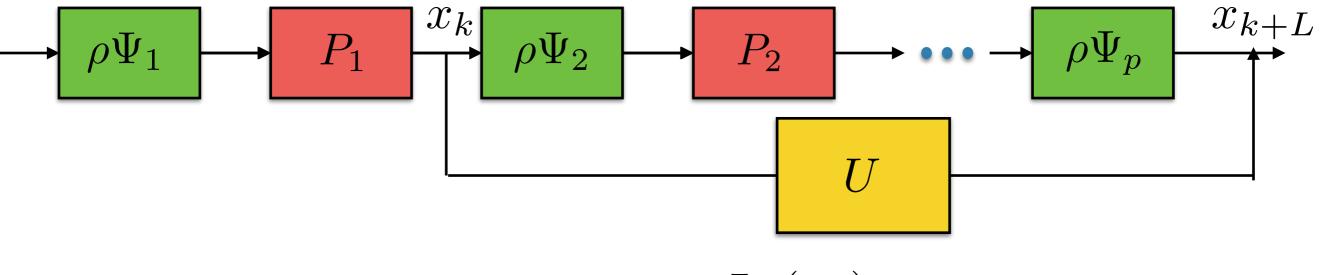
• Another recent trend is to use "skip-connections":



• Another recent trend is to use "skip-connections":

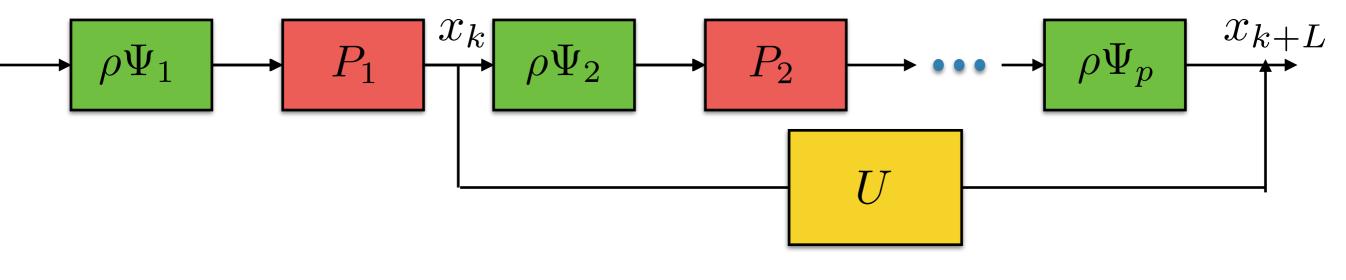


- The operator U is as simple as a linear projection or even the identity (if there are no downsampling layers in between)
  - Deep Residual Learning (K. He et al '15)
  - Highway Networks (Srivastava et al '15) use slightly more complicated U modules with "gating".



$$x_{k+L} = x_k + \Phi_k(x_k)$$

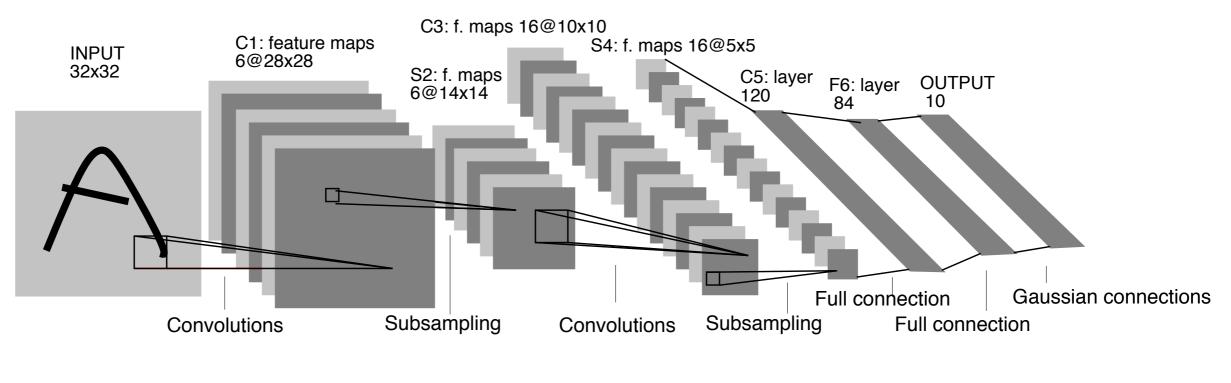
• Each subnetwork  $\Phi_k$  is thus learning a *residual* representation



$$x_{k+L} = x_k + \Phi_k(x_k)$$

- Each subnetwork  $\Phi_k$  is thus learning a *residual* representation
- This allows for training much deeper networks effectively
  - We will come back to this phenomena later.
  - The subnetworks can concentrate on low-dimensional projections without loss of discriminability.

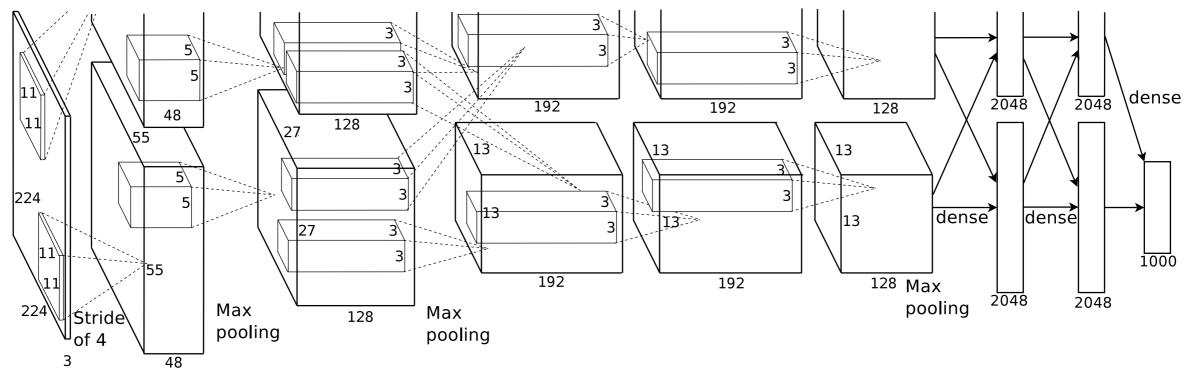
• "LeNet" for handwritten digit recognition:



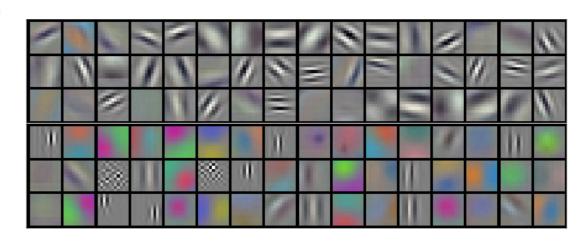
[LeCun, Bottou, Bengio & Hafner '98]

- Uses sigmoidal non-linearities
- 5 layer network with no explicit pooling (trainable).

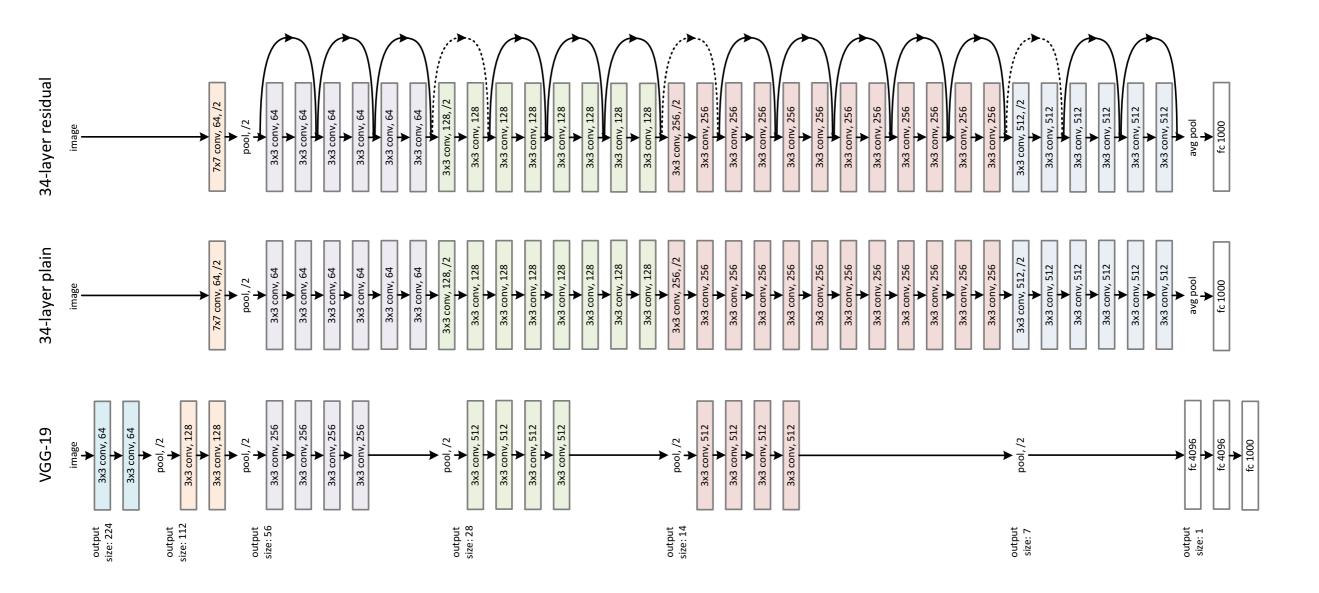
• AlexNet [Krizhevsky et al, '12]:



- 5 convolutional layers and 2 "fully connected" layers.
- Employs local normalization.
- Trained on Imagenet with Dropout.



• ResNet [He et al, '15]:



- Trained with linear skip connections.

• "Revolution of Depth" (from Kaiming slides)

#### Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012) VGG, 19 layers (ILSVRC 2014)

ResNet, 152 layers (ILSVRC 2015) Research



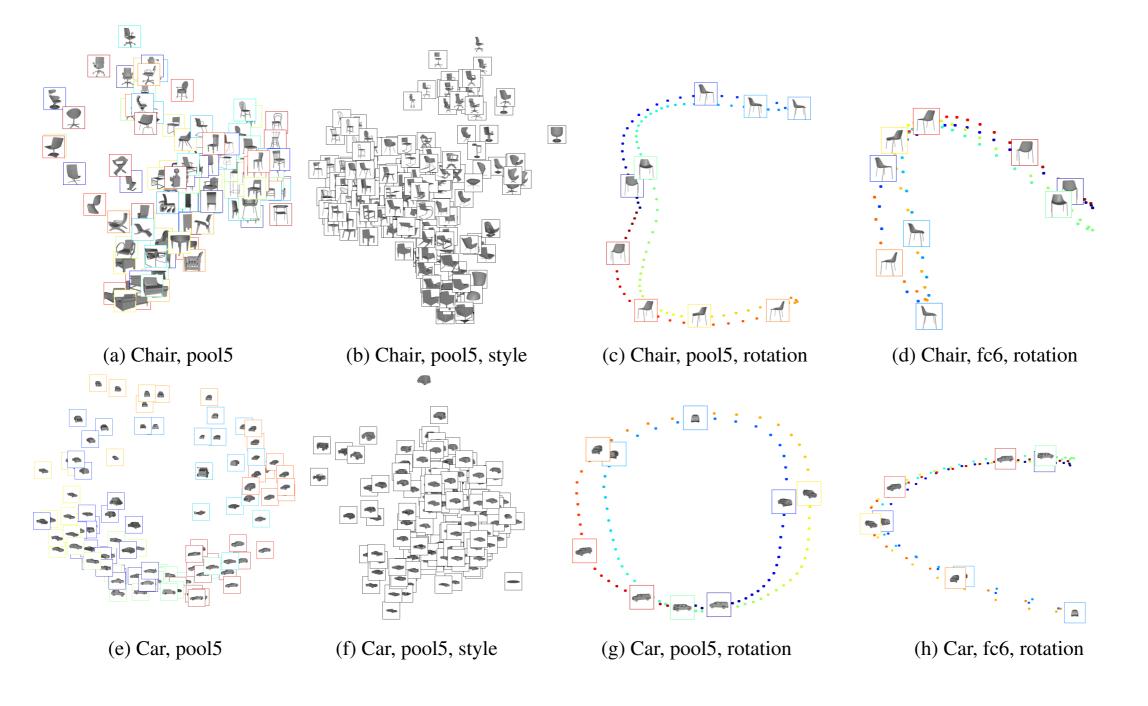
Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

#### Properties of learnt CNN representations

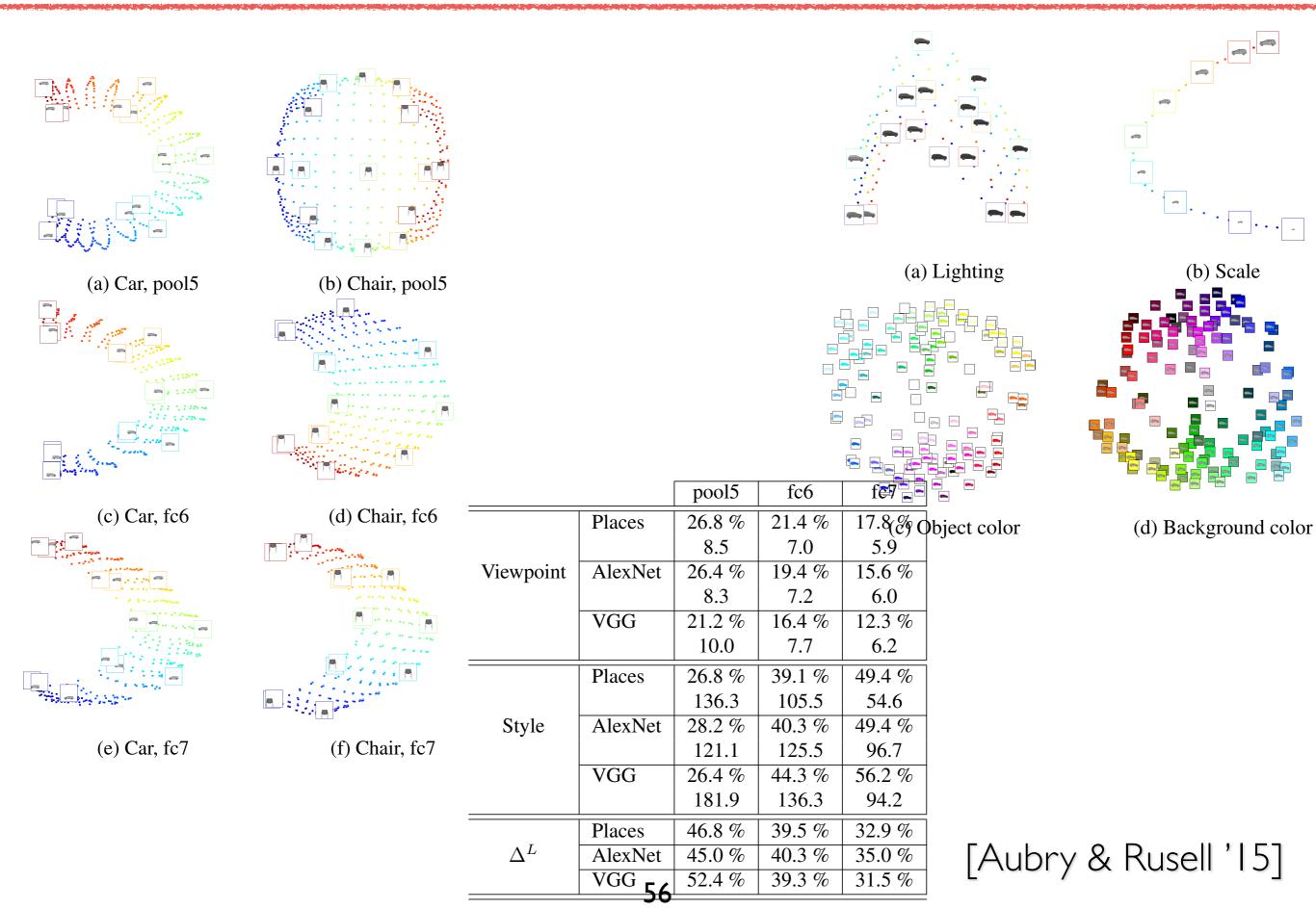
• Do CNNs effectively linearize variability from common transformation groups as a byproduct of supervised training?

- Do CNNs effectively linearize variability from common transformation groups as a byproduct of supervised training?
  - [Aubry & Rusell '15] studied this question empirically:
    For each layer k, consider Φ<sub>k</sub>(x) = x<sub>k</sub>(u, λ<sub>k</sub>)
    Given a transformation φ(θ) parametrized by θ,
    perform PCA on {Φ<sub>k</sub>(φ(θ)x)}<sub>x,θ</sub>

• Principal components corresponding to different factors at different layers:



[Aubry & Rusell '15]



• Besides viewpoint and illumination, another major source of variability is clutter:







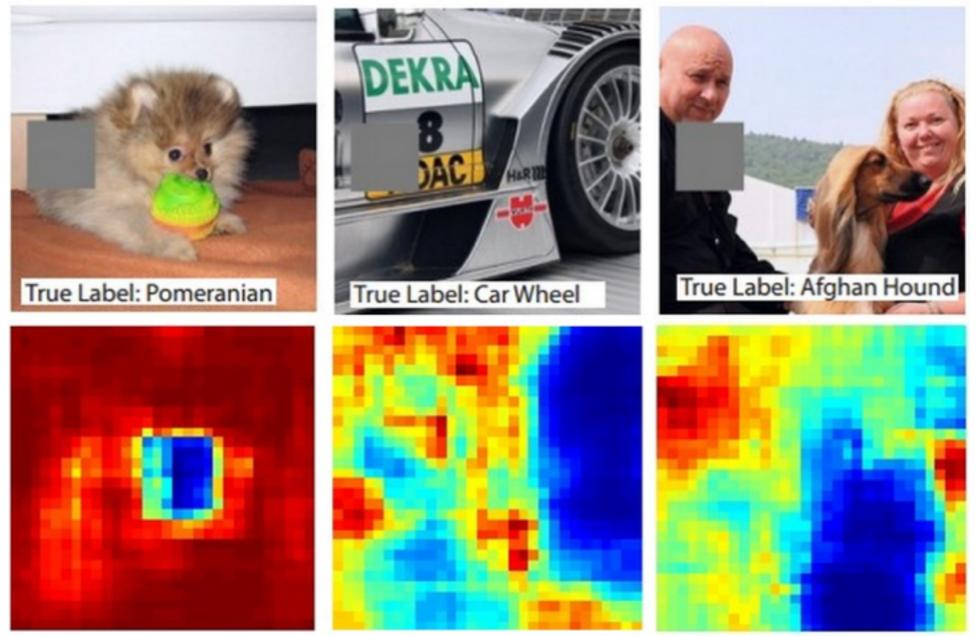


## Clutter Robustness

- Clutter: High-dimensional variability
  - The model needs to detect a particular object and discard most of the signal energy.
  - The object of interest is localized at a certain scale.
  - Thresholding is an efficient operator to perform detection.
- Are CNNs robust to clutter?

#### Clutter

• [Zeiler and Fergus, '14]



- Detection probability as a function of occluding square
- The network effectively captures

(Un)Stability

• The weakest form of stability is additive:

 $\|\Phi(x+w) - \Phi(x)\| \le \|w\|$ 

- We saw that this can be enforced by having convolution tensors with operator norm  $\|\Psi_k\| \leq 1$  .
- Do CNNs possess this form of stability?
- Does it matter?

### Instabilities of Deep Networks



Alex Krizhevsky's Imagenet 8 layer Deep ConvNet

 $||x - \tilde{x}|| < 0.01 ||x||$ 

correctly classified

classified as ostrich

#### Instabilities of Deep Networks

Additive Stability is not enforced.

 $\|\Phi_i(x) - \Phi_i(x')\| \le \|W_i(x - x')\| \le \|W_i\| \|x - x'\|$ 

| Layer   | Size                               | $  W_i  $ |
|---------|------------------------------------|-----------|
| Conv. 1 | $3 \times 11 \times 11 \times 96$  | 2.75      |
| Conv. 2 | $96 \times 5 \times 5 \times 256$  | 10        |
| Conv. 3 | $256 \times 3 \times 3 \times 384$ | 7         |
| Conv. 4 | $384 \times 3 \times 3 \times 384$ | 7.5       |
| Conv. 5 | $384 \times 3 \times 3 \times 256$ | 11        |
| FC. 1   | $9216 \times 4096$                 | 3.12      |
| FC. 2   | $4096 \times 4096$                 | 4         |
| FC. 3   | $4096 \times 1000$                 | 4         |

(Un)Stability

 These adversarial examples are found by explicitly fooling the network:

 $\min \|x - \tilde{x}\|^2 \quad s.t. \quad p(y \mid \Phi(\tilde{x})) \perp p(y \mid \Phi(x))$ 

- They are robust to different parametrization of  $\Phi(x)$  and to different hyperparameters.
- However, these examples do not occur in practice.