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DeepMind makes Nature Cover

DeepMind designed an 
algorithm that beat a 

professional GO player for the 
first time,

using MCTS and two CNNs 
trained with supervised 

learning and reinforcement 
learning.

[http://www.nature.com/news/google-ai-algorithm-masters-ancient-game-of-go-1.19234]
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• Thus                  satisfies 

• Indeed, 

�(x) = |V x|

8 x, t , �('t(x)) = �(x) .

V 'tx = V e

itA
x = V V

⇤diag(eit�1
, . . . , e

it�n)V x

= diag(eit�1
, . . . , e

it�n)V x

thus �('tx) = |V 'tx| = |V x| .

A = V ⇤diag(�1, . . . ,�n)V =) eitA = V ⇤diag(eit�1 , . . . , eit�n)V .

Review: Stone theorem, Fourier and Global Invariants
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Review: Limits of Group Diagonalisation

• A shallow (1 layer) network is thus sufficient to achieve 
invariance to commutative group transformations:

• However, this architecture has a number of shortcomings.
• Not applicable to non-commutative, discrete symmetry 

groups
• Not discriminative in general
• Not stable

V |z|
x �(x)
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Objectives

• Wavelets 

• Point-Wise non-linearities

• Scattering Representations for the Translation Group

• Properties
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Local invariants and convolution

• Local translation invariance:

x

x

0 = 't0x

k�(x)� �('vx)k  C2

�Jkvk , or

8 v, kxk = 1 ,

k�(x)� �('vx)k
kvk  C2�J

.
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Local invariants and convolution

• Local translation invariance:

• So, we want to smooth along the orbits.
• Local averaging within the translation orbit:

x

x

0 = 't0x

k�(x)� �('vx)k  C2

�Jkvk , or

8 v, kxk = 1 ,

k�(x)� �('vx)k
kvk  C2�J

.

�(x) = 2�dJ

Z

v
�(2�J

v)'vxdv ,

✓Z
�(v)dv = 1,� � 0

◆
.
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• Local averaging within the translation orbit:

• In coordinates, it becomes

Local invariants and convolution

x

x

0 = 't0x

�(x)(u) =

Z
�J(v)x(u� v)dv = x ⇤ �J(u) ,with

�J(v) = 2�Jd�(2�Jv)

�(x) = 2�dJ

Z

v
�(2�J

v)'vxdv ,

✓Z
�(v)dv = 1,� � 0

◆
.
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Local average and stability
Proposition: The local averaging �(x) = x ⇤ �J satisfies

8 kxk = 1 2 L

2
, ⌧ , k�(x)� �('⌧x)k  Ck⌧k .
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Local average and stability

• Not surprising, since this operator removes the 
problematic high-frequencies. 

• Are there other linear operators with the same 
property?

Proposition: The local averaging �(x) = x ⇤ �J satisfies

8 kxk = 1 2 L

2
, ⌧ , k�(x)� �('⌧x)k  Ck⌧k .
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Average and uniqueness

• The only linear, translation-invariant operator is the 
average:

• And a similar argument can be used locally.  

8 v , �(x) = �('vx) =) �(x) =
1

|G|

Z
�('vx)dv

=) �(x) = �

✓
1

|G|

Z
'vxdv

◆
= �

✓
1

|G|

Z
x(u)du

◆
.
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From averages to Wavelets
• Low-pass information is insufficient:

Chapter 2. Invariant Scattering Representations

ω

|x̂| |x̂τ |

ξ (1 + s)ξ

σx (1 + s)σx

Figure 2.1: Dilation of a complex bandpass window. If ξ ≫ σxs−1, then the supports
are nearly disjoint.

Besides deformation instabilities, the Fourier modulus and the autocorrelation lose
too much information. For example, a Dirac δ(u) and a linear chirp eiu

2
are two signals

having Fourier transforms whose moduli are equal and constant. Very different signals
may not be discriminated from their Fourier modulus.

A canonical invariant [KDGH07; Soa09] Φ(x) = x(u − a(x)) registers x ∈ L2(Rd)
with an anchor point a(x), which is translated when x is translated:

a(xc) = a(x) + c .

It thus defines a translation invariant representation: Φxc = Φx. For example, the anchor
point may be a filtered maximum a(x) = argmaxu |x ⋆ h(u)|, for some filter h(u). A
canonical invariant Φx(u) = x(u−a(x)) carries more information than a Fourier modulus,
and characterizes x up to a global absolute position information [Soa09]. However, it
has the same high-frequency instability as a Fourier modulus transform. Indeed, for any
choice of anchor point a(x), applying the Plancherel formula proves that

∥x(u− a(x))− x′(u− a(x′))∥ ≥ (2π)−1 ∥|x̂(ω)|− |x̂′(ω)|∥ .

If x′ = xτ , the Fourier transform instability at high frequencies implies that Φx =
x(u− a(x)) is also unstable with respect to deformations.

2.2.5 SIFT and HoG

SIFT (Scale Invariant Feature Transform) is a local image descriptor introduced by Lowe
in [Low04], which achieved huge popularity thanks to its invariance and discriminability
properties.

The SIFT method originally consists in a keypoint detection phase, using a Dif-
ferences of Gaussians pyramid, followed by a local description around each detected
keypoint. The keypoint detection computes local maxima on a scale space generated
by isotropic gaussian differences, which induces invariance to translations, rotations and
partially to scaling. The descriptor then computes histograms of image gradient ampli-
tudes, using 8 orientation bins on a 4× 4 grid around each keypoint, as shown in Figure
2.2.
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From averages to Wavelets
• Low-pass information is insufficient:

• Thus, we must capture high-frequency.
• These new measurements must involve a non-linearity.

Chapter 2. Invariant Scattering Representations
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From averages to Wavelets
• Low-pass information is insufficient:

• Thus, we must capture high-frequency.
• These new measurements must involve a non-linearity.
• We want them to preserve stability to deformations.
• And we want them to preserve inter-class variability.

Chapter 2. Invariant Scattering Representations
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Wavelets

•     : bandpass (ie oscillating) signal, well localized in space 
and frequency.
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Wavelets

•     : bandpass (ie oscillating) signal, well localized in space 
and frequency.

• At least one vanishing moment:
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Wavelets

•     : bandpass (ie oscillating) signal, well localized in space 
and frequency.

• At least one vanishing moment:

• Can be real or complex. 
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Wavelets

•     : bandpass (ie oscillating) signal, well localized in space 
and frequency.

• At least one vanishing moment:

•  

 
Z
 (u)du = 0

(we say that  has k vanishing moments if

R
 (u)uldu = 0 for l < k)

If x(u) is piece-wise smooth, then x ⇤  (u) is mostly zero

x(u)

x ⇤  (u)
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Wavelets

• The local average         is a blurry version of x, whereas
•          carries the details lost by the blurring. 

x ⇤ �
x ⇤  
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Wavelets

• The local average         is a blurry version of x, whereas
•          carries the details lost by the blurring.
• The details are relative to a given resolution. How to 

obtain a decomposition that captures details at all 
resolutions?  

x ⇤ �
x ⇤  
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Wavelets

• The local average         is a blurry version of x, whereas
•          carries the details lost by the blurring.
• The details are relative to a given resolution. How to 

obtain a decomposition that captures details at all 
resolutions?  

•  

x ⇤ �
x ⇤  

|�̂�(⇥)|2

�

|�̂��(⇥)|2

�� �0

|�̂(⇥)|2

Dilated wavelets: �j(u) = 2�j�(2�ju) , j 2 Z
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Littlewood-Paley Wavelet Filter Banks

• For images, dilated and rotated wavelets: |�̂2jr(⇥)|2

�1

�2

 �(u) = 2�j/2 (2�jru) , with � = 2jr
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Littlewood-Paley Wavelet Filter Banks

• Wavelet transform convolutional filter bank: 
x ?  (u) =

Z
x(v) (u� v)dv .

Wx = {x ? �(u) , x ?  �(u)}�2⇤

• For images, dilated and rotated wavelets: |�̂2jr(⇥)|2

�1

�2

 �(u) = 2�j/2 (2�jru) , with � = 2jr
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Littlewood-Paley Wavelet Filter Banks

• Wavelet transform convolutional filter bank: 
x ?  (u) =

Z
x(v) (u� v)dv .

Wx = {x ? �(u) , x ?  �(u)}�2⇤

• For images, dilated and rotated wavelets:

Theorem (Littlewood-Paley): If there exists � > 0 such that

8! > 0 , 1� �  |ˆ�(!)|2 + 1

2

X

�

| ˆ (��1
!)|2  1 ,

then 8x 2 L

2
, (1� �)kxk2  kWxk2  kxk2 .

|�̂2jr(⇥)|2

�1

�2

 �(u) = 2�j/2 (2�jru) , with � = 2jr
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Wavelet Filter Banks

• We can compute a wavelets recursively in a fine-to-
coarse transform:

Figure 1: Wavelet transform of an image x(u), computed with a cascade of convolutions with filters over
J = 4 scales and K = 4 orientations. The low-pass and K = 4 band-pass filters are shown on the first
arrows.

Lipschitz continuity over di↵eomorphisms is defined relatively to a metric, which is now defined. A small
di↵eomorphism acting on x(u) can be written as a translation of u by a g(u):

g.x(u) = x(u� g(u)) with g 2 C1(Rn) . (7)

This di↵eomorphism translates points by at most kgk1 = sup
u2Rn |g(u)|. Let |rg(u)| be the matrix norm of

the Jacobian matrix of g at u. Small di↵eomorphisms correspond to krgk1 = sup
u

|rg(u)| < 1. Applying a
di↵eomorphism g transforms two points (u1, u2) into (u1�g(u1), u2�g(u2)). Their distance is thus multiplied
by a scale factor, which is bounded above and below by 1± krgk1. The distance of this di↵eomorphism to
the identity is defined by:

|g|Di↵ = 2�J

kgk1 + krgk1 . (8)

The factor 2J is a local translation invariance scale. It gives the range of translations over which small
di↵eomorphisms are linearized. For J = 1 the metric is globally invariant to translations.

§4 Contractions and Scale Separation with Wavelets

Deep convolutional networks can linearize the action of very complex non-linear transformations in high
dimensions, such as inserting glasses in images of faces [28]. A transformation of x 2 ⌦ is a transport of x in
⌦. To understand how to linearize any such transport, we shall begin with translations and di↵eomorphisms.
Deep network architectures are covariant to translations, because all linear operators are implemented with
convolutions. To compute invariants to translations and linearize di↵eomorphisms, we need to separate scales
and apply a non-linearity. This is implemented with a cascade of filters computing a wavelet transform, and
a pointwise contractive non-linearity. Section 7 extends these tools to general group actions.

Averaging A linear operator can compute local invariants to the action of the translation group G, by
averaging x along the orbit {g.x}

g2G

, which are translations of x. This is done with a convolution by an
averaging kernel �

J

(u) = 2�nJ�(2�Ju) of size 2J , with
R
�(u) du = 1:

�
J

x(u) = x ? �
J

(u) . (9)

One can verify [24] that this averaging is Lipschitz continuous to di↵eomorphisms for all x 2 L2(Rn), over
a translation range 2J . However, it eliminates the variations of x above the frequency 2�J . If J = 1 then
�1x =

R
x(u) du, which eliminates nearly all information.

5
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Wavelets in Vision

• V1 Model of Simple and Complex cells: First layer of 
processing is selective in orientation, scale and position.

- cells are organized in pinwheels. (more on that later).
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Why are wavelets a good model?

• We will see that they provide stability to deformations 
because they commute nicely with diffeomorphisms:

kW'⌧x� '⌧Wxk . k⌧k .
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Why are wavelets a good model?

• We will see that they provide stability to deformations 
because they commute nicely with diffeomorphisms:

• We will also see that the discriminability of                           
is controlled by the sparsity produced by     : 

kW'⌧x� '⌧Wxk . k⌧k .

�(x) = ⇢(Wx)

W

{x ⇤  �(u)}�,u has few non-zero coe�cients.
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Examples

• Olshausen and Field Sparse coding model trained on 
natural images:

[Olshausen and Field,’96]

min
W,z

kX �Wzk2 + �kzk1
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Examples

• Top performing shallow network unsupervised learning:

Figure 1: Illustration showing feature extraction using a w-by-w receptive field and stride s. We first
extract w-by-w patches separated by s pixels each, then map them to K-dimensional feature vectors
to form a new image representation. These vectors are then pooled over 4 quadrants of the image to
form a feature vector for classification. (For clarity we have drawn the leftmost figure with a stride
greater than w, but in practice the stride is almost always smaller than w.

(a) K-means (with and without whitening) (b) GMM (with and without whitening)

(c) Sparse Autoencoder (with and without whitening) (d) Sparse RBM (with and without whitening)

Figure 2: Randomly selected bases (or centroids) trained on CIFAR-10 images using different learn-
ing algorithms. Best viewed in color.

3.2.2 Classification

Before classification, it is standard practice to reduce the dimensionality of the image representation
by pooling. For a stride of s = 1, our feature mapping produces a (n�w+1)-by-(n�w+1)-by-K
representation. We can reduce this by summing up over local regions of the y

(ij)’s extracted as
above. Specifically, we split the y

(ij)’s into four equal-sized quadrants, and compute the sum of the
y

(ij)’s in each. This yields a reduced (K-dimensional) representation of each quadrant, for a total
of 4K features that we use for classification.

Given these pooled (4K-dimensional) feature vectors for each training image and a label, we apply
standard linear classification algorithms. In our experiments we use (L2) SVM classification. The
regularization parameter is determined by cross-validation.

4 Experiments and Analysis

The above framework includes a number of parameters that can be changed: (i) whether to use
whitening, (ii) the number of features K, (iii) the stride s, and (iv) receptive field size w. In this

5
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Wavelets and Deformations

• We saw before that a blurring kernel is nearly invariant 
to deformations:

Proposition: The local averaging �(x) = x ⇤ �J satisfies

8 kxk = 1 2 L

2
, ⌧ , k�(x)� �('⌧x)k  Ck⌧k .
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Wavelets and Deformations

• We saw before that a blurring kernel is nearly invariant 
to deformations:

• What about the wavelet operator                          ?

Proposition: The local averaging �(x) = x ⇤ �J satisfies

8 kxk = 1 2 L

2
, ⌧ , k�(x)� �('⌧x)k  Ck⌧k .

�(x) = {x ⇤  �}�
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Wavelets and Deformations

• We saw before that a blurring kernel is nearly invariant 
to deformations:

• What about the wavelet operator                          ?
- We don’t have local invariance, but we have a form of local 

covariance: 

Proposition: The local averaging �(x) = x ⇤ �J satisfies

8 kxk = 1 2 L

2
, ⌧ , k�(x)� �('⌧x)k  Ck⌧k .

�(x) = {x ⇤  �}�

Proposition [Mallat]: For each � > 0 there exists C > 0 such that for all J
and all ⌧ 2 C2

with kr⌧k1  1� � we have

kWJ'⌧ � '⌧WJk  C(Jkr⌧k1 + kH⌧k1) .

(H⌧ : Hessian of ⌧)
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• Qualitative idea behind this result:

Wavelets and Deformations

Each  � only “sees” the part of the deformation ⌧ that intersects its support.

⌧(u)
 �(u)
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• Qualitative idea behind this result:

Wavelets and Deformations

Each  � only “sees” the part of the deformation ⌧ that intersects its support.

⌧(u)
 �(u)

For small scales,  � has small support, and for u, v within that support,

because ⌧ is smooth, |⌧(v)� ⌧(u)| ⇠ 2

�j |r⌧ |1.

Thus |('⌧x) ⇤  �(u)� x ⇤  �(u� ⌧(u))| ⇠ |r⌧ |1.
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Wavelets and Deformations

• Qualitative idea behind this result:

Each  � only “sees” the part of the deformation ⌧ that intersects its support.

⌧(u)
 �(u)
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Wavelets and Deformations

• Qualitative idea behind this result:

Each  � only “sees” the part of the deformation ⌧ that intersects its support.

⌧(u)
 �(u)

For large scales,  � is itself smooth, thus

|'⌧ (x ⇤  �)� ('⌧x) ⇤  �| ⇠ kr⌧k1.
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Wavelets and Deformations

• Qualitative idea behind this result:

Each  � only “sees” the part of the deformation ⌧ that intersects its support.

⌧(u)
 �(u)

For large scales,  � is itself smooth, thus

|'⌧ (x ⇤  �)� ('⌧x) ⇤  �| ⇠ kr⌧k1.

And, most importantly, wavelet separates scales

(so errors do not accumulate)
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• The commutation property says that deformations in the 
input are approximately mapped to deformations in the 
wavelet domain:

Wavelets and Non-linearities

x

'⌧x

W
x ⇤  �1

x ⇤  �2

x ⇤  �p
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• The commutation property says that deformations in the 
input are approximately mapped to deformations in the 
wavelet domain:

• We want to extract again stable measurements: need non-
linear operator. 

Wavelets and Non-linearities

x

'⌧x

W
x ⇤  �1

x ⇤  �2

x ⇤  �p
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Characterization of stable non-linearities

• Preserve additive stability: 
kMx�Mx

0k  kx� x

0k .

M non-expansive .
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Characterization of stable non-linearities

• Preserve additive stability: 

• Preserve geometric stability: It is sufficient to commute 
with diffeomorphisms:

kMx�Mx

0k  kx� x

0k .

M non-expansive .

}
M� and �M stable:

)
� stable: k�('⌧x)� �(x)k . k⌧k
M commutes with '⌧ 8⌧ .

kM�('⌧x)�M�(x)k . k⌧k
k�M('⌧x)� �M(x)k . k⌧k
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Characterization of stable non-linearities

• Preserve additive stability: 

• Preserve geometric stability: It is sufficient to commute 
with diffeomorphisms.

kMx�Mx

0k  kx� x

0k .

M non-expansive .

Theorem: If M is non-expansive operator in L2
such

that '⌧M = M'⌧ for all ⌧ , then M is point-wise:

Mx(u) = ⇢(x(u)) .
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Characterization of stable non-linearities

• Preserve additive stability: 

• Preserve geometric stability: It is sufficient to commute 
with diffeomorphisms.

• Since we want to smooth orbits, we may choose a point-
wise nonlinearity that reduces oscillations: 

kMx�Mx

0k  kx� x

0k .

M non-expansive .

Theorem: If M is non-expansive operator in L2
such

that '⌧M = M'⌧ for all ⌧ , then M is point-wise:

Mx(u) = ⇢(x(u)) .

⇢(z) = |z| or ⇢(z) = max(0, z)
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Understanding the effect of nonlinearities

• Rectifiers thus perform a non-linear demodulation:

x(u)
x̂(!)
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\
x ⇤  � = x̂ ·  ̂�

Understanding the effect of nonlinearities

• Rectifiers thus perform a non-linear demodulation:

x ⇤  �

⇢(x ⇤  �) \
⇢(x ⇤  �)

sometimes called the envelope 46



Choice of Pointwise Nonlinearity

• Full rectification                preserves energy:
- When the wavelet is complex, it produces smoother envelopes (thus 

more stable features).

• Half rectification (ReLU)                         captures half 
the energy, and it also creates sparsity.
- We will see that this is important to perform detection.

• Sigmoid nonlinearity  
- It is not homogeneous
- Saturating regimes are problematic for learning via back propagation 

in deep models. 
• “Leaky” ReLU [MSR’14]: parametrized half-rectifier. 

⇢(z) = |z|

⇢(z) = max(z, 0)

⇢(z) = (1 + e�z)�1.
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Separable Scattering Operators
• Local averaging kernel:

– locally translation invariant
– stable to additive and geometric deformations
– loss of high-frequency information.

x ? �J
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• Local averaging kernel:
– locally translation invariant
– stable to additive and geometric deformations
– loss of high-frequency information.

• Recover lost information:
– Point-wise, non-expansive non-linearities: maintain stability.
– Complex modulus maps energy towards low-frequencies.

UJ(x) = {x ? �J , |x ?  �|}�2⇤J .

Separable Scattering Operators
x ? �J
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• Local averaging kernel:
– locally translation invariant
– stable to additive and geometric deformations
– loss of high-frequency information.

• Recover lost information:
– Point-wise, non-expansive non-linearities: maintain stability.
– Complex modulus maps energy towards low-frequencies.

• Cascade the “recovery” operator:

UJ(x) = {x ? �J , |x ?  �|}�2⇤J .

U2
J(x) = {x ? �J , |x ?  �|?�J , ||x ?  �| ?  �0 |}�,�02⇤J .

Separable Scattering Operators
x ? �J
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• Local averaging kernel:
– locally translation invariant
– stable to additive and geometric deformations
– loss of high-frequency information.

• Recover lost information:
– Point-wise, non-expansive non-linearities: maintain stability.
– Complex modulus maps energy towards low-frequencies.

• Cascade the “recovery” operator:

• Scattering coefficient along a path   

UJ(x) = {x ? �J , |x ?  �|}�2⇤J .

U2
J(x) = {x ? �J , |x ?  �|?�J , ||x ?  �| ?  �0 |}�,�02⇤J .

p = (�1, . . . ,�m) :

SJ [p]x(u) = |||x ?  �1 | ?  �2 | ? . . . | ?  �m | ? �J(u) .

Separable Scattering Operators
x ? �J
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     Scattering Convolutional Network

| |f ⇧ ⇤j1,�1 | ⇧ ⇤j2,�2 | ⇧ ⇥J
�j1, j2
��1, �2

|WJ |

|f ⌅ ⇤j1,�1 | ⌅ ⇥J
�j1
��1

| |f ⇥ �j1,�1 | ⇥ �j2,�2 |

|WJ |
|f ⇥ �j1,�1 |

f ⇥ �J
|WJ |

| |f ⇥ �j1,�1 · · · | ⇥ �jm+1,�m+1 |

Cascade of contractive operators.

· · · · · ·
| |f ⇥ �j1,�1 | · · · ⇥ �jm,�m |

|WJ |
| |f ⇧ ⇤j1,�1 | · · · ⇧ ⇤jm,�m | ⇧ ⇥J

⇥j1...jm

⇥�1...�m

f
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Scattering Example

x(u)
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Scattering Example

x(u)

x ? �J(2
J
u)

|x ?  �|(u)
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Scattering Example

x(u)

x ? �J(2
J
u)

|x ?  �|(u) | |x ?  �1 | ?  �2 |(u)
|x ?  �| ? �J(2Ju)
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Scattering Properties

• Additive stability and conservation of energy:
Theorem (Mallat): For appropriate wavelets, the scattering

representation is contractive, kSJx� SJx
0k  kx� x

0k ,

and unitary, kSJxk = kxk .

kSJxk2 =
X

p2PJ

kSJ [p]xk2
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Scattering Properties

• Additive stability and conservation of energy:

• In practice, the transform is limited to a finite 
number of layers 

Theorem (Mallat): For appropriate wavelets, the scattering

representation is contractive, kSJx� SJx
0k  kx� x

0k ,

and unitary, kSJxk = kxk .

kSJxk2 =
X

p2PJ

kSJ [p]xk2

m
max
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Scattering Properties

• Additive stability and conservation of energy:

• Geometric Stability:

Theorem (Mallat): For appropriate wavelets, the scattering

representation is contractive, kSJx� SJx
0k  kx� x

0k ,

and unitary, kSJxk = kxk .

kSJxk2 =
X

p2PJ

kSJ [p]xk2

L[⌧ ]x SJL[⌧ ]x

Theorem (Mallat): There exists C such that

8x 2 L2
and all m,

the m-th order scattering satisfies

kSJL[⌧ ]x� SJxk  Cmkxk
�
2

�Jk⌧k1 + kr⌧k1 + kH⌧k1
�
.

|\L[⌧ ]x|58



Discriminability

• For appropriate wavelets, the information is preserved at 
each layer :

• However, the inverse is unstable —> we might be 
contracting too much in general. How to prevent that?

• Sparsity  In terms of contraction it is very intuitive. 

Theorem: (Waldspurger) For appropriate wavelets, the operator

Ux = {x ? �J , |x ?  j |}jJ is injective.
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Discriminability

• For appropriate wavelets, the information is preserved at 
each layer :
Theorem: (Waldspurger) For appropriate wavelets, the operator

Ux = {x ? �J , |x ?  j |}jJ is injective.
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Discriminability

• For appropriate wavelets, the information is preserved at 
each layer :

• However, the inverse is unstable: we might be contracting 
too much in general. How to prevent that?

Theorem: (Waldspurger) For appropriate wavelets, the operator

Ux = {x ? �J , |x ?  j |}jJ is injective.
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Discriminability and Sparsity

• Typical non-linearities are contractive:
k⇢(x)� ⇢(x0)k  kx� x

0k
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Discriminability and Sparsity

• Typical non-linearities are contractive:

• However, if            are sparse, this inequality is an 
equality in most of the signal domain.

• Thus sparsity is a means to control and prevent excessive 
contraction of different signal classes.

k⇢(x)� ⇢(x0)k  kx� x

0k

x, x

0
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Wavelet Scattering

SIFT

window size = image size

f̂ |f ⇤ ⇥�1 | ⇤ �

Image Examples

Images Fourier

�1

�2

�1

�2

f ||f ⇤ ⇥�1 | ⇤ ⇥�2 | ⇤ �

[Bruna, Mallat, ’11,’12]
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First−order windowed scattering (small scale)
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First−order windowed scattering (large scale)
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Second−order windowed scattering (large scale) Band #75

18 Hz

Sound Examples
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S[�1]f(x) = |f ⌅ ⇤�1 | ⌅ ⇥(x)

S[�1, �2]f(x) = ||f ⇧ ⇤�1 | ⇧ ⇤�2 | ⇧ ⇥(x) for �1 = log(1977)

|f ⇥ ��1 |(x)

MFCC

(courtesy J. Anden)
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Classification with Scattering

• State-of-the art on pattern and texture recognition:
– MNIST, USPS [Pami’13]

– Texture (CUREt, UIUC) [Pami’13]

• Object Recognition:

– ~17% error on Cifar-10 [Oyallon&Mallat, CVPR’15] 
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Limitations of Separable Scattering

• No feature dimensionality reduction
- The number of features increases exponentially with depth

• Feature maps are not recombined 
- The deformation model is inherited from the input domain: we will 

see that recombining feature maps offers more powerful invariance.

• Feature maps are not learnt
- We shall see that adapting the filters to object classes improves 

contraction AND discriminability. 
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