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Talking about his book Perceptrons:

“We really spent one year too much on it. We finished off all the easy conjectures, and so no beginner
could do anything. We didn't leave anything for students to do.We got too greedy. As a result, ten years
went by without another significant paper on the subject. It's a fact about the sociology of science that
the people who should work in a field like this are the students and the graduate students. If we had
given some of these problems to students, they would have got as good at it as we were, since there
was nothing special about what we did except that we worked together for several years. Furthermore,

| now believe that the book was overkill in another way.VWhat we showed came down to the fact that a
Perceptron can't put things together that are visually nonlocal.”

The New Yorker, 1981



* Representations for recognition

- curse of dimensionality

- Invariance/covariance

- discriminability

* Variability models
- transformation groups and symmetries
- deformations
- stationarity
- clutter and class-specific
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In order to beat the curse of dimensionality, we need features
that linearize intra-class variability and preserve inter-class
variability.
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symmetry group: low dimension

deformations fill the space




* Informally, if ||7]| measures the amount of deformation,
many recognition tasks satisty

vV, , [f(z) = flz:)] S lI7]]

* |[f our representation Is stable, then

Va7, |®(z) = (x,)|| < Cll7| = |f(x) — flar)] < Ci7|
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_Objectives

|. Groups, Invariants and filters.

2. Review of Wavelet Decompositions.

3. Examples



Transformation Groups

* We discussed about “universal” transformation groups
acting on Images, audio and vIdeo:

~Translations: {p, ;v € R?}, with ¢, (z)(u) = x(u — v).
- Dilations: {ys;s € Ry}, with ¢, (2)(u) = s~ tx(s 1u).

- Rotations: {pg ;0 € [0,27)}, with pg(x)(u) = x(Reu).



Transformation Groups

* We discussed about “universal” transformation groups
acting on Images, audio and vIdeo:

~Translations: {p, ;v € R?}, with ¢, (z)(u) = x(u — v).
- Dilations: {ys;s € Ry}, with ¢, (2)(u) = s~ tx(s 1u).
- Rotations: {pg ;0 € [0,27)}, with pg(x)(u) = x(Reu).

* Systematic approach to obtain representations invariant
to these groups!?




One-parameter Unitary Groups

* A particularly simple example Is given by continuous one-
barameter unitary transformations:

Definition: A one-parameter unitary group {¢; € Aut({2)}+cr satisfies

1. V t,S, Ps+t — PtPs
2, 1ims—>t HSOS — SOtH — 07
3.VteR, z€Q, |pwx] = |z| -
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One-parameter Unitary Groups

* A particularly simple example Is given by continuous one-
barameter unitary transformations:

Definition: A one-parameter unitary group {¢; € Aut({2)}+cr satisfies

1. V t,S, Ps+t — PtPs
2, 1ims—>t HSOS — SOtH — 07
3.VteR, z€Q, |pwx] = |z| -

* In particular, these are Abelian groups.

- Rotations and Translations are |-parameter unitary groups

- Dilations can be made unitary: @z (u) = 81/2:(;(5u) :
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Stone's theorem

Theorem: Suppose () is a Hilbert space. There is a one-to-one correspon-
dence between self-adjoint operators on {2 and one-parameter unitary groups ot
Aut(2).

Given {¢; }+cr, there exists A self-adjoint such that V t , ¢, = e . Conversely,
if A is self-adjoint, the family {e**4}, is a one-parameter unitary group.
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Stone's theorem

Theorem: Suppose () is a Hilbert space. There is a one-to-one correspon-
dence between self-adjoint operators on {2 and one-parameter unitary groups ot
Aut(2).

Given {¢; }+cr, there exists A self-adjoint such that V t , ¢, = e . Conversely,
if A is self-adjoint, the family {e**4}, is a one-parameter unitary group.

Remark: In finite dimensions, we define the matrix exponential e, A € C**™,

A AP
as e’ = k>0 R

Proof: [class notes, or see http://www2.maths.lth.se/media/thesis/2010/MATX01.pdf]

13



Definition The Fourier transform of a function z € L?(R) is defined as

T(w) = /x(u)e_iw“du .
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Fourler transform Defrost

Definition The Fourier transform of a function z € L?(R) is defined as

T(w) = /m(u)e_w“du .

'Main Properties]:
e Linear: z = ax + Sy — 2z = ax + 3.
e Parseval identity: ||z|| = ||z||, (z,y) = (2, 7).
e Inverse Fourier transform: z(u) = [ #(w)e““dw.
e Translation: y(u) = z(u — ug) = f(w) = e (w).

e Dilation: y(u) = z(su) for s > 0 = (w) = s 12(s tw).
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* [ranslations are simultaneously diagonalized by Fourier
atoms.

16



Stone theorem, Fourier and Global Invariants

* [ranslations are simultaneously diagonalized by Fourier
atoms.

* The Stone theorem formalizes the fact that a collection
of "nice’” commuting operators simultaneously
diagonalizes (In a complex basis):
A =V*diag(\i, ..., )V
- Unitary condition implies that eigenvalues are unitary complex
numbers.
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Stone theorem, Fourier and Global Invariants

* [ranslations are simultaneously diagonalized by Fourier
atoms.

* The Stone theorem formalizes the fact that a collection
of "nice’” commuting operators simultaneously
diagonalizes (In a complex basis):
A =V*diag(\i, ..., )V
- Unitary condition implies that eigenvalues are unitary complex
numbers.

* What happens on larger Abelian (commuting) groups?

- Factorization of Abelian groups Into one-parameter groups (eg
translations in R2)

G:G1XG2X...Gl
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Stone theorem, Fourier and Global Invariants

* [ranslations are simultaneously diagonalized by rourier
atoms.

* The Stone theorem formalizes the fact that a collection of
‘nice” commuting operators simultaneously diagonalizes
(In a complex basis):

A =V*diag(A1,..., \p)V
- Unrtary condition implies that eigenvalues are unitary complex
numbers.

* What happens on larger Abelian (commuting) groups?

- Factorization of Abelian groups into one-parameter groups (eg
translations in R2)

G:Gl XGQ X Gl
» Q: How to obtain global invariants in that case?
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{oix}ier  One-parameter group

A = V*diag(Ai, ..., A\n)V

>

eigenspace k

N
N

Y = Yke
_ i)\lt/
eigenspace [ / yic
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e Thus ®(z) = |Vx|satisfies
Va,t, ®pe(z)) = P(x) .
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e Thus ®(z) = |Vx|satisfies
Va,t, ®pe(z)) = P(x) .

* |Indeed,

A =V*diag(A,..., \)V = e = V*diag(e™, ..., ")V .

Vorxr = Veltdy = VV*diag(eit)‘l, . eit’\“)Va:
= diag(e’, ..., ")V

thus ®(prx) = |Vrx| = [V .
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* A shallow (I layer) network is thus sufficient to achieve
invariance to commutative group transtormations:

T oV SIF > O(x)
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* A shallow (I layer) network is thus sufficient to achieve
invariance to commutative group transtormations:

T -V I > O (x)

* However, this architecture has a number of shortcomings.
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* Non-commutative Groups:

Proposition: If G = {y;}; is non-commutative, then there is
no basis V' that diagonalises simultaneously all ;.
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Limits of Group Diagonalisation

* Non-commutative Groups:

Proposition: If G = {¢;}; is non-commutative, then there is
no basis V' that diagonalises simultaneously all ;.

Square matrices A and B commute

I

A and B share the same eigenvectors.
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Roto-translation group: {¢,¢;v € R? 6 € [0,27)} .
Yo + U Ro(u—w) .
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Roto-translation group: {¢,¢;v € R? 6 € [0,27)} .
Yo + U Ro(u—w) .
Do 0+ Po.ot = Ry (pyou — V") = Rg(Rou — Rgv — v')
— Rg' Rgu — (RQ/RQ’U + Rgl?)/)
= Ro1o (u— (v+ R_gv"))

Thus (v',0") - (v,0) = (v+ R_gv",0 +0)

* We will see later how to deal with such groups.

28



ow discriminative 1s ®(x) = |Vx| !
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ow discriminative 1s ®(x) = |Vx| !
- Because of Hermitic symmetry, & : R” — RI"/2

- We “pay’ n/2 degrees of freedom to remove group variability,
independently of the group dimensionality.

30



* How discriminative i1s ®(z) = |[Vx| !
- Because of Hermitic symmetry, & : R” — RI"/2

- We “pay’ n/2 degrees of freedom to remove group variability,
independently of the group dimensionality.

* |f the group has dimension p, a G-invariant representation
could have up to n-p d.if.:we are losing discriminability
when p Is small.
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ow discriminative 1s ®(x) = |Vx| !
- Because of Hermitic symmetry, & : R” — RI"/2

- We “pay’ n/2 degrees of freedom to remove group variability,
independently of the group dimensionality.

- It the group has dimension p, a G-invariant representation has at
most n-p d.f.: we are losing discriminability when p 1s small.

-ourier Phases encode most of the relevant signal
information.
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e Stable to deformations!?
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e Stable to deformations!?

* [ he diagonalisation ensures t
we have no control outside t

35

nat ®(psx) = ¢(x) Vi, x,

out

ne group {¢:}: 1N general.



Limits of Group Diagonalisation

e Stable to deformations!?

* [ he diagonalisation ensures that ®(p;x) = ®(x) Vi, z, but
we have no control outside the group {¢:}+ In general.

* Jo evaluate stabllity, we first need to quantify the amount
of deformation.

* Also, we need the notion of scale: iIn many applications,
we are Interested In local invariance rather than global
group Invariance.
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Assume 7 : R? — R4 differentiable, and denote
orr(u) = x(u—71(u)) .
|V7(u)||: operator norm of Jacobian of 7 at u.

If V7| = sup, [[VT(uw)| <1,
then ¢, 1s invertible, and it defines a diffeomorphism.

We consider the following deformation cost:

|7l =27 7]l + IV 7 los -
37



e We consider the following deformation cost:
|71l == 27 ||7]loo + VT ]loo -

e Scale J controls how much we pay for absolute displacements

o Stability criterion: V ||z|| = 1,7, ||®P(x) — (z,)|| < C||7|].

®* We can define similar metrics for diffeomorphisms associated with
other transformation groups (e.g. rotation).
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~ Shallow invariants are unstable

* Consider a lowpass window h(u) of bandwidth oy,
and z(u) = h(u)e's¥. (bandwidth: o7 = [ |h(w)|?|w|*dw.)

e Consider a deformation of the form
prx(u) =z((1+ s)u) with s < 1.

1 ] |2
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~ OShallow invariants are unstable

* Consider a lowpass window h(u) of bandwidth oy,
and z(u) = h(u)e's¥. (bandwidth: o7 = [ |h(w)|?|w|*dw.)

e Consider a deformation of the form
prx(u) =z((1+ s)u) with s < 1.

1 ] |2

If (1+5)—&=5E>0p(24 s)
(central frequency separation > bandwidth)

— |||2] = |@rz]

~ =]



-ourier Modulus I1s therefore unstable: high-frequency
information spans a large linear subspace as soon as
there 1s non-rigid deformation.
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~ OShallow invariants are unstable

* Fourier Modulus Is therefore unstable: high-frequency
information spans a large linear subspace as soon as
there 1s non-rigid deformation.

* Similarly, we can obtain a translation-invariant
representation with the signal auto-correlation:

R, (v) = /x(u)x*(u + v)du
- This suffers from the same problem as Fourier.

(1R = Byl = 1Re = Byl = Il = 1911
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Shallow Invariants are unstable

* Fourier Modulus Is therefore unstable: high-frequency
information spans a large linear subspace as soon as
there 1s non-rigid deformation.

* Similarly, we can obtain a translation-invariant
representation with the signal auto-correlation:

R, (v) = /x(u)az*(u + v)du
- This suffers from the same problem as Fourier.

(1R = Byl = 1Re = Byl = Il = 1911

e How to fix It!
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e | ocal translation invariance:
|®(x) — ()| < C277||v]| ,or

(V)
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~ Local invariants and convoluton

e | ocal translation invariance:
|®(x) — ()| < C277||v]| ,or

|(7) — P(pu)|
|v

Vo, |z]] =1

* 50, we want to smooth along the orbits.
* Local averaging within the translation orbit:

—20”/¢ %azdv,(/qs

<277



~ Local invariants and convoluton

* Local averaging within the translation oroit:

—ZdJ/¢ V)pxdv </¢ dv_1q§>()>.

* |In coordinates, it becomes

/¢J r(u—v)dv=x* ¢y(u) ,with

— 9~ Jd¢(2 JU)



Proposition: The local averaging ®(x) = x * ¢ satisfies
Vizl=1eLl®, 7, [2(x)— (o)l < O]l .
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Local average and stability

Proposition: The local averaging ®(x) = x * ¢ satisfies
Vizll=1€L?, 7, [[@(x) — 2(prz)|| < C7]| -

* Not surprising, since this operator removes the
broblematic high-frequencies.

* Are there other linear operators with the same
property?
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* [he only linear, translation-invariant operator is the
average:

Vv, &(z)=S(p,x) = P(x \G\ / (Yo

:><I>(:I;):<I><|—é|/ dev>:<1>(‘G‘/ (u )du> |

* And a similar argument can be used locally.
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) averages to Wavelets

* Low-pass information Is insufficient:

The SIFT method originally consists in a keypoint detection phase, using a Dif-
ferences of Gaussians pyramid, followed by a local description around each detected
keypoint. The keypoint detection computes local maxima on a scale space generated
by isotropic gaussian differences, which induces invariance to translations, rotations and
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~ From averages to VWavelets

* Low-pass information Is insufficient:

The SIFT method originally consists in a keypoint detection phase, using a Dif-
ferences of Gaussians pyramid, followed by a local description around each detected
keypoint. The keypoint detection computes local maxima on a scale space generated
by isotropic gaussian differences, which induces invariance to translations, rotations and

* [hus, we must capture high-frequency.

* [ hese new measurements must involve a non-linearity.
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From averages to VWavelets

* Low-pass Information Is insufficient:

The SIFT method originally consists in a keypoint detection phase, using a Dif-
ferences of Gaussians pyramid, followed by a local description around each detected
keypoint. The keypoint detection computes local maxima on a scale space generated
by isotropic gaussian differences, which induces invariance to translations, rotations and

* [hus, we must capture high-frequency.

* [ hese new measurements must involve a non-linearity.

* We want them to preserve stability to deformations.

* And we want them to preserve inter-class variability.
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» 1) well localized in space and frequency.
* At least one vanishing moment: /¢(u)du — 0

Ex: Morlet wavelet

1 - -
ﬁ\ | 0.5 \/\ 7
1 1 1 1 1 1 I u O L | L L
10 515 520 525 530 535 540 0 200 400 600 800 1000 1 20€‘b

Dilated wavelets: 1,(u) = 277¢(277u), j € Z
1 A A
LI N Y GOl L2 Ol

_m»

0 A N W
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e For images, dilated and rotated wavelets:
Y (u) = Z_j/2¢(2_jru) . with A = 277

* \WWavelet transform convolutional filter bank:
W = {g; e gb(u) T x ¢>\(u)}>\€A T x(u) = /az(v)w(u —v)dv .

Theorem (Littlewood- Paley)' If there exists 0 > 0 such that

Vw >0, 1—0<|pw)]* + = Z\w )P <1,

then Va € L*, (1—9)|z|* < IIWOJ‘H2 < lz]|* .



~ WaweletsinVison

* V| Model of Simple and Complex cells: First layer of
processing Is selective in orientation, scale and position.

- cells are organized in pinwheels. (more on that later).
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~ Wavelets and learning

* Why are wavelets a good idea!’

- We will see that they provide stablility to deformations because they
commute nicely with diffeomorphisms:

WWere —o-Wal| S 7] -

- We will also see that the discriminability of &(xz) = p(Wx) is
controlled by the sparsity produced by W

{z * 1¥x(u)} . has few non-zero coefficients.
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* Olshausen and Field Sparse coding model trained on
natural Images:

: ™
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[Olshausen and Field, 96]
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~xamples

Image Representation

* Top performing shallow network unsupervised learning:

Classifier Features

Input Image
R d channels
— oo - e S St
|l |l |l
X i B f(x)
EEN i'ir::.. i'i.-::.. i'l.-:_.. *
S I e v /
H emmm enmm ammsdl
1 1 i f1(x)
' i i f,(x) /
Hm sron from, Rmeodl
15 1 5
R E
J-\‘\ — —
1 1 1
> n | . |

K channels
= (O
Y1)
AN
~y
(n-w)/s+1 _ |:|

4K

Figure 1: Illustration showing feature extraction using a w-by-w receptive field and stride s. We first
extract w-by-w patches separated by s pixels each, then map them to K -dimensional feature vectors
to form a new image representation. These vectors are then pooled over 4 quadrants of the image to
form a feature vector for classification. (For clarity we have drawn the leftmost figure with a stride
greater than w, but in practice the stride is almost always smaller than w.
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(b) GMM (with and without whitening)

(d) Sparse RBM (with and without whitening)

[Coates, Le & Ng, "1 0]



