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Review: Separable Scattering Operators

* Local averaging kernel: = x ¢,

—locally translation invariant
—stable to additive and geometric deformations
—loss of high-frequency information.

) , , ]
Recover lost information: 7/ 1y — fo s |z % 0 haen, -
— Point-wise, non-expansive non-linearities: maintain stability.

— Complex modulus maps energy towards low-frequencies.

» Cascade the “recovery” operator:

UF(x) = {xx b, |z xPalxdy, [Joxvnl x o |Ixven, -
* Scattering coefficient along a path p=00 A

Sylple(u) = [[lzx ha | x x| % |+, [* du(u) -
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* Geometric Stabillity: ISz = Z | S, [p)||?

pEPy

Theorem (Mallat’10): There exists C such that for all x € L?(R?) and
all m, the m-th order scattering satisfies

|Sspra — Syzl| < Cmlz[|(277|T]oo + VTl + [ HTlo0) -
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Review: Limitations of Separable Scattering

* No feature dimensionality reduction

- The number of features increases exponentially with depth and
polynomially with scale.

* We are indirectly assuming that each wavelet band is
deformed independently

—We cannot capture the joint deformation structure of feature maps

—Loss of discriminability.

* [he deformation model is rigid and non-adaptive

— We cannot adapt to each class

— Wavelets are hard to define a priori on high-dimensional domains.
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* We start by lifting the image with spatial wavelet
convolutions: stable and covariant to roto-translations.

x1(u, 7,0
CIZO(U)> U, 1(u:] ), U, +— o(x)

* We then adapt the second wavelet operator to its input
joint variability structure.

* More discriminabillity.

* Requires defining wavelets on more complicated domains
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Example: Roto-Translation Scattering
[Slfre and Mallat' | 3]

77b92 ,J2 (u17u2)

second layer wavelets constructed
by a separable product on spatial
and rotational wavelets

\Ij)\(uv (9) — ¢>\1 (u)%z (9)

example of patterns that are
discriminated by joint scattering
but not with separable
scattering.



* State-of-the art on pattern and texture recognition using
separable scattering followed by SVM:

— MNIST, USPS [Pam!i'| 3]

— Texture (CUREt) [Pami’| 3]
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—Music Genre Classification (GTZAN) [IEEE Acoustic | 3]



* Joint Scattering Improves Performance:

—More complicated Te><ture (|<"H UIUC UMD) [Sifre&Mallat,
CVPR'I 3] 7 0 "

— Small-mid scale Object Recognmon (Caltech CIFAR)

[Oyallon&Mallat, CVPR'| 5] airplane E:é=a:
—~1/7% error on Cifar-10 » Sml WES O
cat ﬁa---! e
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Limitations of Joint Scattering

* Variability from

physical world expressed In the language

of transformation groups and deformations

- However, there are not many possible groups: essentially the affine
group and Its subgroups.

e As a new wave

coordinates, bu

et layer Is Introduced, we create new

. we do not destroy existing coordinates

- Hard to scale: dimensionality reduction I1s needed.

- Wavelet design complicated beyond roto-translation groups.
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Limitations of Joint Scattering

* Variability from physical world expressed In the language
of transformation groups and deformations

- However, there are not many possible groups: essentially the affine
group and Its subgroups.

* As a new wavelet layer Is introduced, we create new
coordinates, but we do not destroy existing coordinates

- Hard to scale: dimensionality reduction I1s needed.
- Wavelet design complicated beyond roto-translation groups.
* Beyond physics, many deformations are class-specific and

not small.
- Learning filters from data rather than designing them.




_Objectives

* Convolutional Neural Networks
- Review of supervised learning
- Modular interpretation
- Streamlining

- Layer-wise vs Global model.

* Properties of CNN representations
- Invariance and Covariance
- Stability and Discriminabllity
- Redundancy.
- Transfer Learning

- Weakly supervised learning.
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e Given x(u,A) and a group G acting on both u and A,
we defined wavelet convolutions over GG as

7 e Uy (1w, \) //w,\ ol — v))z(v, @)dvda
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e Given x(u,A) and a group G acting on both u and A,
we defined wavelet convolutions over GG as

7 e Uy (1w, \) //w,\ ol — v))z(v, @)dvda

e In discrete coordinates,

T *a Y (u, A) = LL@DNU—U&)\) (v, )

* Which In general I1s a convolutional tensor.
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e Let xz(u, \) be signal, with v € {1,... , N} x{1,...,N}, A € A.
e Convolutional Tensor:

Given ¥ = {4 (v, \, \)} with v € {1, N}?,
Ae A, N e A, the tensor convolution is

z* W(u, \) LL:Eu—U)\ (v, A, \)
—Z (s A, A1) (w)
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Convolutional Neural Networks

e Let x(u, A\) be signal, with v € {1,..., N} x {1,..., N}, A € A.
e Convolutional Tensor:

Given ¥ = {4 (v, \, \)} with v € {1, N}?,
Ae A, N e A, the tensor convolution is

z* W(u, \) LL:Bu—U)\ (v, A\, \)
—Z (s A, A1) (w)

r——f p¥U |— plzxV)

L*({1,N}* x A) L*({1,N}* x A)

«  (p point-wise non-linearity)



e Downsampling or Pooling operator:
reduce spatial and/or feature resolution
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e Downsampling or Pooling operator:
reduce spatial and/or feature resolution

- Non-adaptive and linear: ¢c: lowpass averaging kernel

#(ii, \) = 3, 3o be(0, Vel — v, exh — A)

- Non-adaptive and non-linear:
T(U, A) = mMaX|y|<c |r|<e T(CU — v, A — A)

Adapj:ive and limeaur:~
T(u, A) = x * ¥U(cu, c)

L*({1,N}° XF-L_Q({LN/C}Q « &)

|18
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~ Convolutional Neural Networks

L — -~

®(x) = plp(Pr(p(x * W1)) * Va)..)

* Architectures vary in terms of

- Number p of layers (from 2 to >100).
- Size of the tensors (typically [3-7 x 3-7 x 16-256] )

- Presence/absence and type of pooling operator.
* Recent models tend to avoid non-adaptive pooling.
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* When task is classification, ®(x) estimates the class label

O
. T

ne conditiona

multinomial dis

'rx,yE{l,K}

DIro

Dd

ribut

10

oility p(y | =) 1s modeled with a

n with parameters 7, (®(z)) ,k < K.
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CNNs for Classification

* When task is classification, ®(x) estimates the class label

e [he condrtiona

MU

tinomial dis

. If t

ne last layer

ply==Fk|x)=

of ©,y € {1,K}

DIro

Dd

ribut

10

oility p(y | =) 1s modeled with a

n with parameters . (®(z)) ,k < K.

nas K feature maps, we parametrize using
the softmax distribution:

e(I)k(CU)

ZjSK eq)j (x)

®,(x): spatial average of output channel j
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* We optimize the parameters of the model via Maximum
Likellhood (multinomial logistic regression):

Given iid training data (x;,v;);, the negative joint log-likelihood is

1

E(V) = Zlogp(y = yi|Ti) = Z ®,. (x;) — log Z e®i (@)
! y
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CNN

* We optimize t

for Classification

ne parameters of the model via Maximum

Likelihood (mt

tinomial logistic regression):

Given iid training data (x;,v;);, the negative joint log-likelihood is

E(V) = Zlogp(y = yi|Ti) = Z ®,. (x;) — log Zeq’j(“’i)
! y

1

» Other parametrizations of the multinomial are possible

- See for example http://arxiv.org/abs/1 506.08230 , where a contrast-
invariant loss replaces multinomial logistic regression.
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http://arxiv.org/abs/1506.08230

* We can start by analyzing a chunk of the form

~S

S I N R
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* We can start by analyzing a chunk of the form

~S

B IS

* Let us assume that pooling Is an average (non-adaptive).

» Consider a thresholding nonlinearity: p(z) = max(0, z — ¢)

* And let us forget (for now) about the convolutional
aspect.
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* We can start by analyzing a chunk of the form

~S

B IS

* Let us assume that pooling Is an average (non-adaptive).

» Consider a thresholding nonlinearity: p(z) = max(0, z — ¢)

* And let us forget (for now) about the convolutional
aspect.

* What Is the role of this operator? Inturtion?
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high-dimensional space

@
e ° @
® ® @
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* Intraclass variability 1s highly nonlinear.

e But we are a

tempting

cascading INs

rances of t

to progressively

ne previous ope
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high-dimensional spgfe

o © =
=
@ ®
@ @ T . .
o @ r — Wz with a redundant (fat) matrix
B
®
®
® @
class 1 2
class 2
class 3

* |:"trap” Intraclass variability within low-dimensional affine
subspaces appropriately chosen.
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high-dimensional spgfe

B
o © =
@ =) °
@ @ T . .
o ® r — Wz with a redundant (fat) matrix
B
®
£
® B
class 1 =
class 2
class 3

e

* |:"trap” Intraclass variability within low-dimensional affine
subspaces appropriately chosen.

* In this example we are not sharing models, but later we

will see that parallel models are key for generalization.
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high-dimensional spgfe
@
o © @

®e = v — Wz with a redundant (fat) matrix
®
@

class 1
class 2
class 3

P

ne model with a

e ). detect distance to each a
thresholding

— Thresholding operates along |-dimensional subspaces (complex
modulus instead looks at 2-dimensional)

31



high-dimensional spa

‘0‘ / = v — Wz with a redundant (fat) matrix
®
@

class 1 2
class 2
class 3

* 3: “stitch” different linear pieces together by pooling the
output of the two subspace detectors.

— Can be done by smoothing or by computing any statistic (max-
pooling)
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* But In high-dimensional image recognition, this operator
alone I1s not sufficient: there are exponentially many linear
pleces required: curse of dimensionalrty.
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* But In high-dimensiona

alone 1s no

pleces requ

- sufficlent: t

image recognition, this operat

or

nere are exponentially many |

ired: curse of dimensionalrty.

* Intra-class variability model (i.e. deformation model):

f {erfaz}) = f(x)

nedr

— Besides small geometric deformations, we must include clutter and

arge class-specific variability (for example, chair styles).

— [t 1s a high-dimensional variability model
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* Adjoint deformation operator:
The adjoint ¢©* of a linear operator ¢ is such that

*

Va,w, (pr,w) = (x, o w)

(in finite dimension, it is just the transpose of a matrix)

((Az,w) = w' (Az) = 2" (A" w) = (x, A" w))
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* Adjoint deformation operator:

The adjoint ¢©* of a linear operator ¢ is such that

*

Va,w, (pr,w) = (x, o w)

(in finite dimension, it is just the transpose of a matrix)
((Az,w) = w' (Az) = 2" (A" w) = (x, A" w))
e Qur linear measurements W interact with deformations
asS <SO7'$7 wk> — <$7 Spj'wk>

- We want measurements that factorize variability.

- It W are localized, they factorize deformations in local
neighborhoods: each measure “'sees’ approximately a translation

(T, prwi) = (T, Tywg) + € T,: translation
36



High dimensional variability wa
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* [he measurements are shared for every input:
— Factors need to be useful across different inputs.

— At the same time, measurements need to capture joint
dependencies In order to preserve discriminability.

* However, large variability might be class-specific, object-
specific:

— We will see that thresholding and sparsity inducing filters create
specialized invariants.
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e Previous CNIN models also contained local contrast
normalization layers:

1/q
T(u, \) = S(u N S(u, A) =€+ ( Z x(u+v,)\+)\’)q)

0| <C [N [<C7
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Stream!

ining CNINs

e Previous CNIN models also contained local contrast
normalization layers:

1/q
T(u, \) = S(u ) S(u,\) =€+ ( Z x(u+v,)\+)\’)q)

0| <C [N [<C7

* Provides Invariance to amplitude changes.

* Can improve gradient flow towards inrtial layers.

* However, modern CNINs do not use It: contrast
invariance I1s low-dimensional, it can be learnt by the
classifier

e ANC

there are ot

atte

nuate the “‘va

ner optimization improvements that

nishing gradient” problem.
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* An important parameter is the spatial kernel size: how to
choose It/
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* An important parameter is the spatial kernel size: how to
choose It/

* Previous CNINs explored the parameter space: typically
<ernel sizes < |0.

. hi, ho of size L + 1 each
w of size 2L + 1 Then hq1 * ho 1s of size 2L + 1

2
~ (2L + 1)* parameters ~ 2(L + 1)? parameters
4




* Modern CNNs prefer to replace larger spatial kernels by

r~

a cascade of small (3x3, or even [x3, 3xI) kernels.

* [t sacrifices frequency resolution In favor of smaller
barameter size.

. hi, ho of size L + 1 each
w of size 2L + 1 Then hq x ho 1s of size 2L

2
~ (2L + 1)* parameters ~ 2(L + 1)? parameters

43
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* Another recent trend Is to use “skip-connections’:

—

U
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* Another recent trend Is to use “skip-connections’:

U

* [he operator U Is as simple as a linear projection or
even the identity (If there are no downsampling layers In
between)

- Deep Residual Learning (K. He et al '|5)

- Highway Networks (Srivastava et al "1 5) use slightly more
complicated U modules with “gating’.
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U

Tror = Tk + Pr(xk)

e Llach subnetwork ®; is thus learning a residual representation
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U

Thyr = T + Pr(zh)
e Llach subnetwork ®; is thus learning a residual representation

* This allows for training much deeper networks effectively

- We will come back to this phenomena later

- The subnetworks can concentrate on low-dimensional projections
without loss of discriminability.
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* “LeNet" for handwritten digit recognition:

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

32x32 S2: f. maps

C5: layer
6@14x14 y F6 layer OUTPUT

120

CONN

FuII conr#echon Gaussmn connections
Convolutions Subsampling Convolutlons Subsampllng Full connection

<-‘\

—
—

[LeCun, Bottou, Bengio & Hafner 98]

- Uses sigmoidal non-linearities
- 5 layer network with no explicit pooling (trainable).
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* AlexNet [Krizhevsky et al, " 2]:

\ 3\\\ -1--J= - x» »
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XN\ RN > ,,:/ 3 _4--
5 - ™~ - »
P RN e, -
-7 AN [
P NN ,
- SN L0
SANRe
//\\ i\//

102 192 158 2048 2048 \dense

(O8)

128

55 27 . SN
AN 13 13

224 sl | 3,’/ : ENER G

- 13 1 == T dense’| [|dense
27 E N 31 ) 3 +

Y

3| N[ 1000
192 192 128 Max

Max 128 Max pooling
pooling pooling

2048 2048

48

- 5 convolutional layers and 2 “fully connected layers.
- Employs local normalization.
- Trained on Imagenet with Dropout.
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Some Famous CNINs

* ResNet [He et al, " 5]
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- Trained with linear skip connections.
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Some

Revolutlon of

Revolution of Depth

AlexNet, 8 layers %
(ILSVRC 2012)

Famous CI\INS

Depth™ (from I<a|m|ng slldes)

IIIIIIIIIII

VGG, 19 layers ResNet, 152 layers
(ILSVRC 2014) (ILSVRC 2015)

R e e maaaRs

Kaiming He, Xiangyu Zhang, Shaoaing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.
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Properties of learnt CNN representations
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~Invariance and Covariance

Do CN
trans

traini

Nls effective

or

Ng!

mation grou

y linearize variabl

ity fro

DS as a byproduct of su

M cCOmMmmon
bervised

- [Aubry & Rusell "| 5] studied this question empirically:

For each layer k, consider ®(x) = xp(u, \p)

Given a transformation (f0) parametrized by 6,

perform PCA on {®y(p(0)x)} .0
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* Principal components corresponding to different factors

at different layers:

(¢) Chair, pool3, rotation

hand e gy, smre’

(e) Car, pool5

(f) Car, pool3, style (g) Car, pool3, rotation

55
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(h) Car, fc6, rotation

[Aubry & Rusell "I 5]
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Viewpoint

Places

26.8 %
8.5

21.4 %
7.0

Dbject color (d) Background color

AlexNet

26.4 %
8.3

19.4 %
7.2

VGG

21.2 %
10.0

16.4 %
7.7

Style

Places

26.8 %
136.3

39.1 %
105.5

AlexNet

28.2 %
121.1

40.3 %
125.5

VGG

26.4 %
181.9

44.3 %
136.3

AL

Places

46.8 %

39.5 %

AlexNet

45.0 %

40.3 %

VGG ¥4

52.4 %

39.3 %

[Aubry & Rusell "I 5]




Invariance and Covariance

* Besides viewpoint and illumination, another major source
of variabllity 1s clutter:
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* Clutter: High-dimensional variability

- The model needs to detect a particular object and discard most of
the signal energy.

- The object of interest Is localized at a certain scale.

- Thresholding Is an efficient operator to perform detection.

e Are CNNs robust to clutter?
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* [Leller and Fergus, ' 4]

- Detection probabillity as a function of occluding square
- The network effectively captures
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* [he weakest form of stability i1s addrtive:

|P(z +w) — @(z)| < ||w]]

- We saw that this can be enforced by having convolution tensors with
operator norm ||[W, || < 1.

* Do CNNs possess this form of stability?
* Does it matter?
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_Instabilities of Deep Networks

~

2 !
L 4 { y
~ 44 s
S 0
. 7
Y
J e

Alex Krizhevsky's Imagenet

8 layer Deep ConvNet

|z — 2| < 0.01||z||

correctly classified as
classified ostrigh

Szegedy etal ICLR'| 4] —



Instabilities of Deep Networks

o o joint work with Szegedy et al, ICLR'[ 4]
* Addrtive Stability 1s not enforced.

[®i(z) = @i(2)[| < [[Wilz —2)|| < [[Will [z — 27|

Layer Size | W |
Conv. 1| 3x11 x11 x 96 2.7H
Conv. 2 | 96 x5 x5 x 256 10
Conv. 3 | 256 x 3 x 3 x 384 7
Conv. 4 | 384 x 3 x 3 x 384 7.5
Conv. 5 | 384 x 3 x 3 x 256 11

FC. 1 9216 x 4096 3.12

FC. 2 4096 x 4096 4

FC. 3 4096 x 1000 4
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* [hese aaversarial examples are found by explicitly fooling
the network:

min ||z — Z[|* s.t. p(y | (7)) L p(y | 2(2))

 They are robust to different parametrization of ®(x)and
to different hyperparameters.

* However, these examples do not occur In practice.
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