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Review: Wavelets

•     : bandpass (ie oscillating) signal, well localized in space 
and frequency.

• At least one vanishing moment:

• Can be real or complex. 
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Review: Littlewood-Paley Wavelet Filter Banks

• Wavelet transform convolutional filter bank: 
x ?  (u) =

Z
x(v) (u� v)dv .

Wx = {x ? �(u) , x ?  �(u)}�2⇤

• For images, dilated and rotated wavelets:

Theorem (Littlewood-Paley): If there exists � > 0 such that

8! > 0 , 1� �  |ˆ�(!)|2 + 1

2

X

�

| ˆ (��1
!)|2  1 ,

then 8x 2 L

2
, (1� �)kxk2  kWxk2  kxk2 .

|�̂2jr(⇥)|2

�1

�2

 �(u) = 2�j/2 (2�jru) , with � = 2jr
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Review: Wavelets and Deformations

• We saw before that a blurring kernel is nearly invariant 
to deformations:

• What about the wavelet operator                          ?
- We don’t have local invariance, but we have a form of local 

covariance: 

Proposition: The local averaging �(x) = x ⇤ �J satisfies

8 kxk = 1 2 L

2
, ⌧ , k�(x)� �('⌧x)k  Ck⌧k .

�(x) = {x ⇤  �}�

Proposition [Mallat]: For each � > 0 there exists C > 0 such that for all J
and all ⌧ 2 C2

with kr⌧k1  1� � we have

kWJ'⌧ � '⌧WJk  C(Jkr⌧k1 + kH⌧k1) .

(H⌧ : Hessian of ⌧)
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Review: Characterization of stable non-linearities

• Preserve additive stability: 

• Preserve geometric stability: It is sufficient to commute 
with diffeomorphisms.

• Since we want to smooth orbits, we may choose a point-
wise nonlinearity that reduces oscillations: 

kMx�Mx

0k  kx� x

0k .

M non-expansive .

Theorem: If M is non-expansive operator in L2
such

that '⌧M = M'⌧ for all ⌧ , then M is point-wise:

Mx(u) = ⇢(x(u)) .

⇢(z) = |z| or ⇢(z) = max(0, z)
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Objectives

• Scattering Representations
– Main Properties
– Main Limitations
– Extensions: Joint rigid scattering.

• Convolutional Neural Networks
– From fixed groups to adaptive templates
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Separable Scattering Operators
• Local averaging kernel:

– locally translation invariant
– stable to additive and geometric deformations
– loss of high-frequency information.

x ? �J
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• Local averaging kernel:
– locally translation invariant
– stable to additive and geometric deformations
– loss of high-frequency information.

• Recover lost information:
– Point-wise, non-expansive non-linearities: maintain stability.
– Complex modulus maps energy towards low-frequencies.

UJ(x) = {x ? �J , |x ?  �|}�2⇤J .

Separable Scattering Operators
x ? �J
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• Local averaging kernel:
– locally translation invariant
– stable to additive and geometric deformations
– loss of high-frequency information.

• Recover lost information:
– Point-wise, non-expansive non-linearities: maintain stability.
– Complex modulus maps energy towards low-frequencies.

• Cascade the “recovery” operator:

UJ(x) = {x ? �J , |x ?  �|}�2⇤J .

U2
J(x) = {x ? �J , |x ?  �|?�J , ||x ?  �| ?  �0 |}�,�02⇤J .

Separable Scattering Operators
x ? �J
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• Local averaging kernel:
– locally translation invariant
– stable to additive and geometric deformations
– loss of high-frequency information.

• Recover lost information:
– Point-wise, non-expansive non-linearities: maintain stability.
– Complex modulus maps energy towards low-frequencies.

• Cascade the “recovery” operator:

• Scattering coefficient along a path   

UJ(x) = {x ? �J , |x ?  �|}�2⇤J .

U2
J(x) = {x ? �J , |x ?  �|?�J , ||x ?  �| ?  �0 |}�,�02⇤J .

p = (�1, . . . ,�m) :

SJ [p]x(u) = |||x ?  �1 | ?  �2 | ? . . . | ?  �m | ? �J(u) .

Separable Scattering Operators
x ? �J
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     Scattering Convolutional Network

| |f ⇧ ⇤j1,�1 | ⇧ ⇤j2,�2 | ⇧ ⇥J
�j1, j2
��1, �2

|WJ |

|f ⌅ ⇤j1,�1 | ⌅ ⇥J
�j1
��1

| |f ⇥ �j1,�1 | ⇥ �j2,�2 |

|WJ |
|f ⇥ �j1,�1 |

f ⇥ �J
|WJ |

| |f ⇥ �j1,�1 · · · | ⇥ �jm+1,�m+1 |

Cascade of contractive operators.

· · · · · ·
| |f ⇥ �j1,�1 | · · · ⇥ �jm,�m |

|WJ |
| |f ⇧ ⇤j1,�1 | · · · ⇧ ⇤jm,�m | ⇧ ⇥J

⇥j1...jm

⇥�1...�m

f
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Scattering Example

x(u)
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Scattering Example

x(u)

x ? �J(2
J
u)

|x ?  �|(u)
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Scattering Example

x(u)

x ? �J(2
J
u)

|x ?  �|(u) | |x ?  �1 | ?  �2 |(u)
|x ?  �| ? �J(2Ju)
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Scattering Example

x(u)

x ? �J(2
J
u)

|x ?  �|(u) | |x ?  �1 | ?  �2 |(u)
|x ?  �| ? �J(2Ju)

#layers:
 maximum number of 

non-linearities
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Scattering with Multi-Resolution Wavelets

• We have considered a collection       of oriented and 
dilated wavelets, and a translation co-variant wavelet 
decomposition operator:

• With J scales and L orientations, the redundancy is (1+JL). 

 j,✓

Wx = {x ? �J , x ?  j,✓}
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Scattering with Multi-Resolution Wavelets
• With J scales and L orientations, the redundancy is (1+JL). 
• This is in contrast with orthogonal wavelet transforms, used 

for compression and (suboptimally) for denoising. 

•  A very efficient algorithm exists using filter cascades with 
MultiResolution Analysis. 

x 2 RN ! Wx 2 RN
.

example of orthogonal wavelet 
decomposition

WTW = Id
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•  

•  

•  

• Downsampling (or “stride”) adaptive to signal 
smoothness:

Multi-Resolution Wavelets

Wavelets and the bluring kernel are obtained at each j
by cascading these filters:

Decompositions are obtained by cascading fine-to-coarse:

At each scale j, we consider a low-pass scaling filter h
and band-pass filters g✓, ✓ 2 [1, . . . , L].

�j = �j�1 ? hj  j,✓ = �j�1 ? gj,✓ .

x ? �j(u) = (x ? �j�1) ? hj(u) , x ?  j,✓(u) = (x ? �j�1) ? gj,✓(u) .

x ? �j(u) = (x ? �j�1) ? h(2u) , x ?  j,✓(u) = (x ? �j�1) ? g✓(2u) .
18



Scattering with Multi-Resolution Wavelets

x

x ? h |x ? g✓|
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Scattering with Multi-Resolution Wavelets

x

x ? h |x ? g✓|

#layers:
 maximum scale
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Scattering Conservation of Energy

Theorem (Mallat): For appropriate wavelets, the scattering

representation is contractive, kSJx� SJx
0k  kx� x

0k ,

and unitary, kSJxk = kxk .

kSJxk2 =
X

p2PJ

kSJ [p]xk2

21



Scattering Conservation of Energy

• In practice, the transform is limited to a finite 
number of layers         . This result shows residual 
error converges to 0.

•  The result requires complex wavelets (ie, not real).

Theorem (Mallat): For appropriate wavelets, the scattering

representation is contractive, kSJx� SJx
0k  kx� x

0k ,

and unitary, kSJxk = kxk .

kSJxk2 =
X

p2PJ

kSJ [p]xk2

m
max
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Interpretation

• Unitary Wavelet decomposition preserves energy:

• Repeat formula on each output             : 

kxk2 = kx ? �Jk2 +
X

jJ,✓

kx ?  j,✓k2 .

|x ?  j,✓|

k|x ?  j,✓|k2 = k|x ?  j,✓| ? �Jk2 +
X

j2J,✓2

k|x ?  j,✓| ?  j2,✓2k2 .

kxk2 = kSJ [0]xk2 +
X

|p|=1

kSJ [p]xk2 +
X

|p|=2

k|x ?  �1 | ?  �2k2

kxk2 =
X

|p|<m

kSJ [p]xk2 +
X

|p|=m

k||x ?  �1 | ?  �2 | . . . �mk2
8 m
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Interpretation

• Unitary Wavelet decomposition preserves energy:

• Repeat formula on each output             : 

kxk2 = kx ? �Jk2 +
X

jJ,✓

kx ?  j,✓k2 .

|x ?  j,✓|

k|x ?  j,✓|k2 = k|x ?  j,✓| ? �Jk2 +
X

j2J,✓2

k|x ?  j,✓| ?  j2,✓2k2 .

kxk2 = kSJ [0]xk2 +
X

|p|=1

kSJ [p]xk2 +
X

|p|=2

k|x ?  �1 | ?  �2k2

kxk2 =
X

|p|<m

kSJ [p]xk2 +
X

|p|=m

k||x ?  �1 | ?  �2 | . . . �mk2
8 m
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Interpretation

• Result amounts to proving that 

• Fact: Every time we apply the (complex) wavelet 
modulus, we push energy towards the low frequencies. 

• Result is obtained by formally proving this fact.

lim
m!1

X

|p|=m,jiJ

k||x ?  �1 | ? . . . | ?  �m |k2 = 0 .
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Interpretation

• Result amounts to proving that 

• Fact: Every time we apply the (complex) wavelet 
modulus, we push energy towards the low frequencies. 

• Result is obtained by formally showing this fact.

• It requires a non-linearity that produces smooth 
envelopes: 
– complex wavelets OK 
– real wavelets: ??

lim
m!1

X

|p|=m,jiJ

k||x ?  �1 | ? . . . | ?  �m |k2 = 0 .
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Scattering Geometric Stability

• Geometric Stability: kSJxk2 =
X

p2PJ

kSJ [p]xk2

Theorem (Mallat’10): There exists C such that for all x 2 L

2
(R

d
) and

all m, the m-th order scattering satisfies

kSJ'⌧x� SJxk  Cmkxk(2�J |⌧ |1 + kr⌧k1 + kH⌧k1) .

'⌧x |d'⌧x| SJ'⌧x27



Interpretation

• Denote

• We know that 

•  

AJx = x ? �J WJx = {x ?  �}�

kWJ'⌧ � '⌧WJk  C(J |r⌧ |1 + |H⌧ |1)

kAJ �AJ'⌧k  C(2�J |⌧ |1 + |r⌧ |1)

([A,B] = AB �BA : Commutator)

SJ = {AJ , AJMWJ , AJMWJMWJ , . . . }

Mx = |x|

M'⌧ = '⌧M

28



Interpretation

• Denote

• We know that 

•  

AJx = x ? �J WJx = {x ?  �}�

kWJ'⌧ � '⌧WJk  C(J |r⌧ |1 + |H⌧ |1)

kAJ �AJ'⌧k  C(2�J |⌧ |1 + |r⌧ |1)

([A,B] = AB �BA : Commutator)

SJ = {AJ , AJMWJ , AJMWJMWJ , . . . }

Mx = |x|

M'⌧ = '⌧M
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Interpretation

•  Each order contributes separately:
kSJ � SJ'⌧k2 = kAJ �AJ'⌧k2 + kAJMWJ �AJMWJ'⌧k2 + . . .
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Interpretation

•  Each order contributes separately:

• Let us inspect a generic term:

kSJ � SJ'⌧k2 = kAJ �AJ'⌧k2 + kAJMWJ �AJMWJ'⌧k2 + . . .

kAJ MWJMWJ . . .MWJ| {z }
k times

�AJ MWJMWJ . . .MWJ| {z }
k times

'⌧k

(UJ = MWJ)

kAJU
k
J �AJU

k
J'⌧k  kAJU

k
J �AJU

k�1
J '⌧UJk+ kAJU

k�1
J '⌧UJ �AJU

k
J'⌧k
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Interpretation

•  Each order contributes separately:

• Let us inspect a generic term:

kSJ � SJ'⌧k2 = kAJ �AJ'⌧k2 + kAJMWJ �AJMWJ'⌧k2 + . . .

kAJ MWJMWJ . . .MWJ| {z }
k times

�AJ MWJMWJ . . .MWJ| {z }
k times

'⌧k

(UJ = MWJ)

kAJU
k
J �AJU

k
J'⌧k  kAJU

k
J �AJU

k�1
J '⌧UJk+ kAJU

k�1
J '⌧UJ �AJU

k
J'⌧k

 kAJU
k�1
J �AJU

k�1
J '⌧k+ kAJU

k�1
J ['⌧ , UJ ]k

 kAJU
k�1
J �AJU

k�1
J '⌧k+ k['⌧ , UJ ]k

 kk['⌧ , UJ ]k+ kAJ �AJ'⌧k  kk['⌧ ,WJ ]k+ kAJ �AJ'⌧k
32



Scattering Discriminability

• For appropriate wavelets, the information is preserved at 
each layer :
Theorem: (Waldspurger) For appropriate wavelets, the operator

Ux = {x ? �J , |x ?  j |}jJ is injective.

33



Scattering Discriminability

• For appropriate wavelets, the information is preserved at 
each layer :

• Very different situation than Fourier modulus (why?)

Theorem: (Waldspurger) For appropriate wavelets, the operator

Ux = {x ? �J , |x ?  j |}jJ is injective.

34



Scattering Discriminability

• For appropriate wavelets, the information is preserved at 
each layer :

• Very different situation than Fourier modulus (why?)
• The representation is highly redundant.
• However, the inverse is unstable for large J: we might be 

contracting too much in general. 
• How to prevent that?

Theorem: (Waldspurger) For appropriate wavelets, the operator

Ux = {x ? �J , |x ?  j |}jJ is injective.
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Discriminability and Sparsity

• Typical non-linearities are contractive:
k⇢(x)� ⇢(x0)k  kx� x

0k

36



Discriminability and Sparsity

• Typical non-linearities are contractive:

• However, if            are sparse, this inequality is an 
equality in most of the signal domain.

• Thus sparsity is a means to control and prevent excessive 
contraction of different signal classes.

k⇢(x)� ⇢(x0)k  kx� x

0k

x, x

0

37



Wavelet Scattering

window size = image size

Image Examples

Images Fourier

�1

�2

�1

�2

x

x̂

|x ?  �1 | ? �J ||x ?  �1 | ?  �2 | ? �J
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x

S[�1]f(x) = |f ⌅ ⇤�1 | ⌅ ⇥(x)

S[�1, �2]f(x) = ||f ⇧ ⇤�1 | ⇧ ⇤�2 | ⇧ ⇥(x) for �1 = log(1977)

|f ⇥ ��1 |(x)

MFCC

(courtesy J. Anden)
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Limitations of Separable Scattering

• No feature dimensionality reduction
- The number of features increases exponentially with depth and 

polynomially with scale.

40



Limitations of Separable Scattering

• No feature dimensionality reduction
- The number of features increases exponentially with depth and 

polynomially with scale.

• We are indirectly assuming that each wavelet band is 
deformed independently
– We cannot capture the joint deformation structure of feature maps
– Loss of discriminability. 
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Limitations of Separable Scattering

• No feature dimensionality reduction
- The number of features increases exponentially with depth and 

polynomially with scale.

• We are indirectly assuming that each wavelet band is 
deformed independently
– We cannot capture the joint deformation structure of feature maps
– Loss of discriminability. 

• The deformation model is rigid and non-adaptive
– We cannot adapt to each class
– Wavelets are hard to define a priori on high-dimensional domains. 

42



Joint versus Separable Invariance

• Suppose we simply want stable translation invariance.
• Two-dimensional translation group in a periodic domain:

• Each     acts on images along a different coordinate: 

G ⇠= (R/([0, N ]))2 = S1 ⇥ S1 ⇠= T2

S1

'

1
ax(u1, u2) = x(u1 � a, u2) , '

2
ax(u1, u2) = x(u1, u2 � a)

43



Joint versus Separable Invariance

• Suppose we simply want stable translation invariance.
• Two-dimensional translation group in a periodic domain:

• Each     acts on images along a different coordinate: 

G ⇠= (R/([0, N ]))2 = S1 ⇥ S1 ⇠= T2

S1

'

1
ax(u1, u2) = x(u1 � a, u2) , '

2
ax(u1, u2) = x(u1, u2 � a)
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• So we could just consider one-dimensional (stable) 
translation invariant representations and compose:

Joint versus Separable Invariance

G = G1 ⇥G2

x �(x)G1 inv G2 inv
y

45



• So we could just consider one-dimensional (stable) 
translation invariant representations and compose:

•  

•  

Joint versus Separable Invariance

G = G1 ⇥G2

x �(x)G1 inv G2 inv

then �1('
1
x) = �1(x) for all x and '

1 2 G1

If for each u2, x(·, u2) 7! �1(x)(·, u2) is G1 invariant

If for each �, y(�, ·) 7! �2(y)(�, ·) is G2 invariant

then �2('2y) = �2(y) for all y and '2 2 G2

y

46



Joint versus Separable Invariance

•  

8 ' 2 G, ' = '1'2, 'i 2 Gi

Thus, if �1 is G1 invariant and G2 covariant,

and �2 is G2 invariant, then � = �2 � �1 satisfies

�('x) = �2�1('
1
'

2
x) = �2�1('

2
x) = �2'

2�1(x) = �2�1(x) = �(x)

47



Joint versus Separable Invariance

•  

• So we achieve further invariance by composing partial 
invariances. 

8 ' 2 G, ' = '1'2, 'i 2 Gi

Thus, if �1 is G1 invariant and G2 covariant,

and �2 is G2 invariant, then � = �2 � �1 satisfies

�('x) = �2�1('
1
'

2
x) = �2�1('

2
x) = �2'

2�1(x) = �2�1(x) = �(x)
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Joint versus Separable Invariance

•  

• So we achieve further invariance by composing partial 
invariances. 

• Is there a problem here? 

8 ' 2 G, ' = '1'2, 'i 2 Gi

Thus, if �1 is G1 invariant and G2 covariant,

and �2 is G2 invariant, then � = �2 � �1 satisfies

�('x) = �2�1('
1
'

2
x) = �2�1('

2
x) = �2'

2�1(x) = �2�1(x) = �(x)

49



• The factorization does not capture the joint action of G1 
along the domain           .

• We are invariant to too many things.

Joint versus Separable Invariance

(u1, u2)
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Wavelet Covariants

• If we replace input image by first layer output:

•  

• So we can replace convolutions over translation by 
convolutions over roto-translations. 

⇢(x0 ?  j,✓)(u) = x1(u, j, ✓)

Let x̃0 = R↵x0 be a rotation of ↵ degrees.

Similarly, roto-translation acts on x1 by rotating and

translating spatial coordinates and translating orientation coordinates

Let x̃0 = '(v,↵)x0 be a roto-translation with parameters (v,↵).

⇢(x̃0 ?  j,✓)(u) = x1('vR↵u, j, ✓ + ↵)

⇢(x̃0 ?  j,✓)(u) = x1(R↵u, j, ✓ + ↵)
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Group Convolutions

•  

Definition: Let G be a group equipped with a Haar measure dµ,
acting on ⌦, and h 2 L

1(G). The group convolution x ?G h is defined as

x ?G h(u) =
R
G h(g)x('gu)dµ(g) , x 2 L

2(⌦) .

If x = x1(u, j, ✓) and G are roto-translations,

these convolutions recombine di↵erent orientation channels.

52



Joint Scattering

• We start by lifting the image with spatial wavelet 
convolutions: stable and covariant to roto-translations. 

• We then adapt the second wavelet operator to its input 
joint variability structure.

• More discriminability.
• Requires defining wavelets on more complicated domains

�(x)U1
x0(u)

x1(u, j, ✓)
U2

53



Example: Roto-Translation Scattering
• [Sifre and Mallat’13]

sentation R(x) of x is invariant to the action of G if it is not
modified by the action of any g ∈ G: R(g.x) = R(x). It is
covariant to G if R(g.x) = g.R(x), where g acts on R(x)
by shifting its coefficients. A separable invariant on a group
product G = G1�G2 combines a first operator R1, which is
invariant to the action of G1 and covariant to the action G2,
with a second operator R2 which is invariant to the action
of G2. Indeed for all g1.g2 ∈ G1 �G2 and all images x(u):

R2(R1(g1.g2.x)) = R2(g2.R1(x)) = R2(R1(x)) .
However, such separable invariants do not capture the joint
property of the action of G2 relatively to G1, and may lose
important information. This is why two-dimensional trans-
lation invariant representations are not computed by cascad-
ing invariants to horizontal and vertical translations. It is
also important for rotations and translations. Let us consider
for example the two texture patches of Figure 1. A separa-
ble product of translation and rotation invariant operators
can represent the relative positions of the vertical patterns,
and the relative positions of the horizontal patterns, up to
global translations. However, it can not represent the po-
sitions of horizontal patterns relatively to vertical patterns,
because it is not sensitive to a relative shift between these
two sets of oriented structures. It loses the relative positions
of different orientations, which is needed to be sensitive to
curvature, crossings and corners. Such a separable invariant
thus can not discriminate the two textures of Figure 1.

Figure 1: The left and right textures are not discriminated
by a separable invariant along rotations and translations, but
can be discriminated by a joint roto-translation invariant.

Several authors [6, 7, 8] have proposed to take into ac-
count the joint structure of roto-translation operators in im-
age processing, particularly to implement diffusion oper-
ators. Computing a joint invariant between rotations and
translations also means taking into account the joint rela-
tive positions and orientations of image structures, so that
the textures of Figure 1 can be discriminated. Section 3
introduces a roto-translation scattering operator, which is
computed by cascading wavelet transforms on the roto-
translation group.

Calculating joint invariants on large non-commutative
groups may however become very complex. Keeping a sep-
arable product structure is thus desirable as long as it does

not lose too much information. This is the case for scaling.
Indeed, local image structures are typically spread across
scales, with a power law decay. This is the case for con-
tours, singularities and most natural textures. As a result of
this strong correlation across scales, one can use a separa-
ble invariant along scales, with little loss of discriminative
information.

2.2. Hierarchical Architecture

We now explain how to build an affine invariant repre-
sentation, with a hierarchical architecture. We separate vari-
abilities of potentially large amplitudes such as translations,
rotations and scaling, from smaller amplitude variabilities,
but which may belong to much higher dimensional groups
such as shearing and general diffeomorphisms. These small
amplitude deformations are linearized to remove them with
linear projectors.

Image variabilities typically differ over domains of dif-
ferent sizes. Most image representations build localized in-
variants over small image patches, for example with SIFT
descriptors [15]. These invariant coefficients are then ag-
gregated into more invariant global image descriptors, for
example with bag of words [10] or multiple layers of deep
neural network [4, 5]. We follow a similar strategy by first
computing invariants over image patches and then aggregat-
ing them at the global image scale. This is illustrated by the
computational architecture of Figure 2.

x
roto-trans.

patch
scattering

log
global

space-scale
averaging

deformat.
invariant

linear proj.

Figure 2: An affine invariant scattering is computed by ap-
plying a roto-translation scattering on image patches, a log-
arithmic non-linearity and a global space-scale averaging.
Invariants to small shearing and deformations are computed
with linear projectors optimized by a supervised classifier.

Within image patches, as previously explained, one must
keep the joint information between positions and orienta-
tions. This is done by calculating a scattering invariant on
the joint roto-translation group. Scaling invariance is then
implemented with a global scale-space averaging between
patches, described in Section 4. A logarithmic non-linearity
is first applied to invariant scattering coefficients to linearize
their power law behavior across scales. This is similar to the
normalization strategies used by bag of words [10] and deep
neural networks [5].

Because of three dimensional surface curvature in the vi-
sual scene, the image patches are also deformed. A scat-
tering transform was proved to be stable to deformations
[9]. Indeed, it is computed with a cascade of wavelet trans-

Fast computations of roto-translation convolutions with
separable wavelet filters  ✓2,j2,k2(u, ✓) =  ✓2,j2(u) k2

(✓)
are performed by factorizing

Y � ✓2,j2,k2(u, ✓)
=�

✓′
��

u′
Y (u′, ✓′) ✓2,j2(r−✓′(u − u′))�  k2

(✓ − ✓′) .
It is thus computed with a two-dimensional convolution of
Y (u, ✓′) with  ✓2,j2(r−✓u) along u = (u1, u2), followed
by a convolution of the output and a one-dimensional cir-
cular convolution of the result with  k2

along ✓. Figure 5
illustrates this convolution which rotates the spatial support
 ✓2,j2(u) by ✓ while multiplying its amplitude by  k2

(✓).

θ

u1
u2

ψθ2,j2(u1, u2)

ψk2
(θ)

Figure 5: A three dimensional roto-translation convolution
with a wavelet  ✓2,j2,k2(u1, u2, ✓) can be factorized into a
two dimensional convolution with  ✓2,j2(u1, u2) rotated by
✓ and a one dimensional convolution with  k2

(✓) .

Applying�W3 =�W2 to U2x computes second order scat-
tering coefficients as a convolution of Y (g) = U2x(g, p2)
with �J(g), for p2 fixed:

S2x(p2) = U2(., p2)x��J(g) . (18)

It also computes the next layer of coefficients U3x with
a roto-translation convolution of U2x(g, p2) with the
wavelets (13,14,15). In practice, we stop at the second or-
der because the coefficients of U3x carry a small amount of
energy, and have little impact on classification. One can in-
deed verify that the energy of Umx decreases exponentially
to zero as m increases.

The output roto-translation of a second order scattering
representation is a vector of coefficients:

Sx = �S0x(u) , S1x(p1) , S2x(p2)� , (19)

with p1 = (u, ✓1, j1) and p2 = (u, ✓1, j1, ✓2, j2, k2). The
spatial variable u is sampled at intervals 2

J which corre-
sponds to the patch size. If x is an image of N2 pixels,

there are thus 2

−2JN2 coefficients in S0x and 2

−2JN2J
coefficients in S1x. Second order coefficients have a negli-
gible amplitude if j2 ≤ j1. If the wavelet are rotated along
K angles ✓ then one can verify that S2x has approxima-
tively 2

−2JN2J(J − 1)K log2K�2 coefficients. The to-
tal roto-translatation patch scattering Sx is of dimension
341N2�1024 for J = 5 and K = 8. The overall complexity
to compute this roto-translation scattering representation is
O(K2N2

logN).
4. Scaling Invariance of Log Scattering

Roto-translation scattering is computed over image
patches of size 2

J . Above this size, perspective effects pro-
duce important scaling variations for different patches. A
joint scale-rotation-translation invariant must therefore be
applied to the scattering representation of each patch vector.
This is done with an averaging along the scale and transla-
tion variables, with a filter which is rotationally symmetric.
One could recover the high frequencies lost by this averag-
ing and compute a new layer of invariant through convo-
lutions on the joint scale-rotation-translation group. How-
ever, adding this supplementary information does not im-
prove texture classification, so this last invariant is limited
to a global scale-space averaging.

The roto-translation scattering representations of all
patches at a scale 2

J is given by

Sx = �x � �J(u) , U1x��J(p1) , U2x��J(p2)� ,
with p1 = (u, ✓1, j1) and p2 = (u, ✓1, j1, ✓2, j2, k2). This
scattering vector Sx is not covariant to scaling. If xi(u) =
x(2iu) then

Sxi = �x � �J+i(2iu) , U1x��J+i(2i.p1)
U2x��J+i(2i.p2)� .

with 2

i.p1 = (2iu, ✓1, j1 + i) and 2

i.p2 = (2iu, ✓1, j1 +
i, ✓2, j2+ i, k2). A covariant representation to scaling stores
the minimal subset of coefficients needed to recover all Sxi.
It thus require to compute the scattering coefficients for all
scales j1+i and j2+i for all averaging kernels �J+i or�J+i,
similarly to spatial pyramid [16].

One can show that scattering coefficient amplitudes have
a power law decay as a function of the scales 2

j1 and 2

j2 .
To estimate an accurate average from a uniform sampling of
the variables j1 and j2, it is necessary to bound uniformly
the variations of scattering coefficient as a function of j1 and
j2. This is done by applying a logarithm to each coefficient
of Sx, which nearly linearizes the dependency upon j1 and
j2. This logarithm plays a role which is similar to renor-
malizations used in bag of words [10] and deep convolution
networks [5].

second layer wavelets constructed 
by a separable product on spatial 

and rotational wavelets
 �(u, ✓) =  �1(u) �2(✓)

example of patterns that are 
discriminated by joint scattering 

but not with separable 
scattering.

54



Classification with Scattering

• State-of-the art on pattern and texture recognition using 
separable scattering followed by SVM: 
– MNIST, USPS [Pami’13]

– Texture (CUREt) [Pami’13]

– Music Genre Classification (GTZAN) [IEEE Acoustic ’13]
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• Joint Scattering Improves Performance:
– More complicated Texture (KTH,UIUC,UMD) [Sifre&Mallat, 

CVPR’13]

– Small-mid scale Object Recognition (Caltech, CIFAR) 
[Oyallon&Mallat, CVPR’15]
– ~17% error on Cifar-10

Classification with Scattering

A joint scaling, rotation and translation invariant is com-
puted with a scale-space averaging of logSxi along the
scale and spatial indices (i, u):

Sx =�
i,u

log(Sxi(u, .))�I(i) . (20)

The precision of this averaging is improved by sampling i
at half integers. It require to compute twice more scatter-
ing coefficients at scales 2j1�2 and 2

j2�2. If 2I is the length
of the averaging kernel �I(i) then 2

J+2I must be smaller
than the image size. In texture applications, these averages
can only be computed on a small range of scales 2

I = 2.
One could recover the information lost by the scale-space
averaging (20) through convolutions with wavelets defined
on the joint scale-rotation-translation group, and define a
new scattering cascade. This is needed to characterize very
large scale texture structures, which is not done in this pa-
per. The invariant image representation Sx is of dimension
536 if computed over image patches of size 2

J = 2

5 = 32

with K = 8 wavelet orientations. This relatively small fea-
ture vector does not depend upon the image size, which is
usually larger than 10

5 pixels.

5. Deformation Invariant Projectors
Shearing and image deformations are typically of

smaller amplitudes than translations, rotations and scal-
ing. A scattering transform is stable and hence linearizes
small deformations. A set of small image deformations thus
produces scattering coefficients which belong to an affine
space. Linear projectors which are orthogonal to this affine
space are invariant to these small deformations. These in-
variants can be adapted to each signal class by optimizing
a linear kernel at the supervised classification stage. This
may be done by an SVM but we shall rather use a gener-
ative PCA classifier as in [1]. Such classifiers can indeed
perform better when the training set is small.

Each signal class is represented by a random vector xc

for 1 ≤ c ≤ C, whose realizations are images in the class
c. The scattering transform Sxc is a random vector. It’s
expected value is written E(Sxc). A PCA diagonalizes
the covariance matrix of Sxc. Let Vc be the linear space
generated by the D eigenvectors of the covariance matrix
of largest eigenvalues. Approximating Sxc − E(Sxc) by
its projection in Vc gives a minimum mean-square error,
among all projections in linear spaces of dimension D. The
space Vc includes the variability directions produced by de-
formations of textures in the class. Let V⊥c be its orthogonal
complement. The orthogonal projection PV⊥c is an invariant
operator which filters out these main intra-class variability.
If x is in the class c then �PV⊥c(Sx − ESxc)� is typically
small because most of the energy of Sx −E(Sxc) is in Vc.

As in [1], we use a simple quadratic classifier which as-
sociates to each signal x the class index ĉ which minimizes

Figure 6: Each row shows images from the same texture
class in the UIUC database [10], with important rotation,
scaling and deformation variability.

the projected distance to the class centroid:

ĉ(x) = arg min

1≤c≤C �PV⊥c(Sx −ESxc)�2 . (21)

It finds the class centroid E(Sxc)which is the closest to Sx,
after eliminating the first D principal variability directions.

6. Texture Classification Experiments
This section gives scattering classification results on

KTH-TIPS [17], UIUC [10, 18] and UMD [19] texture
datasets, and comparison with state of the art algorithms.
We first review state of the art approaches based on differ-
ent types of invariants.

Most state of the art algorithms use separable invariants
to define a translation and rotation invariant algorithms, and
thus lose joint information on positions and orientations.
This is the case of [10] where rotation invariance is ob-
tained through histograms along concentric circles, as well
as Log Gaussian Cox processes (COX) [11] and Basic Im-
age Features (BIF) [12] which use rotation invariant patch
descriptors calculated from small filter responses. Sorted
Random Projection (SRP) [14] replaces histogram with a
similar sorting algorithm and adds fine scale joint informa-
tion between orientations and spatial positions by calculat-
ing radial and angular differences before sorting. Wavelet
Multifractal Spectrum (WMFS) [13] computes wavelet de-
scriptors which are averaged in space and rotations, and are
similar to first order scattering coefficients S1x.

We compare the best published results [10, 11, 12, 13,
14] and scattering invariants on KTH-TIPS (table 1), UIUC
(table 2) and UMD (table 3) texture databases. For each
database, Tables 1,2,3 give the mean classification rate and
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Limitations of Joint Scattering

• Variability from physical world expressed in the language 
of transformation groups and deformations
- However, there are not many possible groups: essentially the affine 

group and its subgroups. 

• As a new wavelet layer is introduced, we create new 
coordinates, but we do not destroy existing coordinates
- Hard to scale: dimensionality reduction is needed.
- Wavelet design complicated beyond roto-translation groups.

• Beyond physics, many deformations are class-specific and 
not small. 
- Learning filters from data rather than designing them. 
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From Scattering to CNNs

•  

•  

• Which in general is a convolutional tensor.

Given x(u,�) and a group G acting on both u and �,

we defined wavelet convolutions over G as

In discrete coordinates,

x ?G  �0(u,�) =

Z

v

Z

↵
 �(R�↵(u� v))x(v,↵)dvd↵

x ?G  �0(u,�) =
X

v

X

↵

 �0(u� v,↵,�)x(v,↵)
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