Stat 212b:Topics in Deep Learning Lecture 4

Joan Bruna UC Berkeley

DeepMind makes Nature Cover

At last – a computer program that can beat a champion Go player PAGE 484

nature

AF INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

ALL SYSTEMS GO

POPULAR SCIENCE

WHEN GENES

DeepMind designed an algorithm that beat a professional GO player for the first time. using MCTS and two CNNs trained with supervised learning and reinforcement learning.

[http://www.nature.com/news/google-ai-algorithm-masters-ancient-game-of-go-1.19234]

Review: Stone theorem, Fourier and Global Invariants

• Thus $\Phi(x) = |Vx|$ satisfies

$$\forall x, t , \Phi(\varphi_t(x)) = \Phi(x) .$$

Indeed,

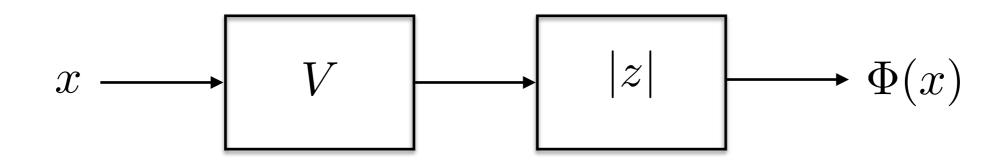
$$A = V^* \operatorname{diag}(\lambda_1, \dots, \lambda_n) V \implies e^{itA} = V^* \operatorname{diag}(e^{it\lambda_1}, \dots, e^{it\lambda_n}) V$$

$$V\varphi_t x = V e^{itA} x = V V^* \operatorname{diag}(e^{it\lambda_1}, \dots, e^{it\lambda_n}) V x$$
$$= \operatorname{diag}(e^{it\lambda_1}, \dots, e^{it\lambda_n}) V x$$

thus $\Phi(\varphi_t x) = |V\varphi_t x| = |Vx|$.

Review: Limits of Group Diagonalisation

• A shallow (I layer) network is thus sufficient to achieve invariance to commutative group transformations:



- However, this architecture has a number of shortcomings.
 - Not applicable to non-commutative, discrete symmetry groups
 - Not discriminative in general
 - Not stable

Objectives

- Wavelets
- Point-Wise non-linearities
- Scattering Representations for the Translation Group
- Properties

Local invariants and convolution

$$x \bullet x' = \varphi_{t'} x$$

• Local translation invariance:

$$\|\Phi(x) - \Phi(\varphi_v x)\| \le C2^{-J} \|v\|$$
, or
 $\forall v, \|x\| = 1$, $\frac{\|\Phi(x) - \Phi(\varphi_v x)\|}{\|v\|} \le C2^{-J}$

Local invariants and convolution

$$x \bullet x' = \varphi_{t'} x$$

• Local translation invariance:

$$\|\Phi(x) - \Phi(\varphi_v x)\| \le C2^{-J} \|v\|$$
, or
 $\forall v, \|x\| = 1$, $\frac{\|\Phi(x) - \Phi(\varphi_v x)\|}{\|v\|} \le C2^{-J}$

- So, we want to smooth along the orbits.
- Local averaging within the translation orbit:

$$\Phi(x) = 2^{-dJ} \int_{v} \phi(2^{-J}v) \varphi_{v} x dv , \quad \left(\int_{\tau} \phi(v) dv = 1, \phi \ge 0 \right) .$$

Local invariants and convolution

$$x' = \varphi_{t'} x$$

- Local averaging within the translation orbit: $\Phi(x) = 2^{-dJ} \int_v \phi(2^{-J}v) \varphi_v x dv \ , \ \left(\int \phi(v) dv = 1, \phi \ge 0 \right) \ .$
- In coordinates, it becomes

$$\Phi(x)(u) = \int \phi_J(v) x(u-v) dv = x * \phi_J(u) \text{, with}$$
$$\phi_J(v) = 2^{-Jd} \phi(2^{-J}v)$$

Local average and stability

Proposition: The local averaging $\Phi(x) = x * \phi_J$ satisfies $\forall ||x|| = 1 \in L^2$, τ , $||\Phi(x) - \Phi(\varphi_\tau x)|| \le C ||\tau||$.

Local average and stability

Proposition: The local averaging $\Phi(x) = x * \phi_J$ satisfies $\forall \|x\| = 1 \in L^2$, τ , $\|\Phi(x) - \Phi(\varphi_\tau x)\| \leq C \|\tau\|$.

- Not surprising, since this operator removes the problematic high-frequencies.
- Are there other linear operators with the same property?

Average and uniqueness

• The only linear, translation-invariant operator is the average:

$$\forall v , \Phi(x) = \Phi(\varphi_v x) \Longrightarrow \Phi(x) = \frac{1}{|G|} \int \Phi(\varphi_v x) dv$$

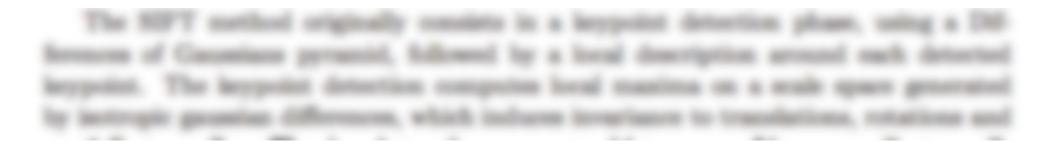
$$\implies \Phi(x) = \Phi\left(\frac{1}{|G|}\int\varphi_v x dv\right) = \Phi\left(\frac{1}{|G|}\int x(u) du\right)$$

• And a similar argument can be used locally.

From averages to Wavelets

• Low-pass information is insufficient:

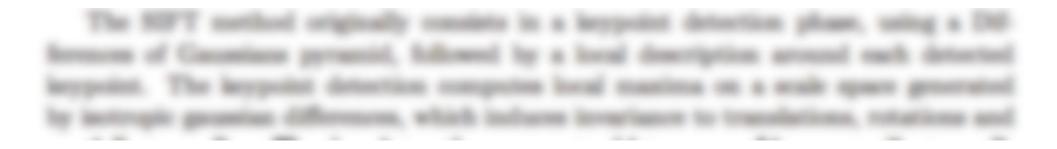
The SIFT method originally consists in a keypoint detection phase, using a Differences of Gaussians pyramid, followed by a local description around each detected keypoint. The keypoint detection computes local maxima on a scale space generated by isotropic gaussian differences, which induces invariance to translations, rotations and



From averages to Wavelets

• Low-pass information is insufficient:

The SIFT method originally consists in a keypoint detection phase, using a Differences of Gaussians pyramid, followed by a local description around each detected keypoint. The keypoint detection computes local maxima on a scale space generated by isotropic gaussian differences, which induces invariance to translations, rotations and

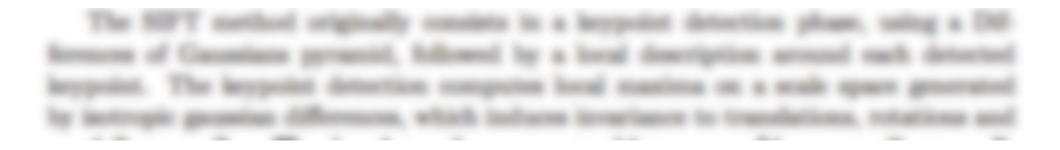


- Thus, we must capture high-frequency.
- These new measurements must involve a non-linearity.

From averages to Wavelets

• Low-pass information is insufficient:

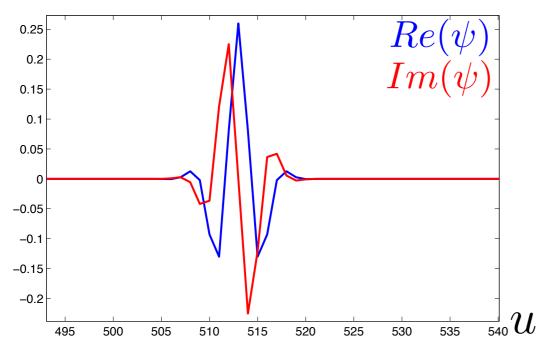
The SIFT method originally consists in a keypoint detection phase, using a Differences of Gaussians pyramid, followed by a local description around each detected keypoint. The keypoint detection computes local maxima on a scale space generated by isotropic gaussian differences, which induces invariance to translations, rotations and

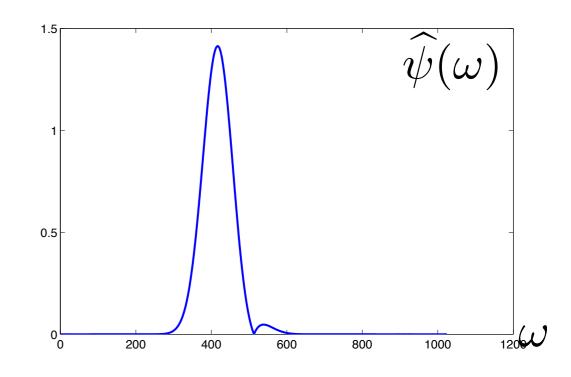


- Thus, we must capture high-frequency.
- These new measurements must involve a non-linearity.
- We want them to preserve stability to deformations.
- And we want them to preserve inter-class variability.

- ψ : bandpass (ie oscillating) signal, well localized in space and frequency.

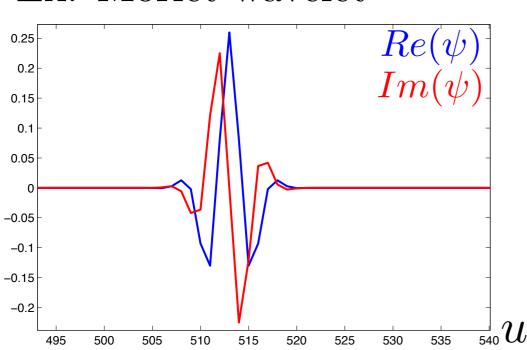
Ex: Morlet wavelet

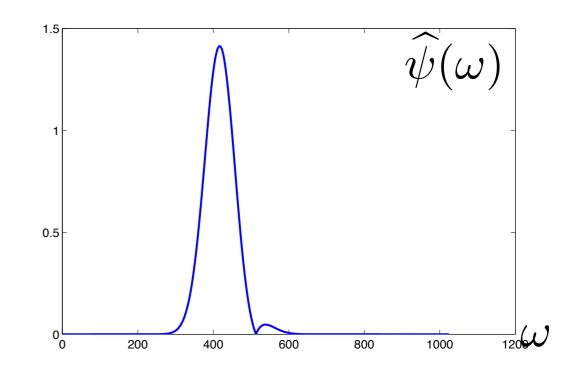




- ψ : bandpass (ie oscillating) signal, well localized in space and frequency.
- At least one vanishing moment: $\int \psi(u) du = 0$

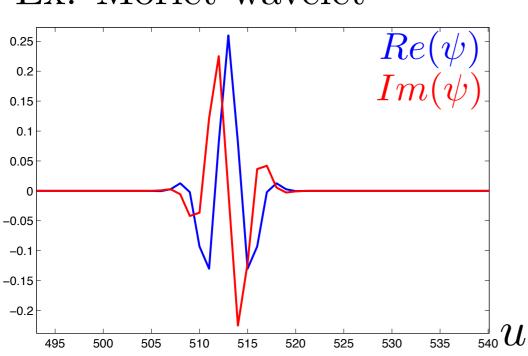
(we say that ψ has k vanishing moments if $\int \psi(u) u^l du = 0$ for l < k)

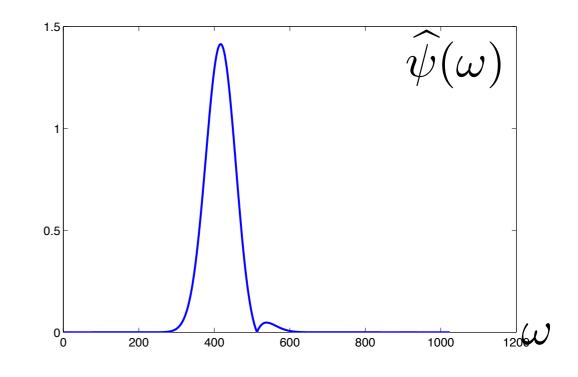




Ex: Morlet wavelet

- ψ : bandpass (ie oscillating) signal, well localized in space and frequency.
- At least one vanishing moment: $\int \psi(u) du = 0$ (we say that ψ has k vanishing moments if $\int \psi(u) u^l du = 0$ for l < k)
- Can be real or complex. $\psi = \psi_r + i\psi_i$

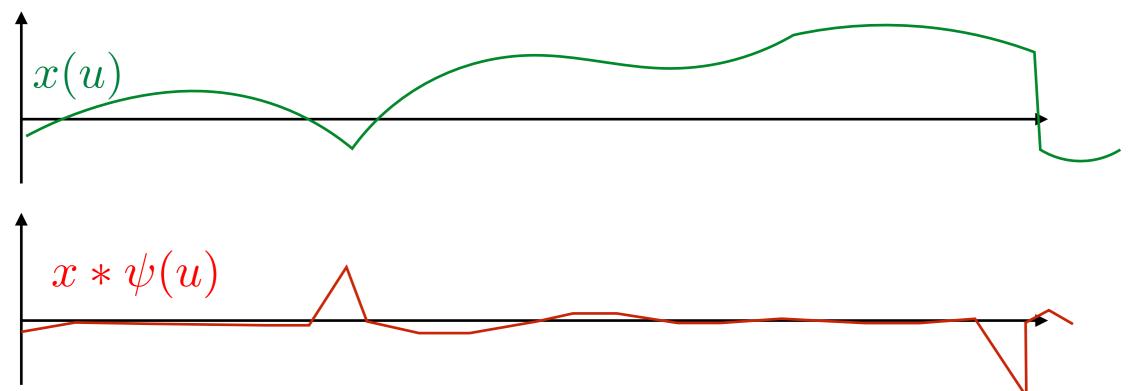




Ex: Morlet wavelet

- ψ : bandpass (ie oscillating) signal, well localized in space and frequency.
- At least one vanishing moment: $\int \psi(u) du = 0$ (we say that ψ has k vanishing moments if $\int \psi(u) u^l du = 0$ for l < k)

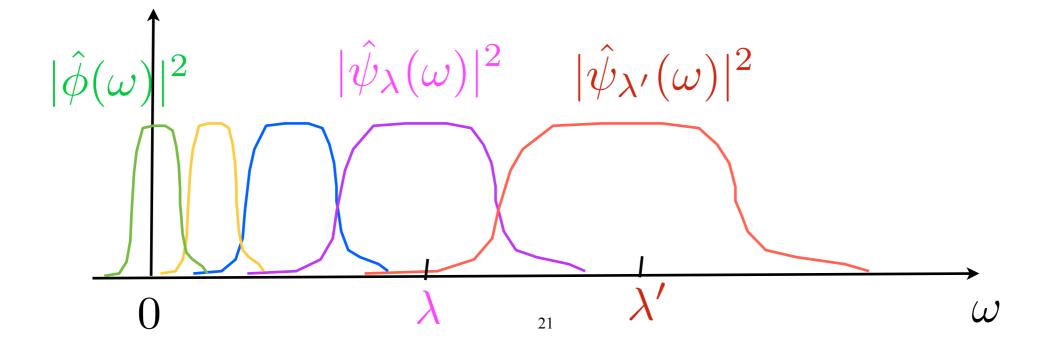
• If x(u) is piece-wise smooth, then $x * \psi(u)$ is mostly zero



- The local average $x * \phi$ is a blurry version of x, whereas
- $x * \psi$ carries the details lost by the blurring.

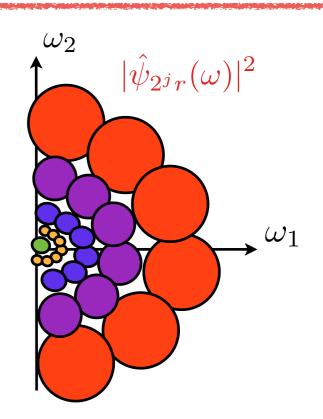
- The local average $x * \phi$ is a blurry version of x, whereas
- $x * \psi$ carries the details lost by the blurring.
- The details are relative to a given resolution. How to obtain a decomposition that captures details at *all* resolutions?

- The local average $x * \phi$ is a blurry version of x, whereas
- $x * \psi$ carries the details lost by the blurring.
- The details are relative to a given resolution. How to obtain a decomposition that captures details at *all* resolutions?
- Dilated wavelets: $\psi_j(u) = 2^{-j}\psi(2^{-j}u), \ j \in \mathbb{Z}$



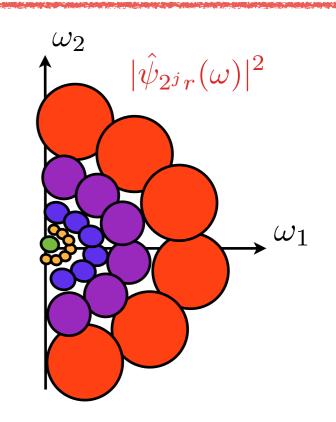
Littlewood-Paley Wavelet Filter Banks

• For images, dilated and rotated wavelets: $\psi_{\lambda}(u) = 2^{-j/2}\psi(2^{-j}ru)$, with $\lambda = 2^{j}r$



Littlewood-Paley Wavelet Filter Banks

• For images, dilated and rotated wavelets: $\psi_{\lambda}(u) = 2^{-j/2}\psi(2^{-j}ru)$, with $\lambda = 2^{j}r$

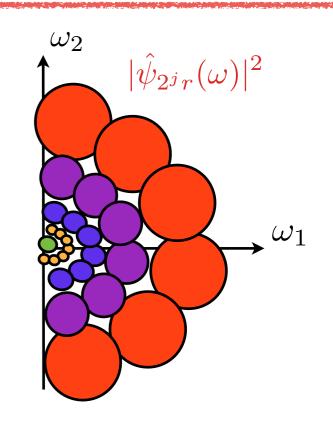


• Wavelet transform convolutional filter bank:

 $Wx = \{x \star \phi(u), x \star \psi_{\lambda}(u)\}_{\lambda \in \Lambda} \qquad x \star \psi(u) = \int x(v)\psi(u-v)dv \ .$

Littlewood-Paley Wavelet Filter Banks

• For images, dilated and rotated wavelets: $\psi_{\lambda}(u) = 2^{-j/2}\psi(2^{-j}ru)$, with $\lambda = 2^{j}r$



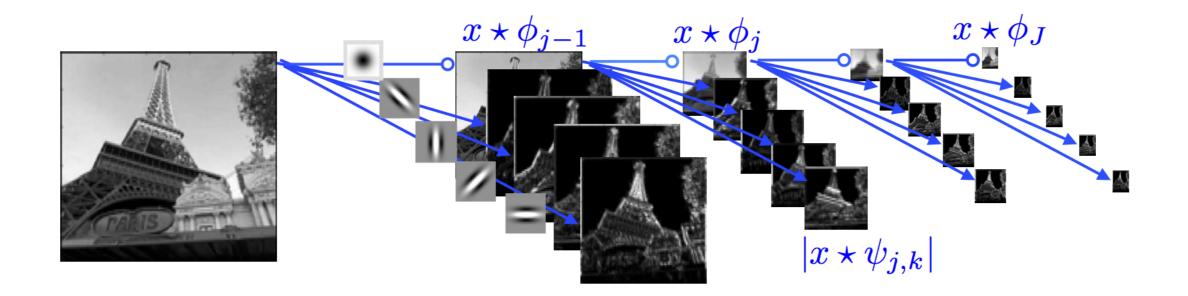
• Wavelet transform convolutional filter bank:

$$Wx = \{x \star \phi(u), x \star \psi_{\lambda}(u)\}_{\lambda \in \Lambda} \qquad x \star \psi(u) = \int x(v)\psi(u-v)dv \ .$$

Theorem (Littlewood-Paley): If there exists $\delta > 0$ such that $\forall \omega > 0$, $1 - \delta \le |\hat{\phi}(\omega)|^2 + \frac{1}{2} \sum_{\lambda} |\hat{\psi}(\lambda^{-1}\omega)|^2 \le 1$, then $\forall x \in L^2$, $(1 - \delta) ||x||^2 \le ||Wx||^2 \le ||x||^2$.

Wavelet Filter Banks

• We can compute a wavelets recursively in a fine-tocoarse transform:



Wavelets in Vision

• V1 Model of Simple and Complex cells: First layer of processing is selective in orientation, scale and position.



- cells are organized in *pinwheels*. (more on that later).

Why are wavelets a good model?

• We will see that they provide stability to deformations because they *commute* nicely with diffeomorphisms:

$$\|W\varphi_{\tau}x - \varphi_{\tau}Wx\| \lesssim \|\tau\| .$$

Why are wavelets a good model?

• We will see that they provide stability to deformations because they *commute* nicely with diffeomorphisms:

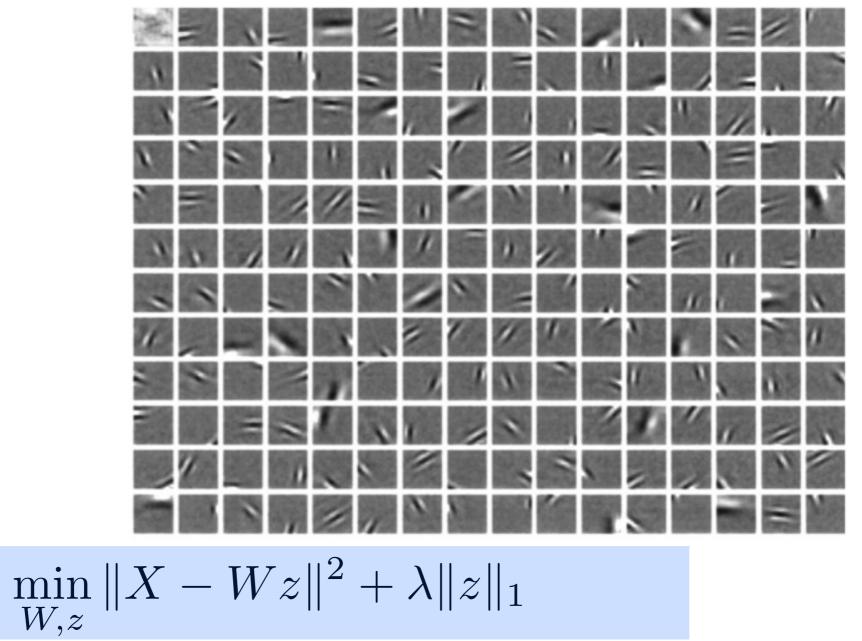
$$\|W\varphi_{\tau}x - \varphi_{\tau}Wx\| \lesssim \|\tau\| .$$

• We will also see that the discriminability of $\Phi(x) = \rho(Wx)$ is controlled by the sparsity produced by W:

 ${x * \psi_{\lambda}(u)}_{\lambda,u}$ has few non-zero coefficients.

Examples

 Olshausen and Field Sparse coding model trained on natural images:



[Olshausen and Field,'96]

Examples

• Top performing shallow network unsupervised learning:

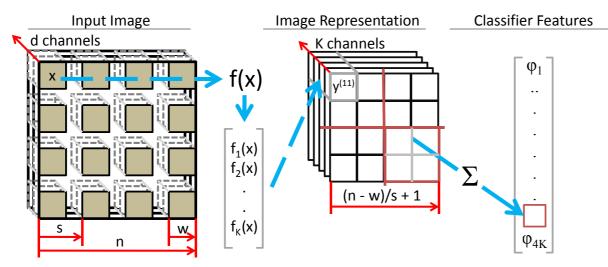
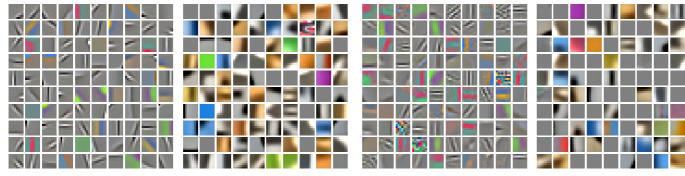


Figure 1: Illustration showing feature extraction using a w-by-w receptive field and stride s. We first extract w-by-w patches separated by s pixels each, then map them to K-dimensional feature vectors to form a new image representation. These vectors are then pooled over 4 quadrants of the image to form a feature vector for classification. (For clarity we have drawn the leftmost figure with a stride greater than w, but in practice the stride is almost always smaller than w.



(a) K-means (with and without whitening)

(b) GMM (with and without whitening)

(c) Sparse Autoencoder (with and without whitening)

(d) Sparse RBM (with and without whitening)

 We saw before that a blurring kernel is nearly invariant to deformations:

Proposition: The local averaging $\Phi(x) = x * \phi_J$ satisfies $\forall ||x|| = 1 \in L^2$, τ , $||\Phi(x) - \Phi(\varphi_\tau x)|| \le C ||\tau||$.

 We saw before that a blurring kernel is nearly invariant to deformations:

Proposition: The local averaging $\Phi(x) = x * \phi_J$ satisfies $\forall ||x|| = 1 \in L^2$, τ , $||\Phi(x) - \Phi(\varphi_\tau x)|| \le C ||\tau||$.

• What about the wavelet operator $\Phi(x) = \{x * \psi_{\lambda}\}_{\lambda}$?

 We saw before that a blurring kernel is nearly invariant to deformations:

Proposition: The local averaging $\Phi(x) = x * \phi_J$ satisfies $\forall \|x\| = 1 \in L^2$, τ , $\|\Phi(x) - \Phi(\varphi_\tau x)\| \leq C \|\tau\|$.

- What about the wavelet operator $\Phi(x) = \{x * \psi_{\lambda}\}_{\lambda}$?
 - We don't have local invariance, but we have a form of local covariance:

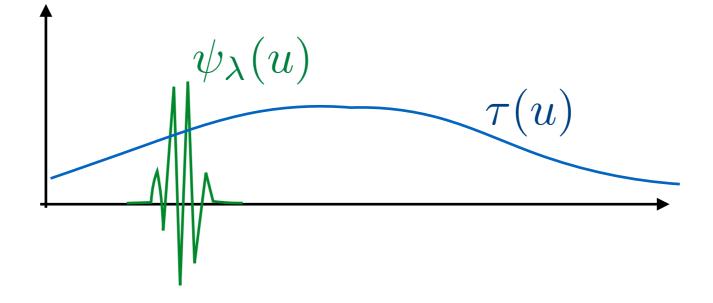
Proposition [Mallat]: For each $\delta > 0$ there exists C > 0 such that for all J and all $\tau \in C^2$ with $\|\nabla \tau\|_{\infty} \leq 1 - \delta$ we have

$$||W_J\varphi_{\tau} - \varphi_{\tau}W_J|| \le C(J||\nabla \tau||_{\infty} + ||H\tau||_{\infty}).$$

 $(H\tau:$ Hessian of $\tau)$

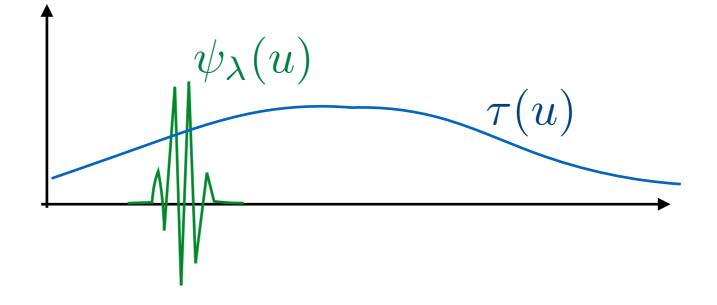
• Qualitative idea behind this result:

Each ψ_{λ} only "sees" the part of the deformation τ that intersects its support.



• Qualitative idea behind this result:

Each ψ_{λ} only "sees" the part of the deformation τ that intersects its support.

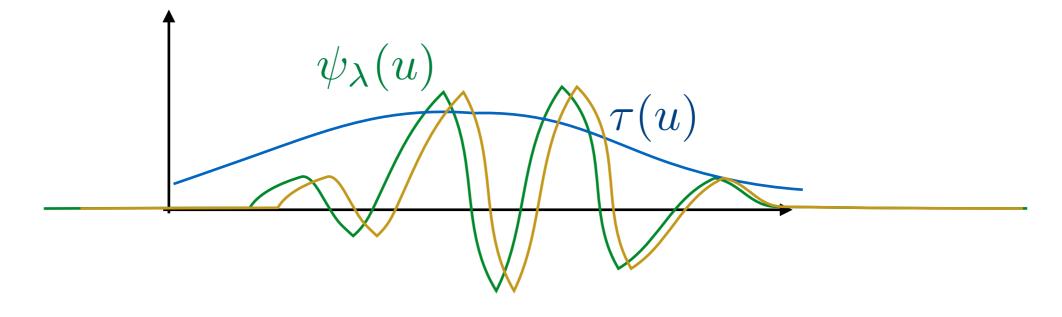


For small scales, ψ_{λ} has small support, and for u, v within that support, because τ is smooth, $|\tau(v) - \tau(u)| \sim 2^{-j} |\nabla \tau|_{\infty}$.

Thus
$$|(\varphi_{\tau} x) * \psi_{\lambda}(u) - x * \psi_{\lambda}(u - \tau(u))| \sim |\nabla \tau|_{\infty}.$$

• Qualitative idea behind this result:

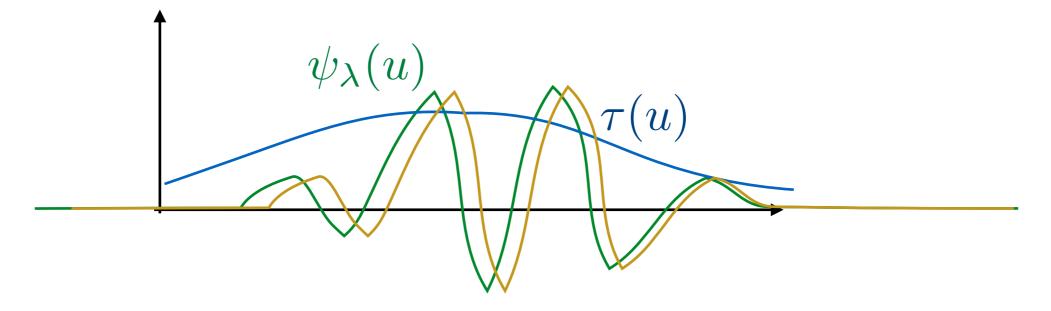
Each ψ_{λ} only "sees" the part of the deformation τ that intersects its support.



Wavelets and Deformations

• Qualitative idea behind this result:

Each ψ_{λ} only "sees" the part of the deformation τ that intersects its support.

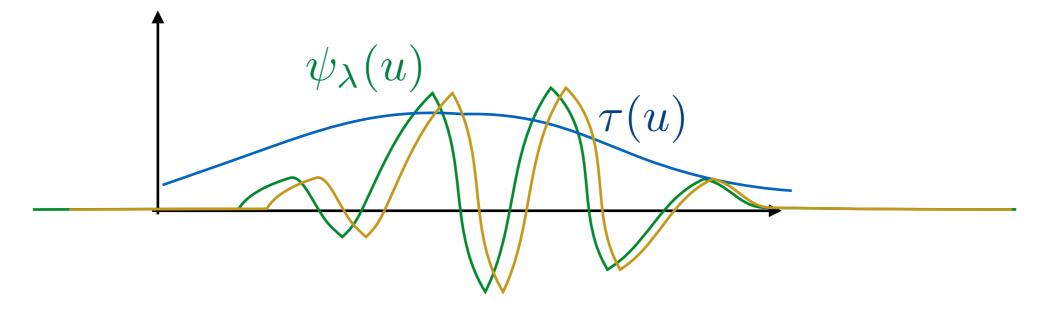


For large scales, ψ_{λ} is itself smooth, thus $|\varphi_{\tau}(x * \psi_{\lambda}) - (\varphi_{\tau} x) * \psi_{\lambda}| \sim ||\nabla \tau||_{\infty}.$

Wavelets and Deformations

• Qualitative idea behind this result:

Each ψ_{λ} only "sees" the part of the deformation τ that intersects its support.

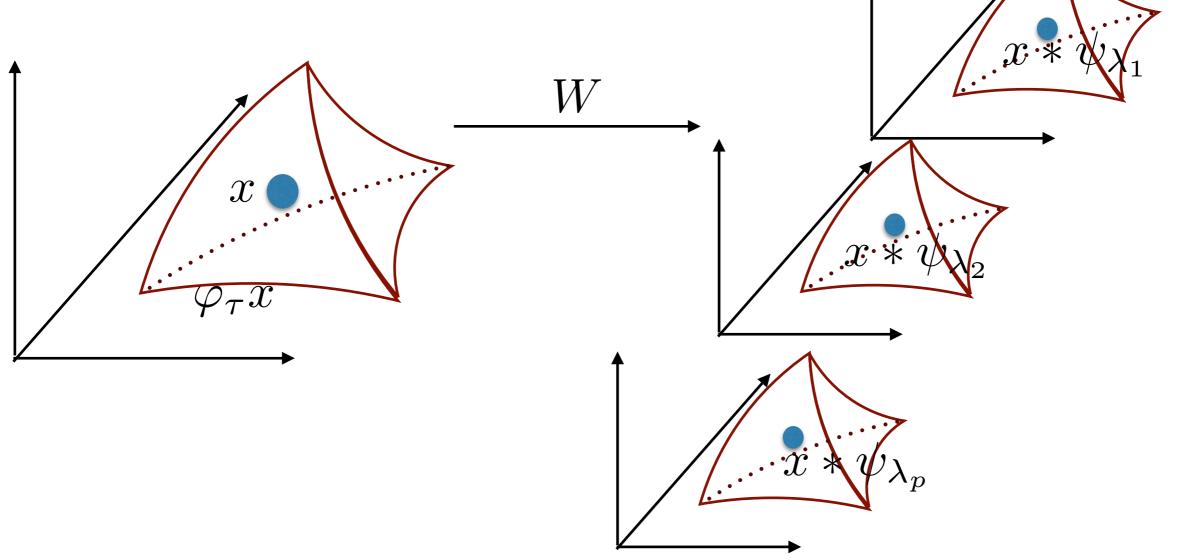


For large scales, ψ_{λ} is itself smooth, thus $|\varphi_{\tau}(x * \psi_{\lambda}) - (\varphi_{\tau} x) * \psi_{\lambda}| \sim ||\nabla \tau||_{\infty}.$

And, most importantly, wavelet separates scales (so errors do not accumulate)

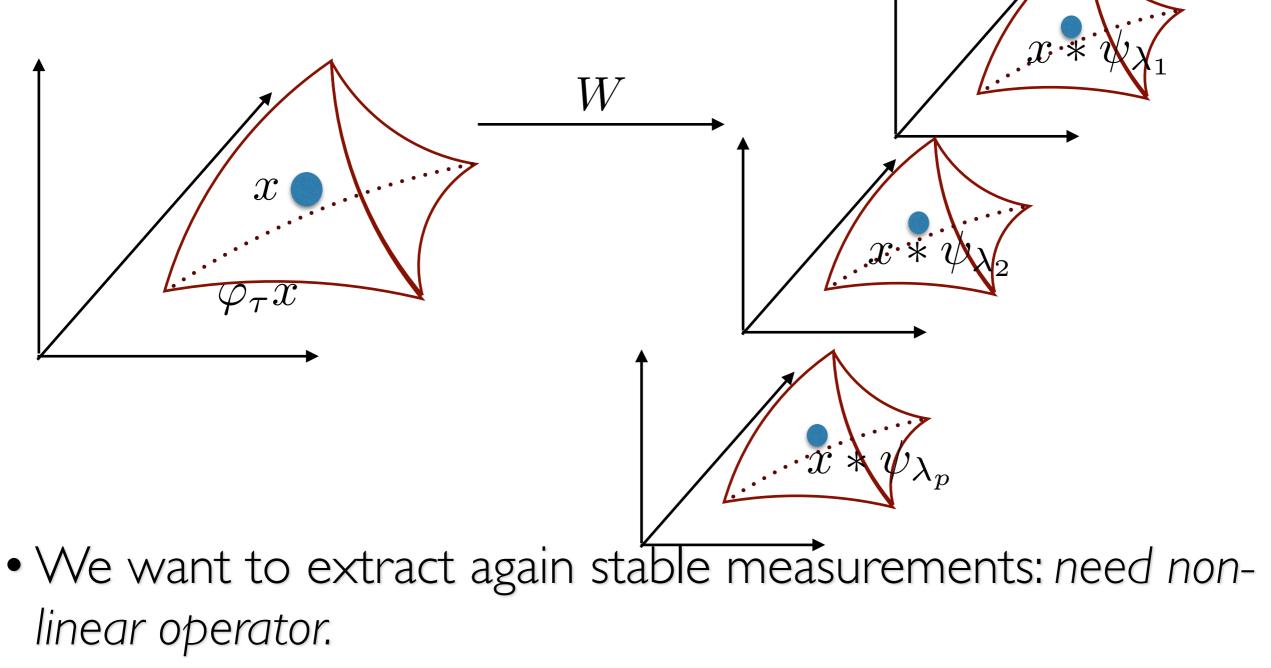
Wavelets and Non-linearities

 The commutation property says that deformations in the input are approximately mapped to deformations in the wavelet domain:



Wavelets and Non-linearities

The commutation property says that deformations in the input are approximately mapped to deformations in the wavelet domain:



• Preserve additive stability: $\|Mx - Mx'\| \le \|x - x'\|$. *M* non-expansive .

- Preserve additive stability: $\|Mx Mx'\| \le \|x x'\|$. *M* non-expansive .
- Preserve geometric stability: It is sufficient to commute with diffeomorphisms:
- $\Phi \text{ stable: } \|\Phi(\varphi_{\tau}x) \Phi(x)\| \lesssim \|\tau\| \\ M \text{ commutes with } \varphi_{\tau} \ \forall \tau. \end{cases}$

 $M\Phi$ and ΦM stable: $\|\Phi M(\varphi_{\tau} x) - \Phi M(x)\| \lesssim \|\tau\|$ $\|M\Phi(\varphi_{\tau} x) - M\Phi(x)\| \lesssim \|\tau\|$

- Preserve additive stability: $\|Mx Mx'\| \le \|x x'\| \quad M \text{ non-expansive } .$
- Preserve geometric stability: It is sufficient to commute with diffeomorphisms.

Theorem: If M is non-expansive operator in L^2 such that $\varphi_{\tau}M = M\varphi_{\tau}$ for all τ , then M is point-wise:

 $Mx(u) = \rho(x(u)) .$

- Preserve additive stability: $\|Mx Mx'\| \le \|x x'\| \quad M \text{ non-expansive } .$
- Preserve geometric stability: It is sufficient to commute with diffeomorphisms.

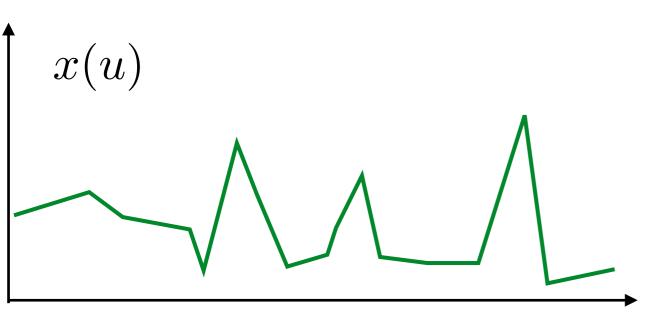
Theorem: If M is non-expansive operator in L^2 such that $\varphi_{\tau}M = M\varphi_{\tau}$ for all τ , then M is point-wise: $Mx(u) = \rho(x(u))$.

 Since we want to smooth orbits, we may choose a pointwise nonlinearity that reduces oscillations:

$$\rho(z) = |z| \text{ or } \rho(z) = \max(0, z)$$

Understanding the effect of nonlinearities

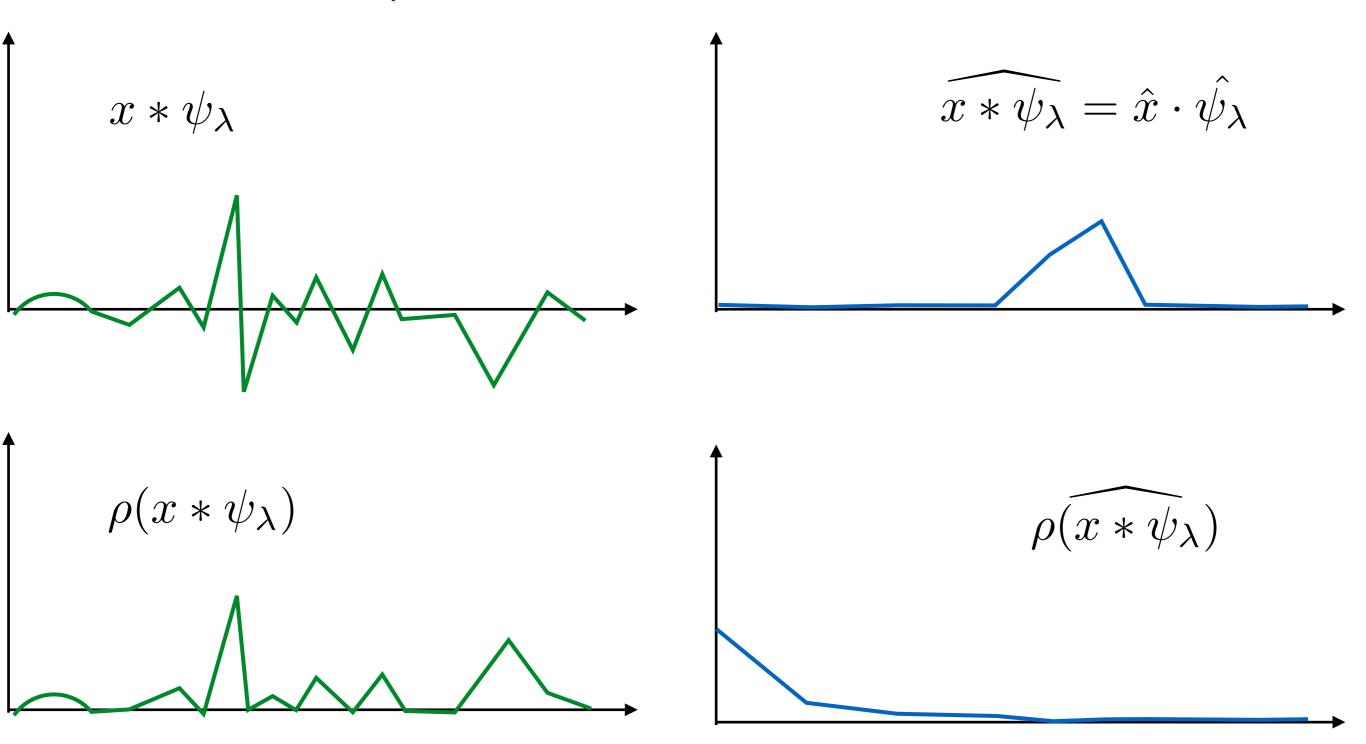
• Rectifiers thus perform a non-linear demodulation:



 $\hat{x}(\omega)$

Understanding the effect of nonlinearities

• Rectifiers thus perform a non-linear demodulation:



46

sometimes called the envelope

Choice of Pointwise Nonlinearity

- Full rectification $\rho(z) = |z|$ preserves energy:
 - When the wavelet is complex, it produces smoother envelopes (thus more stable features).
- Half rectification (ReLU) $\rho(z) = \max(z, 0)$ captures half the energy, and it also creates sparsity.
 - We will see that this is important to perform detection.
- Sigmoid nonlinearity $\rho(z) = (1 + e^{-z})^{-1}$.
 - It is not homogeneous
 - Saturating regimes are problematic for learning via back propagation in deep models.
- "Leaky" ReLU [MSR'14]: parametrized half-rectifier.

- Local averaging kernel: $x \star \phi_J$
 - -locally translation invariant
 - -stable to additive and geometric deformations
 - -loss of high-frequency information.

- Local averaging kernel: $x \star \phi_J$
 - -locally translation invariant
 - -stable to additive and geometric deformations
 - -loss of high-frequency information.
- Recover lost information: $U_J(x) = \{x \star \phi_J, |x \star \psi_\lambda|\}_{\lambda \in \Lambda_J}$. - Point-wise, non-expansive non-linearities: maintain stability. - Complex modulus maps energy towards low-frequencies.

- Local averaging kernel: $x \star \phi_J$
 - -locally translation invariant
 - -stable to additive and geometric deformations
 - -loss of high-frequency information.
- Recover lost information: $U_J(x) = \{x \star \phi_J, |x \star \psi_\lambda|\}_{\lambda \in \Lambda_J}$. - Point-wise, non-expansive non-linearities: maintain stability. - Complex modulus maps energy towards low-frequencies.
- Cascade the "recovery" operator:

 $\mathcal{U}_J^2(x) = \{ x \star \phi_J, |x \star \psi_\lambda| \star \phi_J, ||x \star \psi_\lambda| \star \psi_{\lambda'}| \}_{\lambda, \lambda' \in \Lambda_J} .$

- Local averaging kernel: $x \star \phi_J$
 - -locally translation invariant
 - -stable to additive and geometric deformations
 - -loss of high-frequency information.
- Recover lost information: $U_J(x) = \{x \star \phi_J, |x \star \psi_\lambda|\}_{\lambda \in \Lambda_J}$. - Point-wise, non-expansive non-linearities: maintain stability. - Complex modulus maps energy towards low-frequencies.
- Cascade the "recovery" operator:

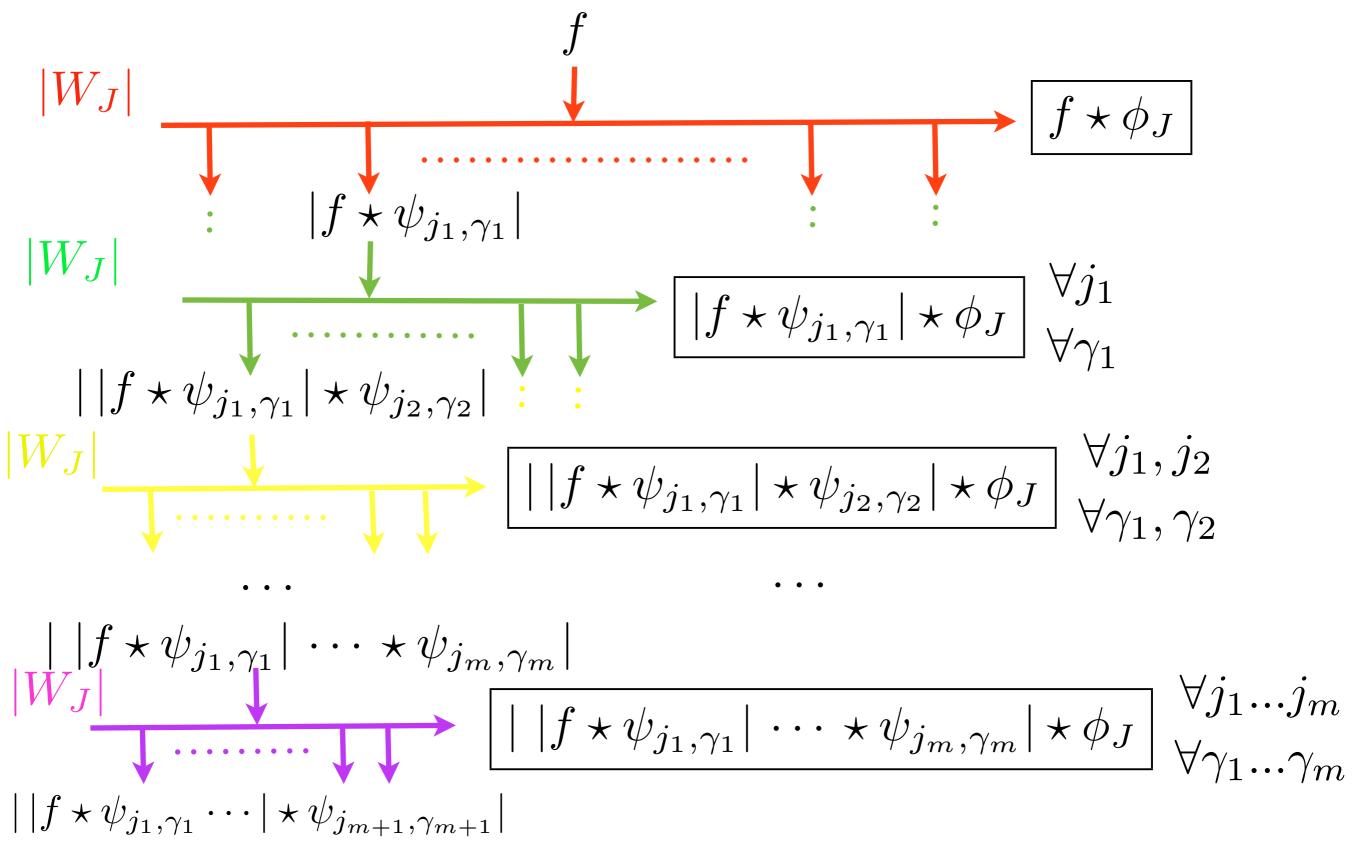
 $\mathcal{U}_J^2(x) = \{ x \star \phi_J, |x \star \psi_\lambda| \star \phi_J, ||x \star \psi_\lambda| \star \psi_{\lambda'}| \}_{\lambda, \lambda' \in \Lambda_J} .$

• Scattering coefficient along a path

 $p = (\lambda_1, \ldots, \lambda_m)$:

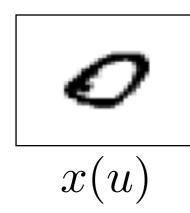
 $S_J[p]x(u) = |||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \dots | \star \psi_{\lambda_m}| \star \phi_J(u) .$

Scattering Convolutional Network

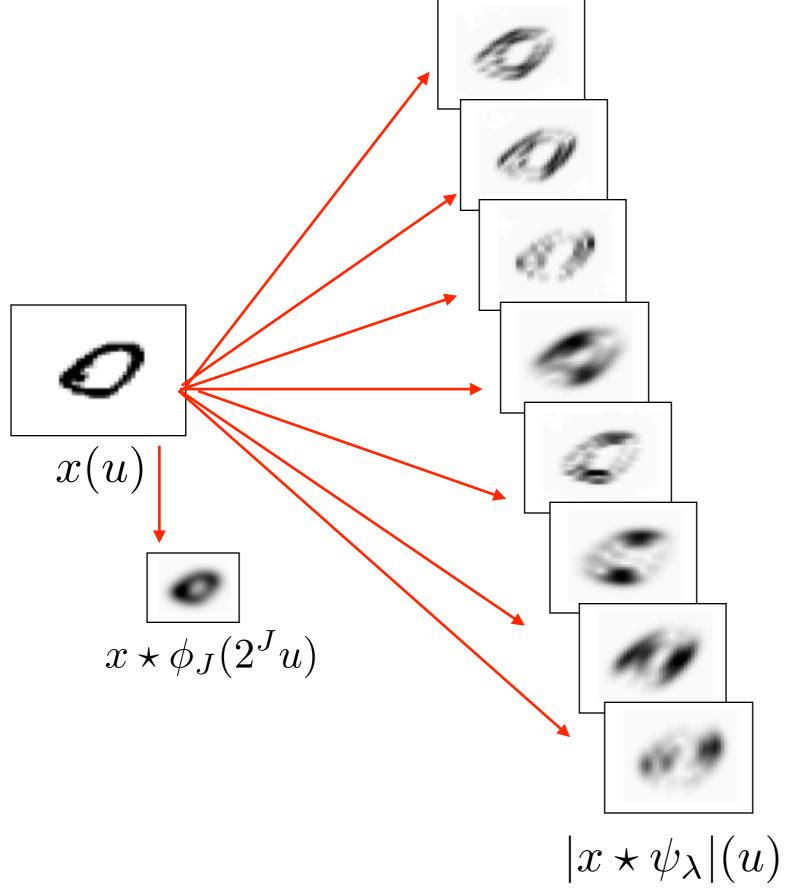


Cascade of contractive operators.

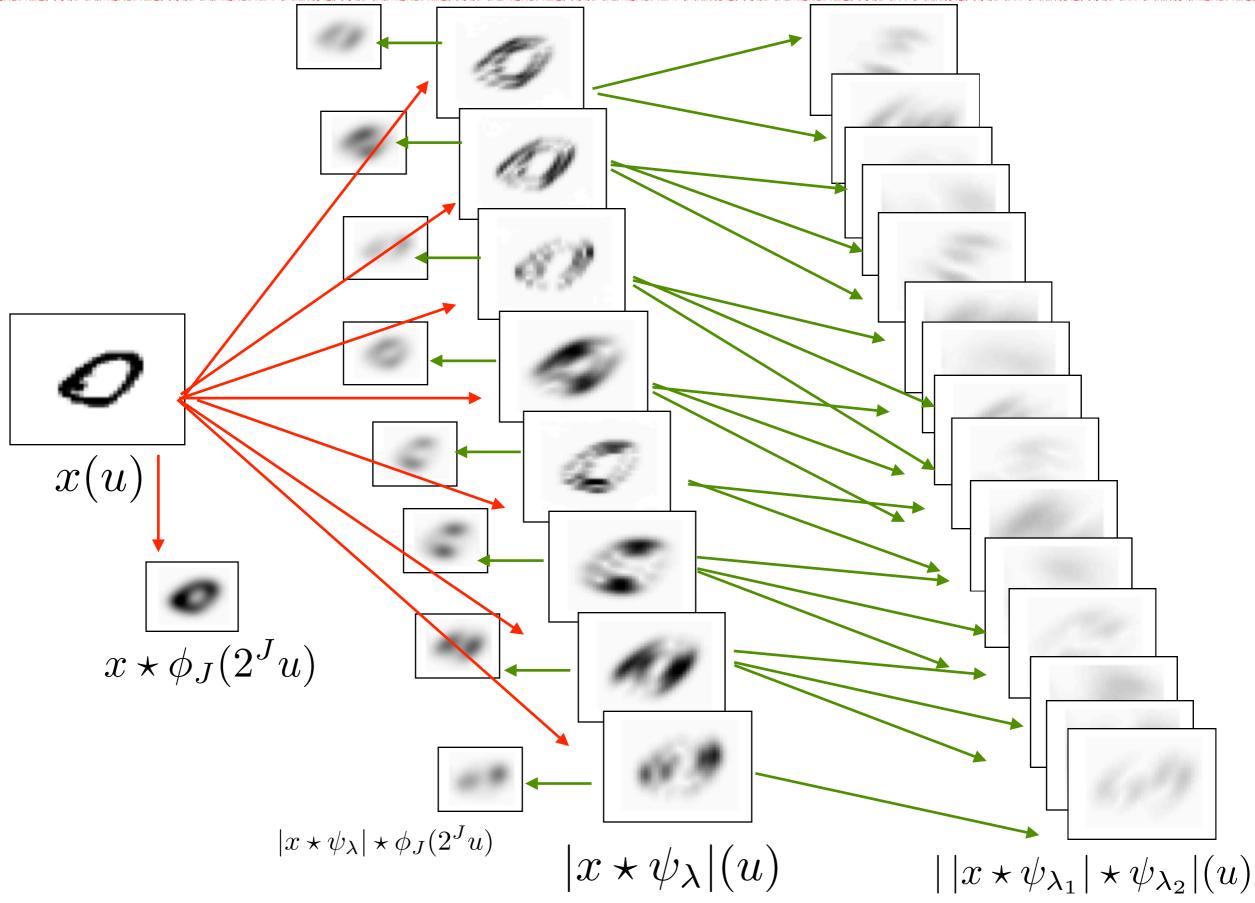
Scattering Example



Scattering Example



Scattering Example



Scattering Properties

• Additive stability and conservation of energy: Theorem (Mallat): For appropriate wavelets, the scattering representation is contractive, $||S_J x - S_J x'|| \le ||x - x'||$, and unitary, $||S_J x|| = ||x||$. $||S_J x||^2 = \sum ||S_J[p]x||^2$

 $p \in \mathcal{P}_J$

Scattering Properties

• Additive stability and conservation of energy: **Theorem** (Mallat): For appropriate wavelets, the scattering representation is contractive, $||S_J x - S_J x'|| \le ||x - x'||$, and unitary, $||S_J x|| = ||x||$. $||S_J x||^2 = \sum_{p \in \mathcal{P}_J} ||S_J[p]x||^2$

• In practice, the transform is limited to a finite number of layers m_{max}

Scattering Properties

- Additive stability and conservation of energy: **Theorem** (Mallat): For appropriate wavelets, the scattering representation is contractive, $||S_J x - S_J x'|| \le ||x - x'||$, and unitary, $||S_J x|| = ||x||$.
- Geometric Stability:

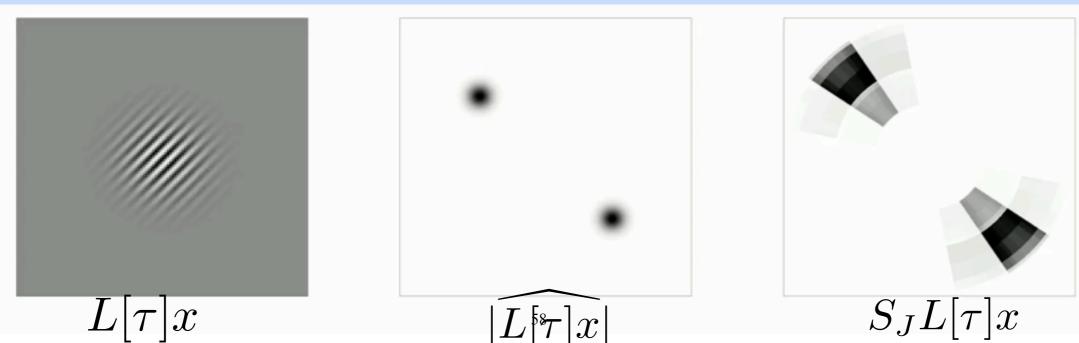
 $||S_J x||^2 = \sum_{p \in \mathcal{P}_J} ||S_J[p] x||^2$ such that

Theorem (Mallat): There exists C such that

$$\forall x \in L^2 \text{ and all } m,$$

the m-th order scattering satisfies

 $||S_J L[\tau] x - S_J x|| \le Cm ||x|| \left(2^{-J} ||\tau||_{\infty} + ||\nabla \tau||_{\infty} + ||H\tau||_{\infty} \right) .$



Discriminability

• For appropriate wavelets, the information is preserved at each layer:

Theorem: (Waldspurger) For appropriate wavelets, the operator $Ux = \{x \star \phi_J, |x \star \psi_j|\}_{j \leq J}$ is injective.

- However, the inverse is unstable —> we might be contracting too much in general. How to prevent that?
- Sparsity In terms of contraction it is very intuitive.

Discriminability

• For appropriate wavelets, the information is preserved at each layer:

Theorem: (Waldspurger) For appropriate wavelets, the operator $Ux = \{x \star \phi_J, |x \star \psi_j|\}_{j \leq J}$ is injective.

Discriminability

• For appropriate wavelets, the information is preserved at each layer:

Theorem: (Waldspurger) For appropriate wavelets, the operator $Ux = \{x \star \phi_J, |x \star \psi_j|\}_{j \leq J}$ is injective.

• However, the inverse is unstable: we might be contracting too much in general. How to prevent that?

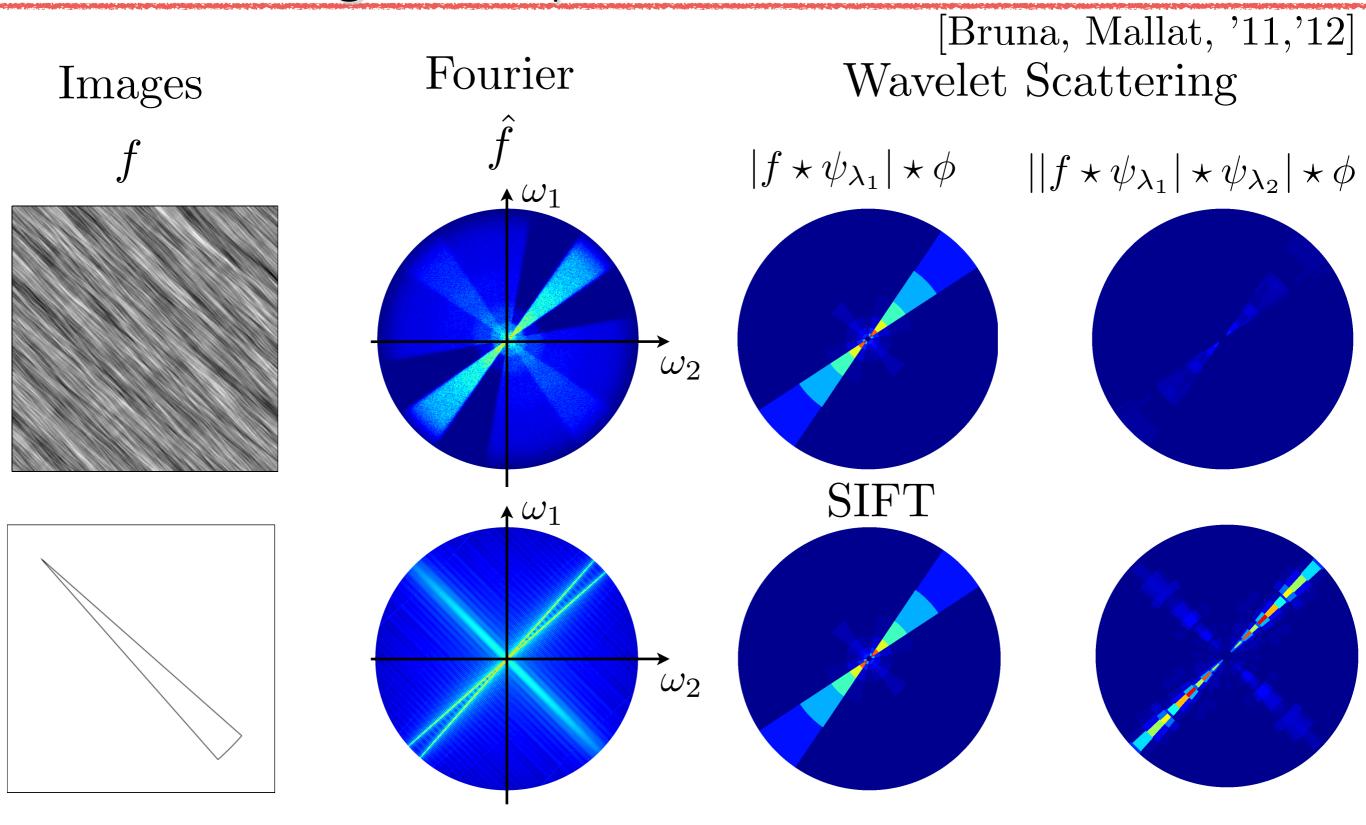
Discriminability and Sparsity

• Typical non-linearities are contractive: $\|\rho(x)-\rho(x')\|\leq \|x-x'\|$

Discriminability and Sparsity

- Typical non-linearities are contractive: $\|\rho(x)-\rho(x')\|\leq \|x-x'\|$
- However, if x, x' are sparse, this inequality is an equality in most of the signal domain.
- Thus sparsity is a means to control and prevent excessive contraction of different signal classes.

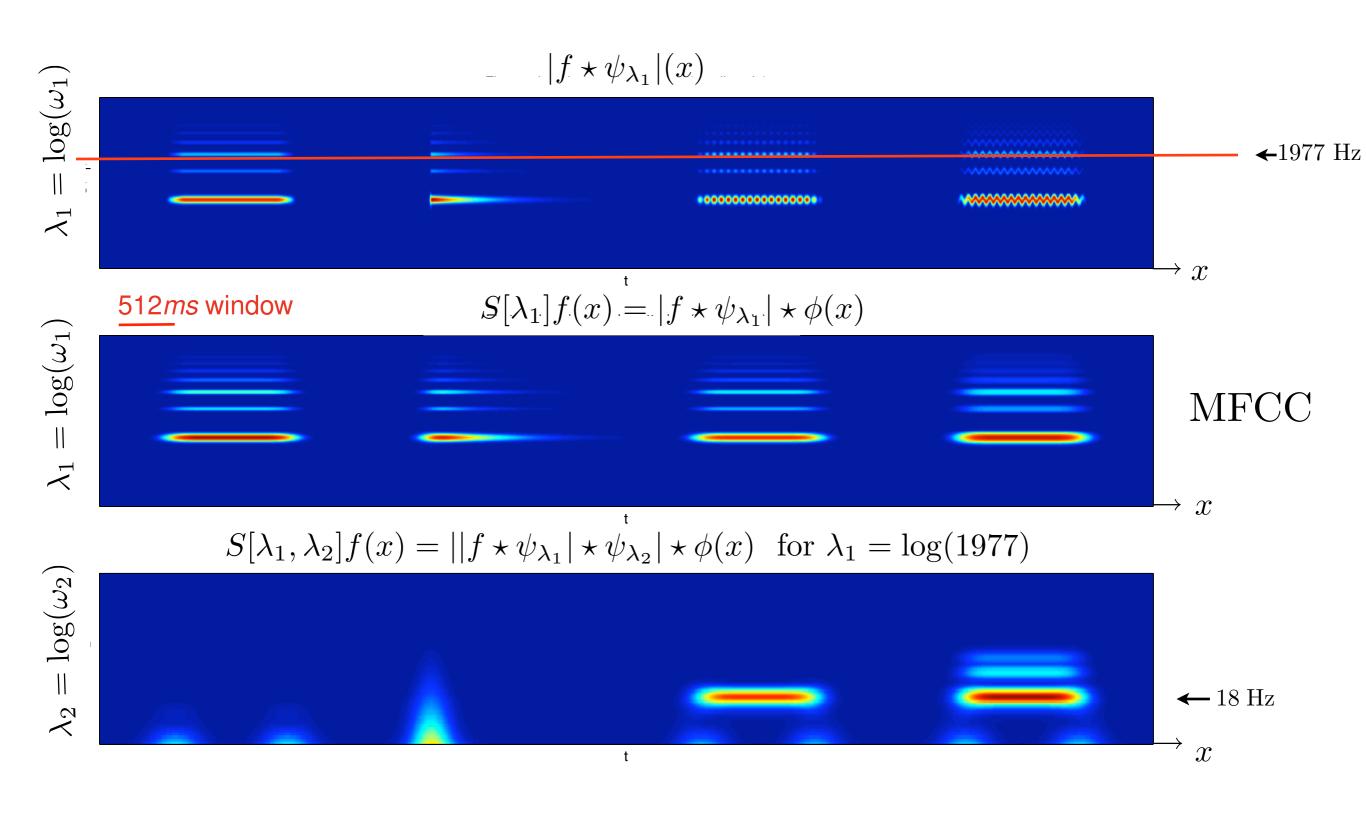
Image Examples



window size = image size

Sound Examples

(courtesy J. Anden)

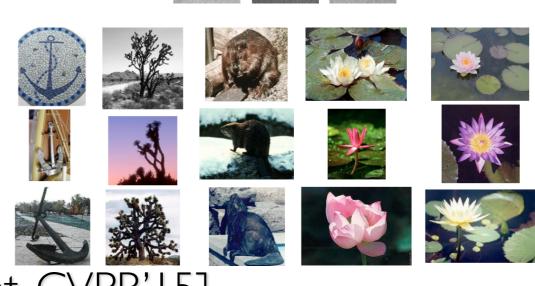


Classification with Scattering

- State-of-the art on pattern and texture recognition:
 MNIST, USPS [Pami'13]
 6757863485
 - 2179712845 4819018894

– Texture (CUREt, UIUC) [Pami'I 3]

• Object Recognition:



–~17% error on Cifar-10 [Oyallon&Mallat, CVPR'15]

Limitations of Separable Scattering

- No feature dimensionality reduction
 - The number of features increases exponentially with depth
- Feature maps are not recombined
 - The deformation model is inherited from the input domain: we will see that recombining feature maps offers more powerful invariance.
- Feature maps are not learnt
 - We shall see that adapting the filters to object classes improves contraction AND discriminability.