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» 1) : bandpass (ie oscillating) signal, well localized in space
and frequency.

» At least one vanishing moment: /WU)dU =0
(we say that v has k vanishing moments if [ (u)u'du = 0 for [ < k)

 Can be real or complex. ¥ = ¥r + 19;

Ex: Morlet wavelet
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__Review: Littlewood-Paley Wavelet Fifter Banks

e For images, dilated and rotated wavelets:
Y (u) = Z_j/2¢(2_jru) . with A = 277

* \WWavelet transform convolutional filter bank:
W = {g; e gb(u) T x ¢>\(u)}>\€A T x(u) = /az(v)w(u —v)dv .

Theorem (Littlewood- Paley)' If there exists 0 > 0 such that

Vw >0, 1—0<|pw)]* + = Z\w )P <1,

then Vo € L*, (1 —6)|z||* < ||Ww|\2 < ||lz||* .



Review: Wavelets and Deformations

* We saw before that a blurring kernel i1s nearly invariant

to deformations:

Proposition: The local averaging ®(x) = x * ¢; satisfies
Vizll=1€ L, 1, [|[®(z) — 2(prz)]| < C|7| -

* What about the wavelet operator ®(x) = {z * ¥} !

- We don't have local invariance, but we have a form of local
covarlance:

Proposition [Mallat]|: For each 6 > 0 there exists C' > 0 such that for all J
and all 7 € C? with ||[V7||sc <1 — § we have

Wipr — Wil S C(JIVT]loo + [ HT|loo) -

(HT: Hessian of 7)



Review: Characterization of stable non-linearities

* Preserve additive stability:

|Mxz — Mx'|| <||x — || . M non-expansive .

* Preserve geometric stabllity: It 1s sufficient to commute
with diffeomorphisms.

Theorem: If M is non-expansive operator in L* such
that o, M = My, tor all 7, then M is point-wise:

Mz (u) = p(x(u)) .

* Since we want to smooth orbits, we may choose a point-
wise nonlinearity that reduces oscillations:

p(2) = |z| or p(z) = max(0, 2)
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Objectives

* Scattering Representations

—Main Properties

—Main Limitations

— Extensions: Joint rigid scattering.

e Convolutional Neural Networks

—From fixed groups to adaptive templates




* Local averaging kernel:  x* ¢,
—locally translation invariant
—stable to additive and geometric deformations
—loss of high-frequency information.



* Local averaging kernel: = x ¢,

—locally translation invariant
—stable to additive and geometric deformations
—loss of high-frequency information.
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Recover lost information: 7/ 2y — (04 b 2% tha|baea, -
— Point-wise, non-expansive non-linearities: maintain stability.

— Complex modulus maps energy towards low-frequencies.



* Local averaging kernel: = x ¢,

—locally translation invariant
—stable to additive and geometric deformations
—loss of high-frequency information.

) , , ]
Recover lost information: 7/ 2y — (04 b 2% tha|baea, -
— Point-wise, non-expansive non-linearities: maintain stability.

— Complex modulus maps energy towards low-frequencies.
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Separable Scattering Operators

* Local averaging kernel: = x ¢,

—locally translation invariant
—stable to additive and geometric deformations
—loss of high-frequency information.

) , , ]
Recover lost information: 7/ 1y — fo s |z % 0 haen, -
— Point-wise, non-expansive non-linearities: maintain stability.

— Complex modulus maps energy towards low-frequencies.

» Cascade the “recovery” operator:

UF(x) = {xx b, |z xPalxdy, [Joxvnl x o |Ixven, -
* Scattering coefficient along a path p=00 A

Sylple(u) = [[lzx ha | x x| % |+, [* du(u) -
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* WWe have considered a collection ;¢ of oriented and
dilated wavelets, and a translation co-variant wavelet
decomposition operator:

W ={xx¢j,x*x)jo}

* With | scales and L orientations, the redundancy is (| +/L).
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Scattering with Multi-Resolution Wavelets

* With | scales and L orientations, the redundancy is (| +/L).

* This is In contrast with orthogonal wavelet transforms, used
for compression and (suboptimally) for denoising.

ZEERN%WZEGRN. WTW:ICZ

example of orthogonal wavelet
decomposition

* A very efficient algorithm exists using filter cascades with
MultiResolution Analysis.
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Multi-Resolution Wavelets

e At each scale 5, we consider a low-pass scaling filter h
and band-pass filters g9, 6 € [1,..., L].

o Wavelets and the bluring kernel are obtained at each j
by cascading these filters:

O; = Pi—1*xh; Yig=0@j_1%3gjp .

* Decompositions are obtained by cascading fine-to-coarse:

Txpi(u) =(xxpj_1)xh;j(u) , z*xYo(u) =(x*Pj_1)*go(u) .

* Downsampling (or “'stride’’) adaptive to signal
smoothness:

xxQj(u) = (x*gj—1) x h(2u) , xxjo(u) = (zxdj—1)*go(2u) .
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Scattering Conservation of Energy

Theorem (Mallat): For appropriate wavelets, the scattering

representation is contractive, ||Syx — Syz'|| < ||z — 2'||

|Ssxl?= ) ISs[plz]?

pEP

and unitary, ||Syz|| = ||x]| .
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Scattering Conservation of Energy

Theorem (Mallat): For appropriate wavelets, the scattering

representation is contractive, ||Syx — Syz'|| < ||z — 2'||

and unitary, ||Syz|| = ||x]| .

UM
erro

* In prac

|Sy)> = [1Ssplz?

pEP

1ce, the transform is limited to a finrte

DE

- of layers Mmaa . This result shows residual

~ converges to 0.

* [he result requires complex wavelets (ie, not real).

22



* Unitary Wavelet decomposition preserves energy:

|

|z]1* = llz* ¢
J<J,0

* Repeat formula on each output |z % ;4]

| = |||z *j0l xPs|P+ D | 20217 -
Jj2<J,0
|z)® = [1Ss0002)” + > Ss[plall* + Y [l[a* x|+ a, ||
[p|=1 |p|=2
YV m
|z = > [ISs[pla]® + Z NEEXE R I

Ip|<m |p|=
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* Result amounts to proving that

lim ST [l x [ x e, [P =0

m— 00 '

* Fact: Every time we apply the (complex) wavelet
modulus, we push energy towards the low frequencies.

* Result 1s obtained by formally proving this fact.
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* Result amounts to proving that

lim ST [l x [ x e, [P =0

m— 00 '

* Fact: Every time we apply the (complex) wavelet
modulus, we push energy towards the low frequencies.

* Result 1s obtained by formally showing this fact.

* [t requires a non-linearity that produces smooth
envelopes:

—complex wavelets OK

—real wavelets: !
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* Geometric Stabillity: ISz = Z | S, [p)||?

pEPy

Theorem (Mallat’10): There exists C such that for all x € L?(R?) and
all m, the m-th order scattering satisfies

|Sspra — Syzl| < Cmlz[|(277|T]oo + VTl + [ HTlo0) -

- °

- *

|§O%"$‘ SJSOT'T




e Denote
AJLL’::E*¢J WJZEZ{LE*??D)\})\ M.CIZ‘:|ZIZ‘|
 We know that
Ay — AJSOTH < 0(2_J|T‘oo T ‘VT‘OO)
WJQOT — QOTWJH < C(‘]‘VT|OO -+ ‘HT‘OO)

Mo, =@, M ([A,B] = AB — BA : Commutator)

* Sy ={A;, A;MW;, A, MW MWy, ...}
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 We know that
Ay — AJSOTH < 0(2_J|T‘oo T ‘VT‘OO)
WJQOT — QOTWJH < C(‘]‘VT|OO -+ ‘HT‘OO)

Mo, =@, M ([A,B] = AB — BA : Commutator)

* Sy ={A;, A;MW;, A, MW MWy, ...}
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* tach order contributes separately:
1S5 = Sserll* = |As — Ayor|® + [[ATMWy — Ay MWy |* + ...
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* tach order contributes separately:
1S5 = Sserll* = |As — Ayor|® + [[ATMWy — Ay MWy |* + ...

* Let us Inspect a generic term:
|Ay MW MWy ... MWy —A; MW, MW, ... MW o, |
N—  — N——m —.—

k times k times

(Uy=MWjy)

AU — AsUjerll < 1AsUF = AU~ orUsll + |ASUS ™ orUs — AsUjor |
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* tach order contributes separately:
1S5 = Sserll* = |As — Ayor|® + [[ATMWy — Ay MWy |* + ...

* Let us Inspect a generic term:
|Ay MW MWy ... MWy —A; MW, MW, ... MW o, |
—_—

N———— ——

k times

(Uy=MWjy)

AU — AsUjerll < 1AsUF = AU~ orUsll + |ASUS ™ orUs — AsUjor |

VAN

IA A

AJU§_1 — AJU§_1¢T
AJU§_1 — AJU{I;_ISOT
klllor, Uslll + 1Ay — Asor

k times

AJU§_1 :907'7 UJ]H

-, Usl]
; kH[SOTaWJ]H T HAJ — AJ@TH




* For appropriate wavelets, the information Is preserved at
each layer:

Theorem: (Waldspurger) For appropriate wavelets, the operator
Ur ={xx¢j,|r*x1;|}<s is injective.
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Scattering Discriminability

* For appropriate wavelets, the information Is preserved at
each layer:

Theorem: (Waldspurger) For appropriate wavelets, the operator
Ur ={xx¢j,|r*x1;|}<s is injective.

* Very different srtuation than Fourier modulus (why?)
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Scattering Discriminability

* For appropriate wavelets, the information Is preserved at
each layer:

Theorem: (Waldspurger) For appropriate wavelets, the operator
Ur ={xx¢j,|r*x1;|}<s is injective.

* Very different srtuation than Fourier modulus (why?)
* [he representation Is highly redundant.

* However, the Inverse Is unstable for large |: we might be
contracting too much in general.

* How to prevent that!
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* [ypical non-linearrties are contractive:
|p(z) — p(a’)|| < ||z — 2|



* [ypical non-linearrties are contractive:
|p(z) — p(a")|| < ||z — 2|

* However, if x,2" are sparse, this inequality is an
equality In most of the signal domain.

* [hus sparsity Is a means to control and prevent excessive
contraction of different signal classes.
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Fourier Wavelet Scattering

‘l’*wM‘*¢J ‘x*wAl‘*¢A2‘*¢J

window size = image size
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~ (courtesy J. Anden)

log(w1)

<1977 Hz

)\1———‘

log(w1)

A

S[A1, Ae]f(x) = || f *x x| *%2\ * ¢(r) for A\ = log(1977)

log(ws)

)\2:
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* No feature dimensionality reduction

- The number of features increases exponentially with depth and
polynomially with scale.
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* No feature dimensionality reduction

- The number of features increases exponentially with depth and
polynomially with scale.

* We are indirectly assuming that each wavelet band is
deformed independently

—We cannot capture the joint deformation structure of feature maps

—Loss of discriminability.
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Limitations of Separable Scattering

* No feature dimensionality reduction

- The number of features increases exponentially with depth and
polynomially with scale.

* We are indirectly assuming that each wavelet band is
deformed independently

—We cannot capture the joint deformation structure of feature maps

—Loss of discriminability.

* The deforma

— We cannot ac

apt to eac

— Wavelets are

lon model Is rigid and non-adaptive

N class

nard to de

ine a priori on high-dimensional domains.
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* Suppose we simply want stable translation invariance.

* [wo-dimensional translation group In a periodic domain:

G = (R/([0,N]))* = S x §' = T?

» Each S* acts on images along a different coordinate:

por(ur,uz) = z(ug — a,uz) , pox(ur,ug) = x(uy, uz — a)

43

Joint versus Separable Invariance
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* [wo-dimensional translation group In a periodic domain:
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Joint versus Separable Invariance



* S50 we could just consider one-dimensional (stable)
translation invariant representations and compose:

G:G1><G2

Y

r—— Giinvp Z Gyinv — P(x)

45

Joint versus Separable Invariance



Joint versus Separable Invariance

* S50 we could just consider one-dimensional (stable)
translation invariant representations and compose:

G:G1><G2

Y

>

GQ nv

— O(x)

o If for each uo, x(-,us) — ®1(x)(-, us) is G invariant
then ®1(plx) = ®1(x) for all z and ¢! € G4

* If for each A, y(\,:) — Po(y)(A, ) is G2 invariant

46

then ®5(p?y) = ®5(y) for all y and ¢* € G5



Joint versus Separable Invariance

e Thus, if ®; is (¢ invariant and (G5 covariant,
and P, 1s GG9 invariant, then ® = &5 o &, satisfies

VeeG, p=9'¢* ¢ G,

O(pr) = Oa®1 (9 p ) = Po®y(px) = P’ @1 () = PPy (x) = P(2)
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Joint versus Separable Invariance

e Thus, if ®; is (¢ invariant and (G5 covariant,
and P, 1s GG9 invariant, then ® = &5 o &, satisfies

VeeG, p=9'¢* ¢ G,
O(pr) = P21 (p'p°x) = Pa®1(p°x) = o @y () = PPy () = ()

* S0 we achieve further invariance by composing partial
INvariances.
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Joint versus Separable Invariance

e Thus, if ®; is (¢ invariant and (G5 covariant,
and P, 1s GG9 invariant, then ® = &5 o &, satisfies

VeeG, p=9'¢* ¢ G,
O(pr) = P21 (p'p°x) = Pa®1(p°x) = o @y () = PPy () = ()

* S0 we achieve further invariance by composing partial
INvariances.

* |s there a problem here?
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Joint versus Separable Invariance

=
-
=
C |
-
=
-y
;|

* [he factorization does not capture the joint action of G
along the domain (u1, us2).

* We are invariant to too many things.
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* |[f we replace input image by first layer output:

,0(:1:0 *wjﬁ)(u) — zl(uaja 9)

Let g = R,xo be a rotation of o degrees.

P(fo * %’,6)(“) — xl(Rauajv 0 + 04)

e Similarly, roto-translation acts on x; by rotating and
translating spatial coordinates and translating orientation coordinates

Let Zo = ©(y,a)To be a roto-translation with parameters (v, «).

10(530 x wj,ﬁ)(u) — -Tl(SOfURaU,j, 0 + Oé)
* S0 we can replace convolutions over translation by
convolutions over roto-translations.

51



Definition: Let G be a group equipped with a Haar measure d,
acting on , and h € L'(G). The group convolution x xg h is defined as

xxg h(u) = [, h(g)z(pgu)du(g) , € L*(Q) .

o If x = 21(u,j,0) and G are roto-translations,
these convolutions recombine different orientation channels.
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* We start by lifting the image with spatial wavelet
convolutions: stable and covariant to roto-translations.

LICONE

xl(uaja 6))

>

Us

—— o)

* We then adapt the second wavelet operator to its input
joint variability structure.

* More discriminabillity.

53

* Requires defining wavelets on more complicated domains



Example: Roto-Translation Scattering
[Slfre and Mallat' | 3]

77b92 ,J2 (u17u2)

second layer wavelets constructed
by a separable product on spatial
and rotational wavelets

\Ij)\(uv (9) — ¢>\1 (u)%z (9)

example of patterns that are
discriminated by joint scattering
but not with separable
scattering.
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* State-of-the art on pattern and texture recognition using
separable scattering followed by SVM:

— MNIST, USPS [Pam!i'| 3]

— Texture (CUREt) [Pami’| 3]
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—Music Genre Classification (GTZAN) [IEEE Acoustic | 3]
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* Joint Scattering Improves Performance:
—More complicated Te><ture (|<"H UIUC UMD) [Sifre&Mallat,

CVPR'I3]

— Small-mid scale Object Recognmon (Caltech CIFAR)

[Oyallon&Mallat, CVPR'| 5]
—~1/7% error on Cifar-10
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Limitations of Joint Scattering

* Variability from physical world expressed In the language
of transformation groups and deformations

- However, there are not many possible groups: essentially the affine
group and Its subgroups.

* As a new wavelet layer Is introduced, we create new
coordinates, but we do not destroy existing coordinates

- Hard to scale: dimensionality reduction I1s needed.
- Wavelet design complicated beyond roto-translation groups.
* Beyond physics, many deformations are class-specific and

not small.
- Learning filters from data rather than designing them.
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e Given x(u,A) and a group G acting on both u and A,
we defined wavelet convolutions over GG as

7 e Uy (1w, \) //w,\ ol — v))z(v, @)dvda

e In discrete coordinates,

T *a Y (u, A) = LL@DNU—U&)\) (v, )

* Which In general I1s a convolutional tensor.
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