# Stat 212b:Topics in Deep Learning Lecture 5 

Joan Bruna<br>UC Berkeley

## Review:Wavelets

- $\psi$ : bandpass (ie oscillating) signal, well localized in space and frequency.
- At least one vanishing moment: $\int \psi(u) d u=0$ (we say that $\psi$ has $k$ vanishing moments if $\int \psi(u) u^{l} d u=0$ for $l<k$ )
- Can be real or complex. $\psi=\psi_{r}+i \psi_{i}$

Ex: Morlet wavelet



## Review: Littlewood-Paley Wavelet Filter Banks

- For images, dilated and rotated wavelets:

$$
\psi_{\lambda}(u)=2^{-j / 2} \psi\left(2^{-j} r u\right), \text { with } \lambda=2^{j} r
$$



- Wavelet transform convolutional filter bank:

$$
W x=\left\{x \star \phi(u), x \star \psi_{\lambda}(u)\right\}_{\lambda \in \Lambda}
$$

$$
x \star \psi(u)=\int x(v) \psi(u-v) d v .
$$

Theorem (Littlewood-Paley): If there exists $\delta>0$ such that
$\forall \omega>0,1-\delta \leq|\hat{\phi}(\omega)|^{2}+\frac{1}{2} \sum_{\lambda}\left|\hat{\psi}\left(\lambda^{-1} \omega\right)\right|^{2} \leq 1$,
then $\forall x \in L^{2},(1-\delta)\|x\|^{2} \leq\|W x\|^{2} \leq\|x\|^{2}$.

## Review:Wavelets and Deformations

- We saw before that a blurring kernel is nearly invariant to deformations:

Proposition: The local averaging $\Phi(x)=x * \phi_{J}$ satisfies $\forall\|x\|=1 \in L^{2}, \tau,\left\|\Phi(x)-\Phi\left(\varphi_{\tau} x\right)\right\| \leq C\|\tau\|$.

- What about the wavelet operator $\Phi(x)=\left\{x * \psi_{\lambda}\right\}_{\lambda}$ ?
- We don't have local invariance, but we have a form of local covariance:

Proposition [Mallat]: For each $\delta>0$ there exists $C>0$ such that for all $J$ and all $\tau \in C^{2}$ with $\|\nabla \tau\|_{\infty} \leq 1-\delta$ we have

$$
\left\|W_{J} \varphi_{\tau}-\varphi_{\tau} W_{J}\right\| \leq C\left(J\|\nabla \tau\|_{\infty}+\|H \tau\|_{\infty}\right)
$$

( $H \tau$ : Hessian of $\tau$ )

## Review: Characterization of stable non-linearities

- Preserve additive stability:

$$
\left\|M x-M x^{\prime}\right\| \leq\left\|x-x^{\prime}\right\| . \quad M \text { non-expansive } .
$$

- Preserve geometric stability: It is sufficient to commute with diffeomorphisms.

Theorem: If $M$ is non-expansive operator in $L^{2}$ such that $\varphi_{\tau} M=M \varphi_{\tau}$ for all $\tau$, then $M$ is point-wise:

$$
M x(u)=\rho(x(u)) .
$$

- Since we want to smooth orbits, we may choose a pointwise nonlinearity that reduces oscillations:

$$
\rho(z)=|z| \text { or } \rho(z)=\max (0, z)
$$

## Objectives

- Scattering Representations
- Main Properties
- Main Limitations
- Extensions: Joint rigid scattering.
- Convolutional Neural Networks
- From fixed groups to adaptive templates


## Separable Scattering Operators

- Local averaging kernel: $x \star \phi_{J}$
- locally translation invariant
- stable to additive and geometric deformations
- loss of high-frequency information.


## Separable Scattering Operators

- Local averaging kernel: $\quad x \star \phi_{J}$
- locally translation invariant
- stable to additive and geometric deformations
- loss of high-frequency information.
- Recover lost information:

$$
\mathcal{U}_{J}(x)=\left\{x \star \phi_{J},\left|x \star \psi_{\lambda}\right|\right\}_{\lambda \in \Lambda_{J}}
$$

- Point-wise, non-expansive non-linearities: maintain stability.
- Complex modulus maps energy towards low-frequencies.


## Separable Scattering Operators

- Local averaging kernel: $\quad x \star \phi_{J}$
- locally translation invariant
- stable to additive and geometric deformations
- loss of high-frequency information.
- Recover lost information:

$$
\mathcal{U}_{J}(x)=\left\{x \star \phi_{J},\left|x \star \psi_{\lambda}\right|\right\}_{\lambda \in \Lambda_{J}}
$$

- Point-wise, non-expansive non-linearities: maintain stability.
- Complex modulus maps energy towards low-frequencies.
- Cascade the "recovery" operator:

$$
\mathcal{U}_{J}^{2}(x)=\left\{x \star \phi_{J},\left|x \star \psi_{\lambda}\right| \star \phi_{J},\left|\left|x \star \psi_{\lambda}\right| \star \psi_{\lambda^{\prime}}\right|\right\}_{\lambda, \lambda^{\prime} \in \Lambda_{J}} .
$$

## Separable Scattering Operators

- Local averaging kernel: $\quad x \star \phi_{J}$
- locally translation invariant
- stable to additive and geometric deformations
- loss of high-frequency information.
- Recover lost information:

$$
\mathcal{U}_{J}(x)=\left\{x \star \phi_{J},\left|x \star \psi_{\lambda}\right|\right\}_{\lambda \in \Lambda_{J}}
$$

- Point-wise, non-expansive non-linearities: maintain stability.
- Complex modulus maps energy towards low-frequencies.
- Cascade the "recovery" operator:

$$
\mathcal{U}_{J}^{2}(x)=\left\{x \star \phi_{J},\left|x \star \psi_{\lambda}\right| \star \phi_{J},\left|\left|x \star \psi_{\lambda}\right| \star \psi_{\lambda^{\prime}}\right|\right\}_{\lambda, \lambda^{\prime} \in \Lambda_{J}} .
$$

- Scattering coefficient along a path

$$
p=\left(\lambda_{1}, \ldots, \lambda_{m}\right):
$$

$$
S_{J}[p] x(u)=\left|\left|\left|x \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}\right| \star \ldots\right| \star \psi_{\lambda_{m}} \mid \star \phi_{J}(u) .
$$

## Scattering Convolutional Network



Cascade of contractive operators.

## Scattering Example



## Scattering Example



## Scattering Example



## Scattering Example



## Scattering with Multi-Resolution Wavelets

- We have considered a collection $\psi_{j, \theta}$ of oriented and dilated wavelets, and a translation co-variant wavelet decomposition operator:

$$
W x=\left\{x \star \phi_{J}, x \star \psi_{j, \theta}\right\}
$$

- With $J$ scales and $L$ orientations, the redundancy is $(I+J L)$.


## Scattering with Multi-Resolution Wavelets

- With J scales and $L$ orientations, the redundancy is $(I+J L)$.
- This is in contrast with orthogonal wavelet transforms, used for compression and (suboptimally) for denoising.

$$
x \in \mathbb{R}^{N} \rightarrow W x \in \mathbb{R}^{N} \cdot \quad W^{T} W=I d
$$


example of orthogonal wavelet decomposition

- A very efficient algorithm exists using filter cascades with MultiResolution Analysis.


## Multi-Resolution Wavelets

- At each scale $j$, we consider a low-pass scaling filter $h$ and band-pass filters $g_{\theta}, \theta \in[1, \ldots, L]$.
- Wavelets and the bluring kernel are obtained at each $j$ by cascading these filters:

$$
\phi_{j}=\phi_{j-1} \star h_{j} \quad \psi_{j, \theta}=\phi_{j-1} \star g_{j, \theta} .
$$

- Decompositions are obtained by cascading fine-to-coarse:

$$
x \star \phi_{j}(u)=\left(x \star \phi_{j-1}\right) \star h_{j}(u) \quad, \quad x \star \psi_{j, \theta}(u)=\left(x \star \phi_{j-1}\right) \star g_{j, \theta}(u) .
$$

- Downsampling (or "stride") adaptive to signal smoothness:
$x \star \phi_{j}(u)=\left(x \star \phi_{j-1}\right) \star h(2 u), \quad x \star \psi_{j, \theta}(u)=\left(x \star \phi_{j-1}\right) \star g_{\theta}(2 u)$.


## Scattering with Multi-Resolution Wavelets



## Scattering with Multi-Resolution Wavelets


\#layers: maximum scale
$x \star h$


## Scattering Conservation of Energy

Theorem (Mallat): For appropriate wavelets, the scattering representation is contractive, $\left\|S_{J} x-S_{J} x^{\prime}\right\| \leq\left\|x-x^{\prime}\right\|$, and unitary, $\left\|S_{J} x\right\|=\|x\|$.

$$
\left\|S_{J} x\right\|^{2}=\sum_{p \in \mathcal{P}_{J}}\left\|S_{J}[p] x\right\|^{2}
$$

## Scattering Conservation of Energy

Theorem (Mallat): For appropriate wavelets, the scattering representation is contractive, $\left\|S_{J} x-S_{J} x^{\prime}\right\| \leq\left\|x-x^{\prime}\right\|$, and unitary, $\left\|S_{J} x\right\|=\|x\|$.

$$
\left\|S_{J} x\right\|^{2}=\sum_{p \in \mathcal{P}_{J}}\left\|S_{J}[p] x\right\|^{2}
$$

- In practice, the transform is limited to a finite number of layers $m_{\max }$. This result shows residual error converges to 0 .
- The result requires complex wavelets (ie, not real).


## Interpretation

- Unitary Wavelet decomposition preserves energy:

$$
\|x\|^{2}=\left\|x \star \phi_{J}\right\|^{2}+\sum_{j \leq J, \theta}\left\|x \star \psi_{j, \theta}\right\|^{2}
$$

- Repeat formula on each output $\left|x \star \psi_{j, \theta}\right|$ :

$$
\begin{gathered}
\left\|\left|x \star \psi_{j, \theta}\right|\right\|^{2}=\left\|\left|x \star \psi_{j, \theta}\right| \star \phi_{J}\right\|^{2}+\sum_{j_{2} \leq J, \theta_{2}}\left\|\left|x \star \psi_{j, \theta}\right| \star \psi_{j_{2}, \theta_{2}}\right\|^{2} \\
\|x\|^{2}=\left\|S_{J}[0] x\right\|^{2}+\sum_{|p|=1}\left\|S_{J}[p] x\right\|^{2}+\sum_{|p|=2}\left\|\left|x \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}\right\|^{2}
\end{gathered}
$$

$\forall m$

$$
\|x\|^{2}=\sum_{|p|<m}\left\|S_{J}[p] x\right\|^{2}+\sum_{|p|=m}\| \| x \star \psi_{\lambda_{1}}\left|\star \psi_{\lambda_{2}}\right| \ldots \psi_{\lambda_{m}} \|^{2}
$$

## Interpretation

- Unitary Wavelet decomposition preserves energy:

$$
\|x\|^{2}=\left\|x \star \phi_{J}\right\|^{2}+\sum_{j \leq J, \theta}\left\|x \star \psi_{j, \theta}\right\|^{2}
$$

- Repeat formula on each output $\left|x \star \psi_{j, \theta}\right|$ :

$$
\begin{gathered}
\left\|\left|x \star \psi_{j, \theta}\right|\right\|^{2}=\left\|\left|x \star \psi_{j, \theta}\right| \star \phi_{J}\right\|^{2}+\sum_{j_{2} \leq J, \theta_{2}}\left\|\left|x \star \psi_{j, \theta}\right| \star \psi_{j_{2}, \theta_{2}}\right\|^{2} \\
\|x\|^{2}=\left\|S_{J}[0] x\right\|^{2}+\sum_{|p|=1}\left\|S_{J}[p] x\right\|^{2}+\sum_{|p|=2}\left\|\left|x \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}\right\|^{2}
\end{gathered}
$$

$\forall m$

$$
\|x\|^{2}=\sum_{|p|<m}\left\|S_{J}[p] x\right\|^{2}+\sum_{|p|=m}\| \| x \star \psi_{\lambda_{1}}\left|\star \psi_{\lambda_{2}}\right| \ldots \psi_{\lambda_{m}} \|^{2}
$$

## Interpretation

- Result amounts to proving that

$$
\lim _{m \rightarrow \infty} \sum_{|p|=m, j_{i} \leq J}\| \| x \star \psi_{\lambda_{1}}|\star \ldots| \star \psi_{\lambda_{m}} \mid \|^{2}=0 .
$$

- Fact: Every time we apply the (complex) wavelet modulus, we push energy towards the low frequencies.
- Result is obtained by formally proving this fact.


## Interpretation

- Result amounts to proving that

$$
\lim _{m \rightarrow \infty} \sum_{|p|=m, j_{i} \leq J}\| \| x \star \psi_{\lambda_{1}}|\star \ldots| \star \psi_{\lambda_{m}} \mid \|^{2}=0 .
$$

- Fact: Every time we apply the (complex) wavelet modulus, we push energy towards the low frequencies.
- Result is obtained by formally showing this fact.
- It requires a non-linearity that produces smooth envelopes:
- complex wavelets OK
- real wavelets: ??


## Scattering Geometric Stability

- Geometric Stability:

$$
\left\|S_{J} x\right\|^{2}=\sum_{p \in \mathcal{P}_{J}}\left\|S_{J}[p] x\right\|^{2}
$$

Theorem (Mallat'10): There exists $C$ such that for all $x \in L^{2}\left(R^{d}\right)$ and all $m$, the $m$-th order scattering satisfies

$$
\left\|S_{J} \varphi_{\tau} x-S_{J} x\right\| \leq C m\|x\|\left(2^{-J}|\tau|_{\infty}+\|\nabla \tau\|_{\infty}+\|H \tau\|_{\infty}\right) .
$$



## Interpretation

- Denote

$$
A_{J} x=x \star \phi_{J} \quad W_{J} x=\left\{x \star \psi_{\lambda}\right\}_{\lambda} \quad M x=|x|
$$

- We know that

$$
\begin{aligned}
& \left\|A_{J}-A_{J} \varphi_{\tau}\right\| \leq C\left(2^{-J}|\tau|_{\infty}+|\nabla \tau|_{\infty}\right) \\
& \left\|W_{J} \varphi_{\tau}-\varphi_{\tau} W_{J}\right\| \leq C\left(J|\nabla \tau|_{\infty}+|H \tau|_{\infty}\right)
\end{aligned}
$$

$$
M \varphi_{\tau}=\varphi_{\tau} M
$$

$$
([A, B]=A B-B A: \text { Commutator })
$$

- $S_{J}=\left\{A_{J}, A_{J} M W_{J}, A_{J} M W_{J} M W_{J}, \ldots\right\}$


## Interpretation

- Denote

$$
A_{J} x=x \star \phi_{J} \quad W_{J} x=\left\{x \star \psi_{\lambda}\right\}_{\lambda} \quad M x=|x|
$$

- We know that

$$
\begin{aligned}
& \left\|A_{J}-A_{J} \varphi_{\tau}\right\| \leq C\left(2^{-J}|\tau|_{\infty}+|\nabla \tau|_{\infty}\right) \\
& \left\|W_{J} \varphi_{\tau}-\varphi_{\tau} W_{J}\right\| \leq C\left(J|\nabla \tau|_{\infty}+|H \tau|_{\infty}\right)
\end{aligned}
$$

$$
M \varphi_{\tau}=\varphi_{\tau} M
$$

$$
([A, B]=A B-B A: \text { Commutator })
$$

- $S_{J}=\left\{A_{J}, A_{J} M W_{J}, A_{J} M W_{J} M W_{J}, \ldots\right\}$


## Interpretation

- Each order contributes separately:

$$
\left\|S_{J}-S_{J} \varphi_{\tau}\right\|^{2}=\left\|A_{J}-A_{J} \varphi_{\tau}\right\|^{2}+\left\|A_{J} M W_{J}-A_{J} M W_{J} \varphi_{\tau}\right\|^{2}+\ldots
$$

## Interpretation

- Each order contributes separately:

$$
\left\|S_{J}-S_{J} \varphi_{\tau}\right\|^{2}=\left\|A_{J}-A_{J} \varphi_{\tau}\right\|^{2}+\left\|A_{J} M W_{J}-A_{J} M W_{J} \varphi_{\tau}\right\|^{2}+\ldots
$$

- Let us inspect a generic term:
$\|A_{J} \underbrace{M W_{J} M W_{J} \ldots M W_{J}}_{k \text { times }}-A_{J} \underbrace{M W_{J} M W_{J} \ldots M W_{J}}_{k \text { times }} \varphi_{\tau}\|$
$\left(U_{J}=M W_{J}\right)$
$\left\|A_{J} U_{J}^{k}-A_{J} U_{J}^{k} \varphi_{\tau}\right\| \leq\left\|A_{J} U_{J}^{k}-A_{J} U_{J}^{k-1} \varphi_{\tau} U_{J}\right\|+\left\|A_{J} U_{J}^{k-1} \varphi_{\tau} U_{J}-A_{J} U_{J}^{k} \varphi_{\tau}\right\|$


## Interpretation

- Each order contributes separately:

$$
\left\|S_{J}-S_{J} \varphi_{\tau}\right\|^{2}=\left\|A_{J}-A_{J} \varphi_{\tau}\right\|^{2}+\left\|A_{J} M W_{J}-A_{J} M W_{J} \varphi_{\tau}\right\|^{2}+\ldots
$$

- Let us inspect a generic term:
$\|A_{J} \underbrace{M W_{J} M W_{J} \ldots M W_{J}}_{k \text { times }}-A_{J} \underbrace{M W_{J} M W_{J} \ldots M W_{J}}_{k \text { times }} \varphi_{\tau}\|$
$\left(U_{J}=M W_{J}\right)$
$\left\|A_{J} U_{J}^{k}-A_{J} U_{J}^{k} \varphi_{\tau}\right\| \leq\left\|A_{J} U_{J}^{k}-A_{J} U_{J}^{k-1} \varphi_{\tau} U_{J}\right\|+\left\|A_{J} U_{J}^{k-1} \varphi_{\tau} U_{J}-A_{J} U_{J}^{k} \varphi_{\tau}\right\|$
$\leq\left\|A_{J} U_{J}^{k-1}-A_{J} U_{J}^{k-1} \varphi_{\tau}\right\|+\left\|A_{J} U_{J}^{k-1}\left[\varphi_{\tau}, U_{J}\right]\right\|$
$\leq\left\|A_{J} U_{J}^{k-1}-A_{J} U_{J}^{k-1} \varphi_{\tau}\right\|+\left\|\left[\varphi_{\tau}, U_{J}\right]\right\|$
$\leq k\left\|\left[\varphi_{\tau}, U_{J}\right]\right\|+\left\|A_{J}-A_{J} \varphi_{\tau}\right\| \leq k\left\|\left[\varphi_{\tau}, W_{J}\right]\right\|+\left\|A_{J}-A_{J} \varphi_{\tau}\right\|$


## Scattering Discriminability

- For appropriate wavelets, the information is preserved at each layer:

Theorem: (Waldspurger) For appropriate wavelets, the operator $U x=\left\{x \star \phi_{J},\left|x \star \psi_{j}\right|\right\}_{j \leq J}$ is injective.

## Scattering Discriminability

- For appropriate wavelets, the information is preserved at each layer:

Theorem: (Waldspurger) For appropriate wavelets, the operator $U x=\left\{x \star \phi_{J},\left|x \star \psi_{j}\right|\right\}_{j \leq J}$ is injective.

- Very different situation than Fourier modulus (why?)


## Scattering Discriminability

- For appropriate wavelets, the information is preserved at each layer:

Theorem: (Waldspurger) For appropriate wavelets, the operator $U x=\left\{x \star \phi_{J},\left|x \star \psi_{j}\right|\right\}_{j \leq J}$ is injective.

- Very different situation than Fourier modulus (why?)
- The representation is highly redundant.
- However, the inverse is unstable for large J: we might be contracting too much in general.
- How to prevent that?


## Discriminability and Sparsity

- Typical non-linearities are contractive:

$$
\left\|\rho(x)-\rho\left(x^{\prime}\right)\right\| \leq\left\|x-x^{\prime}\right\|
$$

## Discriminability and Sparsity

- Typical non-linearities are contractive:

$$
\left\|\rho(x)-\rho\left(x^{\prime}\right)\right\| \leq\left\|x-x^{\prime}\right\|
$$

- However, if $x, x^{\prime}$ are sparse, this inequality is an equality in most of the signal domain.
- Thus sparsity is a means to control and prevent excessive contraction of different signal classes.


## Image Examples

## Images

Fourier


Wavelet Scattering

$$
\left|x \star \psi_{\lambda_{1}}\right| \star \phi_{J} \quad| | x \star \psi_{\lambda_{1}}\left|\star \psi_{\lambda_{2}}\right| \star \phi_{J}
$$


window size $=$ image size

## Sound Examples



## Limitations of Separable Scattering

- No feature dimensionality reduction
- The number of features increases exponentially with depth and polynomially with scale.


## Limitations of Separable Scattering

- No feature dimensionality reduction
- The number of features increases exponentially with depth and polynomially with scale.
- We are indirectly assuming that each wavelet band is deformed independently
- We cannot capture the joint deformation structure of feature maps
- Loss of discriminability.


## Limitations of Separable Scattering

- No feature dimensionality reduction
- The number of features increases exponentially with depth and polynomially with scale.
- We are indirectly assuming that each wavelet band is deformed independently
- We cannot capture the joint deformation structure of feature maps
- Loss of discriminability.
- The deformation model is rigid and non-adaptive
- We cannot adapt to each class
- Wavelets are hard to define a priori on high-dimensional domains.


## Joint versus Separable Invariance

- Suppose we simply want stable translation invariance.
- Two-dimensional translation group in a periodic domain:

$$
G \cong(\mathbb{R} /([0, N]))^{2}=S^{1} \times S^{1} \cong \mathbb{T}^{2}
$$

- Each $S^{1}$ acts on images along a different coordinate:

$$
\varphi_{a}^{1} x\left(u_{1}, u_{2}\right)=x\left(u_{1}-a, u_{2}\right), \varphi_{a}^{2} x\left(u_{1}, u_{2}\right)=x\left(u_{1}, u_{2}-a\right)
$$

## Joint versus Separable Invariance

- Suppose we simply want stable translation invariance.
- Two-dimensional translation group in a periodic domain:

$$
G \cong(\mathbb{R} /([0, N]))^{2}=S^{1} \times S^{1} \cong \mathbb{T}^{2}
$$

- Each $S^{1}$ acts on images along a different coordinate:

$$
\varphi_{a}^{1} x\left(u_{1}, u_{2}\right)=x\left(u_{1}-a, u_{2}\right), \varphi_{a}^{2} x\left(u_{1}, u_{2}\right)=x\left(u_{1}, u_{2}-a\right)
$$

## Joint versus Separable Invariance

- So we could just consider one-dimensional (stable) translation invariant representations and compose:

$$
G=G_{1} \times G_{2}
$$



## Joint versus Separable Invariance

- So we could just consider one-dimensional (stable) translation invariant representations and compose:

$$
G=G_{1} \times G_{2}
$$



- If for each $u_{2}, x\left(\cdot, u_{2}\right) \mapsto \Phi_{1}(x)\left(\cdot, u_{2}\right)$ is $G_{1}$ invariant then $\Phi_{1}\left(\varphi^{1} x\right)=\Phi_{1}(x)$ for all $x$ and $\varphi^{1} \in G_{1}$
- If for each $\lambda, y(\lambda, \cdot) \mapsto \Phi_{2}(y)(\lambda, \cdot)$ is $G_{2}$ invariant then $\Phi_{2}\left(\varphi^{2} y\right)=\Phi_{2}(y)$ for all $y$ and $\varphi^{2} \in G_{2}$


## Joint versus Separable Invariance

- Thus, if $\Phi_{1}$ is $G_{1}$ invariant and $G_{2}$ covariant, and $\Phi_{2}$ is $G_{2}$ invariant, then $\Phi=\Phi_{2} \circ \Phi_{1}$ satisfies

$$
\begin{gathered}
\forall \varphi \in G, \varphi=\varphi^{1} \varphi^{2}, \varphi^{i} \in G_{i} \\
\Phi(\varphi x)=\Phi_{2} \Phi_{1}\left(\varphi^{1} \varphi^{2} x\right)=\Phi_{2} \Phi_{1}\left(\varphi^{2} x\right)=\Phi_{2} \varphi^{2} \Phi_{1}(x)=\Phi_{2} \Phi_{1}(x)=\Phi(x)
\end{gathered}
$$

## Joint versus Separable Invariance

- Thus, if $\Phi_{1}$ is $G_{1}$ invariant and $G_{2}$ covariant, and $\Phi_{2}$ is $G_{2}$ invariant, then $\Phi=\Phi_{2} \circ \Phi_{1}$ satisfies

$$
\forall \varphi \in G, \varphi=\varphi^{1} \varphi^{2}, \varphi^{i} \in G_{i}
$$

$\Phi(\varphi x)=\Phi_{2} \Phi_{1}\left(\varphi^{1} \varphi^{2} x\right)=\Phi_{2} \Phi_{1}\left(\varphi^{2} x\right)=\Phi_{2} \varphi^{2} \Phi_{1}(x)=\Phi_{2} \Phi_{1}(x)=\Phi(x)$

- So we achieve further invariance by composing partial invariances.


## Joint versus Separable Invariance

- Thus, if $\Phi_{1}$ is $G_{1}$ invariant and $G_{2}$ covariant, and $\Phi_{2}$ is $G_{2}$ invariant, then $\Phi=\Phi_{2} \circ \Phi_{1}$ satisfies

$$
\forall \varphi \in G, \varphi=\varphi^{1} \varphi^{2}, \varphi^{i} \in G_{i}
$$

$\Phi(\varphi x)=\Phi_{2} \Phi_{1}\left(\varphi^{1} \varphi^{2} x\right)=\Phi_{2} \Phi_{1}\left(\varphi^{2} x\right)=\Phi_{2} \varphi^{2} \Phi_{1}(x)=\Phi_{2} \Phi_{1}(x)=\Phi(x)$

- So we achieve further invariance by composing partial invariances.
- Is there a problem here?


## Joint versus Separable Invariance



- The factorization does not capture the joint action of G| along the domain $\left(u_{1}, u_{2}\right)$.
- We are invariant to too many things.


## Wavelet Covariants

- If we replace input image by first layer output:

$$
\begin{aligned}
& \rho\left(x_{0} \star \psi_{j, \theta}\right)(u)=x_{1}(u, j, \theta) \\
& \text { Let } \tilde{x}_{0}=R_{\alpha} x_{0} \text { be a rotation of } \alpha \text { degrees. } \\
& \rho\left(\tilde{x}_{0} \star \psi_{j, \theta}\right)(u)=x_{1}\left(R_{\alpha} u, j, \theta+\alpha\right)
\end{aligned}
$$

- Similarly, roto-translation acts on $x_{1}$ by rotating and translating spatial coordinates and translating orientation coordinates

Let $\tilde{x}_{0}=\varphi_{(v, \alpha)} x_{0}$ be a roto-translation with parameters $(v, \alpha)$.

$$
\rho\left(\tilde{x}_{0} \star \psi_{j, \theta}\right)(u)=x_{1}\left(\varphi_{v} R_{\alpha} u, j, \theta+\alpha\right)
$$

- So we can replace convolutions over translation by convolutions over roto-translations.


## Group Convolutions

Definition: Let $G$ be a group equipped with a Haar measure $d \mu$, acting on $\Omega$, and $h \in L^{1}(G)$. The group convolution $x \star_{G} h$ is defined as

$$
x \star_{G} h(u)=\int_{G} h(g) x\left(\varphi_{g} u\right) d \mu(g) \quad, x \in L^{2}(\Omega)
$$

- If $x=x_{1}(u, j, \theta)$ and $G$ are roto-translations, these convolutions recombine different orientation channels.


## Joint Scattering

- We start by lifting the image with spatial wavelet convolutions: stable and covariant to roto-translations.

- We then adapt the second wavelet operator to its input joint variability structure.
- More discriminability.
- Requires defining wavelets on more complicated domains


## Example: Roto-Translation Scattering

- [Sifre and Mallat'| 3]

second layer wavelets constructed by a separable product on spatial and rotational wavelets

$$
\Psi_{\lambda}(u, \theta)=\psi_{\lambda_{1}}(u) \psi_{\lambda_{2}}(\theta)
$$


example of patterns that are discriminated by joint scattering but not with separable scattering.

## Classification with Scattering

- State-of-the art on pattern and texture recognition using separable scattering followed by SVM: - MNIST, USPS [Pami' I 3]

| 3 | 6 | 8 | 1 | 7 | 9 | 6 | 6 | 9 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 7 | 5 | 7 | 8 | 6 | 3 | 4 | 8 | 5 |
| 2 | 1 | 7 | 9 | 7 | 1 | 2 | 8 | 4 | 5 |
| 4 | 8 | 1 | 9 | 0 | 1 | 8 | 8 | 9 | 4 |

- Texture (CUREt) [Pami'I3]

- Music Genre Classification (GTZAN) [IEEE Acoustic 'I3]


## Classification with Scattering

- Joint Scattering Improves Performance:
- More complicated Texture (KTH,UIUC,UMD) [Sifre\&Mallat, CVPR'I3]

- Small-mid scale Object Recognition (Caltech, CIFAR)
[Oyallon\&Mallat, CVPR'I 5]
-~ $17 \%$ error on Cifar-I0



## Limitations of Joint Scattering

- Variability from physical world expressed in the language of transformation groups and deformations
- However, there are not many possible groups: essentially the affine group and its subgroups.
- As a new wavelet layer is introduced, we create new coordinates, but we do not destroy existing coordinates
- Hard to scale: dimensionality reduction is needed.
- Wavelet design complicated beyond roto-translation groups.
- Beyond physics, many deformations are class-specific and not small.
- Learning filters from data rather than designing them.


## From Scattering to CNNs

- Given $x(u, \lambda)$ and a group $G$ acting on both $u$ and $\lambda$, we defined wavelet convolutions over $G$ as

$$
x \star_{G} \psi_{\lambda^{\prime}}(u, \lambda)=\int_{v} \int_{\alpha} \psi_{\lambda}\left(R_{-\alpha}(u-v)\right) x(v, \alpha) d v d \alpha
$$

- In discrete coordinates,

$$
x \star_{G} \psi_{\lambda^{\prime}}(u, \lambda)=\sum_{v} \sum_{\alpha} \bar{\psi}_{\lambda^{\prime}}(u-v, \alpha, \lambda) x(v, \alpha)
$$

- Which in general is a convolutional tensor.

