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DeepMind designed an
algorithm that beat a
professional GO player for the
first time,

using MCTS and two CNNs
trained with supervised

At last — a computer program that
can beat a champion Go player PAGE484
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[http://www.nature.com/news/google-ai-algorithm-masters-ancient-game-of-go-1. [ 92 34]
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http://www.nature.com/news/google-ai-algorithm-masters-ancient-game-of-go-1.19234

Review: Stone theorem, Fourier and Global Invariants

e Thus ®(z) = |Vx|satisfies
Va,t, ®pe(z)) = P(x) .

* |Indeed,

A =V*diag(A,..., \)V = e = V*diag(e™, ..., ")V .

Vorxr = Veltdy = VV*diag(eit)‘l, . eit’\")Va:
= diag(e’, ..., ")V

thus ®(prx) = |Vrx| = [V .



Review: Limits of Group Diagon

alisation

* A shallow (I layer) network is thus sufficient to achieve
invariance to commutative group transtormations:

£z > V >

2| > O(x)

e However; this architecture has a

number of shortcomings.

* Not applicable to non-commutative, discrete symmetry

oroups
* Not discriminative in general
* Not stable




Objectives

* Wavelets

e Point-Wise non-linearities

* Scattering Representations for the Translation Group

* Properties



e | ocal translation invariance:
|®(x) — ()| < C277||v]| ,or

(V)




~ Local invariants and convoluton

e | ocal translation invariance:
|®(x) — ()| < C277||v]| ,or

|(7) — P(pu)|
|v

Vo, |z]] =1

* 50, we want to smooth along the orbits.
* Local averaging within the translation orbit:

—20”/¢ %azdv,(/qs

<277



~ Local invariants and convoluton

* Local averaging within the translation oroit:

—ZdJ/¢ V)pxdv </¢ dv_1q§>()>.

* |In coordinates, it becomes

/¢J r(u—v)dv=x* ¢y(u) ,with

— 9~ Jd¢(2 JU)



Proposition: The local averaging ®(x) = x * ¢ satisfies
Vizl=1eLl®, 7, [2(x)— (o)l < O]l .



Local average and stability

Proposition: The local averaging ®(x) = x * ¢ satisfies
Vizll=1€L?, 7, [[@(x) — 2(prz)|| < C7]| -

* Not surprising, since this operator removes the
broblematic high-frequencies.

* Are there other linear operators with the same
property?
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* [he only linear, translation-invariant operator is the
average:

Vv, &(z)=S(p,x) = P(x \G\ / (Yo

:><I>(x)—q)<|é|/gpvxdv>:<l>(‘a‘/ (u )du> |

* And a similar argument can be used locally.



) averages to Wavelets

* Low-pass information Is insufficient:

The SIFT method originally consists in a keypoint detection phase, using a Dif-
ferences of Gaussians pyramid, followed by a local description around each detected
keypoint. The keypoint detection computes local maxima on a scale space generated
by isotropic gaussian differences, which induces invariance to translations, rotations and
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~ From averages to VWavelets

* Low-pass information Is insufficient:

The SIFT method originally consists in a keypoint detection phase, using a Dif-
ferences of Gaussians pyramid, followed by a local description around each detected
keypoint. The keypoint detection computes local maxima on a scale space generated
by isotropic gaussian differences, which induces invariance to translations, rotations and

* [hus, we must capture high-frequency.

* [ hese new measurements must involve a non-linearity.
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From averages to VWavelets

* Low-pass Information Is insufficient:

The SIFT method originally consists in a keypoint detection phase, using a Dif-
ferences of Gaussians pyramid, followed by a local description around each detected
keypoint. The keypoint detection computes local maxima on a scale space generated
by isotropic gaussian differences, which induces invariance to translations, rotations and

* [hus, we must capture high-frequency.

* [ hese new measurements must involve a non-linearity.

* We want them to preserve stability to deformations.

* And we want them to preserve inter-class variability.
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» 1) : bandpass (ie oscillating) signal, well localized in space
and frequency.

Ex: Morlet wavelet
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» 1) : bandpass (ie oscillating) signal, well localized in space
and frequency.

» At least one vanishing moment: /Wu)du =0
(we say that v has k vanishing moments if [ (u)u'du = 0 for [ < k)

Ex: Morlet wavelet
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» 1) : bandpass (ie oscillating) signal, well localized in space
and frequency.

» At least one vanishing moment: /WU)dU =0
(we say that v has k vanishing moments if [ (u)u'du = 0 for [ < k)

 Can be real or complex. ¥ = ¥r + 19;

Ex: Morlet wavelet

Im
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» 1) : bandpass (ie oscillating) signal, well localized in space
and frequency.

» At least one vanishing moment: /WU)dU =0
(we say that v has k vanishing moments if [ (u)u'du = 0 for [ < k)

o If z(u) is piece-wise smooth, then x * v)(u) is mostly zero

Ax(u) /\/

— —

A rHp(u) A N
18 \




* [he local average = * ¢ Is a blurry version of x, whereas
e T*Y carries the details lost by the blurring,

19



* [he local average = * ¢ Is a blurry version of x, whereas
e T*xY carries the details lost by the blurring,

* [ he detalls are relative to a given resolution. How to
obtain a decomposition that captures detalls at all
resolutions?

20



* [he local average = * ¢ Is a blurry version of x, whereas
e T*xY carries the details lost by the blurring,

* [ he detalls are relative to a given resolution. How to
obtain a decomposition that captures detalls at all
resolutions?

e Dilated wavelets: ¢, (u) = 277¢9(277u), j € Z

\Cg(w)' e

DQCL




e For images, dilated and rotated wavelets:
Y (u) = Z_j/2¢(2_jru) . with A = 277
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e For images, dilated and rotated wavelets:
Y (u) = Z_j/2¢(2_jru) . with A = 277

 Wavelet transform convolutional filter bank:

W = {x* gb(u) 7 x*wA(u)}AEA T x(u) = /az(v)w(u—v)dv .
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e For images, dilated and rotated wavelets:
Y (u) = Z_j/2¢(2_jru) . with A = 277

* \WWavelet transform convolutional filter bank:
W = {g; e gb(u) T x ¢>\(u)}>\€A T x(u) = /az(v)w(u —v)dv .

Theorem (Littlewood- Paley)' If there exists 0 > 0 such that

Vw >0, 1—0<|pw)]* + = Z\w )P <1,

then Va € L*, (1—9)|z|* < IIWOJ‘H2 < lz]|* .



* We can compute a wavelets recursively in a fine-to-
coarse transform:
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* V| Model of Simple and Complex cells:
processing Is selective In orientation, sca

-IrS

C layer of

€ d

nd position.

- cells are organized in pinwheels. (more on that later).
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* We will see that they provide stability to deformations
because they commute nicely with diffeomorphismes:

Were —o-Wal| S 7] -

27



* We will see that they provide stabilr

y to deformations

because they commute nicely with d

iffeomorphisms:

Were —o-Wal| S 7] -

* We will also see that the discriminability of ®(z) = p(Wz)
is controlled by the sparsity produced by W

{z *1\(u)}x . has few non-zero coefficients.

28



* Olshausen and Field Sparse coding model trained on
natural Images:

- . ”
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min || X — Wz [ + Az,

[Olshausen and Field, 96]
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~xamples

Input Image
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Figure 1: Illustration showing feature extraction using a w-by-w receptive field and stride s. We first
extract w-by-w patches separated by s pixels each, then map them to K -dimensional feature vectors
to form a new image representation. These vectors are then pooled over 4 quadrants of the image to
form a feature vector for classification. (For clarity we have drawn the leftmost figure with a stride
greater than w, but in practice the stride is almost always smaller than w.
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(a) K-means (with and without whitening)

(c) Sparse Autoencoder (with and without whitening)
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(b) GMM (with and without whitening)

(d) Sparse RBM (with and without whitening)
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* Top performing shallow network unsupervised learning:

Image Representation

[Coates, Le & Ng, "1 0]



* We saw before that a blurring kernel i1s nearly invariant

to deformations:

Proposition: The local averaging ®(x) = x * ¢; satisfies
Vizll=1€ L, 1, [|[®(z) — 2(prz)]| < C|7| -
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* We saw before that a blurring kernel i1s nearly invariant

to deformations:

Proposition: The local averaging ®(x) = x * ¢; satisfies
Vizll=1€ L, 1, [|[®(z) — 2(prz)]| < C|7| -

* What about the wavelet operator ®(x) = {z * ¥} !
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Wavelets and Deformations

* \We saw be

ore that a blurring kernel I1s nearly invariant

to deforma

lONS:

Proposition: The local averaging ®(x) = x * ¢; satisfies

vzl =1

c L, 7, [|®(x) - (er2)| <C|7| -

* What about the wavelet operator ®(x) = {z * ¥} !

- We don't have local invariance, but we have a form of local

covariance:

Proposition [Mallat]|: For each ¢ > 0 there exists C' > 0 such that for all J
and all 7 € C? with ||[V7||ec <1 — § we have

Wipr — Wil S C(TIVT]loo + [ HT|loo) -

(HT: Hessian of 7)
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e Qualitative idea behind this result:

Each 1y only “sees” the part of the deformation 7 that intersects its support.

)

a(u
| r(w
/A/WA" ——

A
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e Qualitative idea behind this result:

Each 1y only “sees” the part of the deformation 7 that intersects its support.

)

a(u
| — (u)
4% —

A

For small scales, 1) has small support, and for u, v within that support,
because 7 is smooth, |7(v) — 7(u)| ~ 277 |V7T|00-

Thus |(@prx) x Ya(u) —z x Pr(u —7(u))| ~ |VT|s-
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e Qualitative idea behind this result:

Each 1y only “sees” the part of the deformation 7 that intersects its support.

A

()

7(u)
Prany
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e Qualitative idea behind this result:

Each 1y only “sees” the part of the deformation 7 that intersects its support.

A

()
7(u)

N\
A
V%
For large scales, ¢y 1s itself smooth, thus

or (@ % hx) = (@rz) * Ya| ~ [[VT oo
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e Qualitative idea behind this result:

Each 1y only “sees” the part of the deformation 7 that intersects its support.

A

U (u)

AV A~

W

For large scales, ¢y 1s itself smooth, thus

or (@ % hx) = (@rz) * Ya| ~ [[VT oo

And, most importantly, wavelet separates scales
(so errors do not accumulate)
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* [he commutation property says that deformations in the
nput are approximately mapped to deformations in the
wavelet domain:

39



~ Wavelets and Non-linearites

* [he commutation property says that deformations in the
nput are approximately mapped to deformations in the
wavelet domain:

. >
* We want to extract again stable measurements: need non-

linear operator.
40



* Preserve additive stability:

|IMxz — Mz'|| < ||z —2'||. M non-expansive .
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* Preserve additive stability:

|Mxz — Mx'|| <||x — || . M non-expansive .

* Preserve geometric stability: It 1s sufficient to commute
with diffeomorphisms:

O stable: [|®(prx) — (2)| < 7]
M commutes with @, V7. }:>

M® and ¢M stable:
M (prx) — PM(x)
M®(p,x) — MP(x)

ANRIA

42



Characterization of stable non-linearities

* Preserve additive stability:

|Mxz — Mx'|| <||x — || . M non-expansive .

* Preserve geometric stabllity: It 1s sufficient to commute
with diffeomorphisms.

Theorem: If M is non-expansive operator in L* such
that o, M = My, tor all 7, then M is point-wise:

Mz (u) = p(x(u)) .

43



Characterization of stable non-linearities

* Preserve additive stability:

|Mxz — Mx'|| <||x — || . M non-expansive .

* Preserve geometric stabllity: It 1s sufficient to commute
with diffeomorphisms.

Theorem: If M is non-expansive operator in L* such
that o, M = My, tor all 7, then M is point-wise:

Mz (u) = p(x(u)) .

* Since we want to smooth orbits, we may choose a point-
wise nonlinearity that reduces oscillations:

p(2) = |z| or p(z) = max(0, 2)

44



* Rectifiers thus perform a non-linear demodulation:

A A

T(w)

L/\/\ AN
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* Rectifiers thus perform a non-linear demodulation:

A A

— N A
Xk Py T kP = T - Py

/\/AVZVA\/\/\ At :=/\__.

sometimes called the envelope



Choice of Pointwise Nonlinearity

e Full rectification p(2) = |2| preserves energy:

- When the wavelet 1s complex, it produces smoother envelopes (thus
more stable features).

» Half rectification (ReLU) p(z) = max(z,0) captures half
the energy, and It also creates sparsity.

- We will see that this Is important to perform detection.

» Sigmoid nonlinearity p(z) = (1 +e7*)7".
- It 1s not homogeneous

- Saturating regimes are problematic for learning via back propagation
In deep models.

* “Leaky’” ReLU [MSR'4]: parametrized halt-rectifier:

47



* Local averaging kernel: = x ¢,

—locally translation invariant
—stable to additive and geometric deformations
—loss of high-frequency information.
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* Local averaging kernel: = x ¢,

—locally translation invariant
—stable to additive and geometric deformations
—loss of high-frequency information.

) , , ]
Recover lost information: 7/ 2y — (04 b 2% tha|baea, -
— Point-wise, non-expansive non-linearities: maintain stability.

— Complex modulus maps energy towards low-frequencies.
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* Local averaging kernel: = x ¢,

—locally translation invariant
—stable to additive and geometric deformations
—loss of high-frequency information.

) , , ]
Recover lost information: 7/ 2y — (04 b 2% tha|baea, -
— Point-wise, non-expansive non-linearities: maintain stability.

— Complex modulus maps energy towards low-frequencies.

» Cascade the “recovery” operator:

U (z) = {x*dy, |[x*rlxds, [|zx s *xa [ Faren, -
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Separable Scattering Operators

* Local averaging kernel: = x ¢,

—locally translation invariant
—stable to additive and geometric deformations
—loss of high-frequency information.

) , , ]
Recover lost information: 7/ 1y — fo s |z % 0 haen, -
— Point-wise, non-expansive non-linearities: maintain stability.

— Complex modulus maps energy towards low-frequencies.

» Cascade the “recovery” operator:

UF(x) = {xx b, |z xPalxdy, [Joxvnl x o |Ixven, -
* Scattering coefficient along a path p=00 A

Sylple(u) = [[lzx ha | x x| % |+, [* du(u) -
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Cascade of contractive operators.
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Scattering Properties

* Additive stability and conservation of energy:
Theorem (Mallat): For appropriate wavelets, the scattering

representation is contractive, ||Syx — Syz'|| < ||z — 2'||

|Sy)> = [1Ssplz?

pEP

and unitary, ||Syx| = ||z -

56



Scattering Properties

* Additive stability and conservation of energy:
Theorem (Mallat): For appropriate wavelets, the scattering

representation is contractive, ||Syx — Syz'|| < ||z — 2'||

|Sy)> = [1Ssplz?

pEP

and unitary, ||Syx| = ||z -

* In practice, the transform is limrted to a finite
number of layers Mmax
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* Addrtive stability and conservation of energy:
Theorem (Mallat): For appropriate wavelets, the scattering

representation is contractive, ||Syx — Syz'|| < ||z — 2'||

and unitary, ||Syz|| = ||x]| .

» Geometric Stabllity: |Syz|* = Z 1S5 [p)x]|”

pEPy

Theorem (Mallat): There exists C such that
Vo € L? and all m,

the m-th order scattering satisfies

|SsLr]z = Syz| < Cmllz|l (27 I7llos + IV 7lloo + 1 HT[loo) -

L|T|x | Lprlx]



Discriminability

* For appropriate wavelets, the information Is preserved at
each layer:

Theorem: (Waldspurger) For appropriate wavelets, the operator
Ur ={xx¢j,|r*x1;|}<s is injective.

* However, the Inverse Is unstable —> we might be

contracting too much in general. How to prevent that?

* Sparsity In terms of contraction it Is very intuitive.
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* For appropriate wavelets, the information Is preserved at
each layer:

Theorem: (Waldspurger) For appropriate wavelets, the operator
Ur ={xx¢j,|r*x1;|}<s is injective.
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Discriminability

* For appropriate wavelets, the information Is preserved at
each layer:

Theorem: (Waldspurger) For appropriate wavelets, the operator
Ur ={xx¢j,|r*x1;|}<s is injective.

* However, the Inverse Is unstable: we might be contracting
too much In general. How to prevent that!
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* [ypical non-linearrties are contractive:
|p(z) — p(a")|| < ||z — 2|



* [ypical non-linearrties are contractive:
|p(z) — p(a")|| < ||z — 2|

* However, if x,2" are sparse, this inequality is an
equality In most of the signal domain.

* [hus sparsity Is a means to control and prevent excessive
contraction of different signal classes.
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Fourier Wavelet Scattering

fra ] *d ||f x x| x| * ¢

SIFT

W " .

window size = image size
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~ (courtesy J. Anden)

log(w1)

<1977 Hz

)\1———‘

log(w1)

A

S[A1, Ae]f(x) = || f *x x| *%2\ * ¢(r) for A\ = log(1977)

log(ws)

)\2:
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* State-of-the art on pattern and texture recognition:

~MNIST, USPS [Pami'3] 7 ; E /

7
1?
AR,
—Texture (CUREt, UIUC) [Pami'| 3]

* Object Recognition:

—~17% error on Cifar 10 [Oyallon&Malat, CYPR 15]
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* No feature dimensionality reduction

- The number of features increases exponentially with depth

* Feature maps are not recombined

- The deformation model is inherited from the input domain: we will
see that recombining feature maps offers more powerful invariance.

* Feature maps are not learnt

- We shall see that adapting the filters to object classes improves
contraction AND discriminability.
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