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Marvin Minsky 1927-2016

Talking about his book Perceptrons:
“We really spent one year too much on it. We finished off all the easy conjectures, and so no beginner 
could do anything. We didn’t leave anything for students to do. We got too greedy. As a result, ten years 
went by without another significant paper on the subject. It’s a fact about the sociology of science that 
the people who should work in a field like this are the students and the graduate students. If we had 
given some of these problems to students, they would have got as good at it as we were, since there 
was nothing special about what we did except that we worked together for several years. Furthermore, 
I now believe that the book was overkill in another way. What we showed came down to the fact that a 
Perceptron can’t put things together that are visually nonlocal.”

  The New Yorker, 1981
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Last Lecture Review

• Representations for recognition
- curse of dimensionality
- invariance/covariance
- discriminability

• Variability models
- transformation groups and symmetries
- deformations
- stationarity
- clutter and class-specific 
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Review: Linearization

class 1
class 2
class 3

high-dimensional space

�

In order to beat the curse of dimensionality, we need features 
that linearize intra-class variability and preserve inter-class 

variability.
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Review: Filling the space with deformations

symmetry group: low dimension

x

x

deformations fill the space
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• Informally, if       measures the amount of deformation, 
many recognition tasks satisfy  

• If our representation is stable, then

Review: From Invariance to Stability

k⌧k

8 x, ⌧, k�(x)� �(x⌧ )k  Ck⌧k =) |f̂(x)� f̂(x⌧ )|  C̃k⌧k

8 x, ⌧, |f(x)� f(x⌧ )| . k⌧k
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Objectives

1. Groups, invariants and filters.

2. Review of Wavelet Decompositions.

3. Examples
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• We discussed about “universal” transformation groups 
acting on images, audio and video:

-  

-  

-  

Transformation Groups 

Translations: {'v ; v 2 R2}, with 'v(x)(u) = x(u� v).

Dilations: {'s ; s 2 R+}, with 's(x)(u) = s

�1
x(s

�1
u).

Rotations: {'✓ ; ✓ 2 [0, 2⇡)}, with '✓(x)(u) = x(R✓u).
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• We discussed about “universal” transformation groups 
acting on images, audio and video:

-  

-  

-  

• Systematic approach to obtain representations invariant 
to these groups? 

Transformation Groups 

Translations: {'v ; v 2 R2}, with 'v(x)(u) = x(u� v).

Dilations: {'s ; s 2 R+}, with 's(x)(u) = s

�1
x(s

�1
u).

Rotations: {'✓ ; ✓ 2 [0, 2⇡)}, with '✓(x)(u) = x(R✓u).
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• A particularly simple example is given by continuous one-
parameter unitary transformations:

One-parameter Unitary Groups

Definition: A one-parameter unitary group {'t 2 Aut(⌦)}t2R satisfies

1. 8 t, s, 's+t = 't's ,

2. lims!t k's � 'tk = 0,

3. 8 t 2 R , x 2 ⌦ , k'txk = kxk .
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• A particularly simple example is given by continuous one-
parameter unitary transformations:

• In particular, these are Abelian groups. 
- Rotations and Translations are 1-parameter unitary groups
- Dilations can be made unitary: 

One-parameter Unitary Groups

Definition: A one-parameter unitary group {'t 2 Aut(⌦)}t2R satisfies

1. 8 t, s, 's+t = 't's ,

2. lims!t k's � 'tk = 0,

3. 8 t 2 R , x 2 ⌦ , k'txk = kxk .

'sx(u) = s

1/2
x(su) .
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Stone’s theorem
Theorem: Suppose ⌦ is a Hilbert space. There is a one-to-one correspon-
dence between self-adjoint operators on ⌦ and one-parameter unitary groups of
Aut(⌦).
Given {'t}t2R, there exists A self-adjoint such that 8 t , 't = eitA . Conversely,
if A is self-adjoint, the family {eitA}t is a one-parameter unitary group.
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Stone’s theorem
Theorem: Suppose ⌦ is a Hilbert space. There is a one-to-one correspon-
dence between self-adjoint operators on ⌦ and one-parameter unitary groups of
Aut(⌦).
Given {'t}t2R, there exists A self-adjoint such that 8 t , 't = eitA . Conversely,
if A is self-adjoint, the family {eitA}t is a one-parameter unitary group.

Remark: In finite dimensions, we define the matrix exponential eA, A 2 Cn⇥n
,

as eA :=

P
k�0

Ak

k! .

Proof: [class notes, or see http://www2.maths.lth.se/media/thesis/2010/MATX01.pdf]
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Fourier transform Defrost
Definition The Fourier transform of a function x 2 L

2
(R) is defined as

x̂(!) =

Z
x(u)e

�i!u
du .
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Fourier transform Defrost

[Main Properties]:

• Linear: z = ↵x+ �y =) ẑ = ↵x̂+ �ŷ.

• Parseval identity: kx̂k = kxk, hx, yi = hx̂, ŷi.

• Inverse Fourier transform: x(u) =

R
x̂(!)e

i!u
d!.

• Translation: y(u) = x(u� u0) =) ŷ(!) = e

i!u0
x̂(!).

• Dilation: y(u) = x(su) for s > 0 =) ŷ(!) = s

�1
x̂(s

�1
!).

Definition The Fourier transform of a function x 2 L

2
(R) is defined as

x̂(!) =

Z
x(u)e

�i!u
du .
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Stone theorem, Fourier and Global Invariants

• Translations are simultaneously diagonalized by Fourier 
atoms.
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Stone theorem, Fourier and Global Invariants

• Translations are simultaneously diagonalized by Fourier 
atoms. 

• The Stone theorem formalizes the fact that a collection 
of “nice” commuting operators simultaneously 
diagonalizes (in a complex basis): 

- Unitary condition implies that eigenvalues are unitary complex 
numbers.

A = V ⇤diag(�1, . . . ,�n)V
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Stone theorem, Fourier and Global Invariants

• Translations are simultaneously diagonalized by Fourier 
atoms. 

• The Stone theorem formalizes the fact that a collection 
of “nice” commuting operators simultaneously 
diagonalizes (in a complex basis): 

- Unitary condition implies that eigenvalues are unitary complex 
numbers.

• What happens on larger Abelian (commuting) groups?
- Factorization of Abelian groups into one-parameter groups (eg 

translations in R2)

A = V ⇤diag(�1, . . . ,�n)V

G = G1 ⇥G2 ⇥ . . . Gl
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• Translations are simultaneously diagonalized by Fourier 
atoms. 

• The Stone theorem formalizes the fact that a collection of 
“nice” commuting operators simultaneously diagonalizes 
(in a complex basis): 

- Unitary condition implies that eigenvalues are unitary complex 
numbers.

• What happens on larger Abelian (commuting) groups?
- Factorization of Abelian groups into one-parameter groups (eg 

translations in R2)

• Q: How to obtain global invariants in that case? 

Stone theorem, Fourier and Global Invariants

A = V ⇤diag(�1, . . . ,�n)V

G = G1 ⇥G2 ⇥ . . . Gl
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x

one-parameter group{'tx}t2R

y = V x

x

0 = 't0x

eigenspace k

yk

y0k = yke
i�kt

0

y0l = yle
i�lt

0

yl

eigenspace l

A = V ⇤diag(�1, . . . ,�n)V

Stone theorem, Fourier and Global Invariants

20



• Thus                  satisfies �(x) = |V x|

8 x, t , �('t(x)) = �(x) .

Stone theorem, Fourier and Global Invariants
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• Thus                  satisfies 

• Indeed, 

�(x) = |V x|

8 x, t , �('t(x)) = �(x) .

V 'tx = V e

itA
x = V V

⇤diag(eit�1
, . . . , e

it�n)V x

= diag(eit�1
, . . . , e

it�n)V x

thus �('tx) = |V 'tx| = |V x| .

A = V ⇤diag(�1, . . . ,�n)V =) eitA = V ⇤diag(eit�1 , . . . , eit�n)V .

Stone theorem, Fourier and Global Invariants
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Limits of Group Diagonalisation

• A shallow (1 layer) network is thus sufficient to achieve 
invariance to commutative group transformations:

V |z|
x �(x)
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Limits of Group Diagonalisation

• A shallow (1 layer) network is thus sufficient to achieve 
invariance to commutative group transformations:

• However, this architecture has a number of shortcomings.

V |z|
x �(x)
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Limits of Group Diagonalisation

• Non-commutative Groups:

Proposition: If G = {'t}t is non-commutative, then there is

no basis V that diagonalises simultaneously all 't.
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Limits of Group Diagonalisation

• Non-commutative Groups:

Proposition: If G = {'t}t is non-commutative, then there is

no basis V that diagonalises simultaneously all 't.

Square matrices A and B commute

(
)

A and B share the same eigenvectors.
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Example: the Roto-Translation Group

Roto-translation group: {'v,✓ ; v 2 R2, ✓ 2 [0, 2⇡)} .
'v,✓ : u 7! R✓(u� v) .
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Example: the Roto-Translation Group

Roto-translation group: {'v,✓ ; v 2 R2, ✓ 2 [0, 2⇡)} .
'v,✓ : u 7! R✓(u� v) .
'v0,✓0 · 'v,✓u = R✓0('v,✓u� v0) = R✓0(R✓u�R✓v � v0)

= R✓0R✓u� (R✓0R✓v +R✓0v0)

= R✓+✓0 (u� (v +R�✓v
0))

Thus (v0, ✓0) · (v, ✓) = (v +R�✓v0, ✓ + ✓0)

• We will see later how to deal with such groups.
28



Limits of Group Diagonalisation

• How discriminative is                   ?�(x) = |V x|
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Limits of Group Diagonalisation

• How discriminative is                   ?
- Because of Hermitic symmetry, 

- We “pay” n/2 degrees of freedom to remove group variability, 
independently of the group dimensionality.

�(x) = |V x|
� : Rn ! Rdn/2e
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Limits of Group Diagonalisation

• How discriminative is                   ?
- Because of Hermitic symmetry, 

- We “pay” n/2 degrees of freedom to remove group variability, 
independently of the group dimensionality.

• If the group has dimension p, a G-invariant representation 
could have up to n-p d.f. : we are losing discriminability 
when p is small. 

�(x) = |V x|
� : Rn ! Rdn/2e
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Limits of Group Diagonalisation
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Limits of Group Diagonalisation

• How discriminative is                   ?
- Because of Hermitic symmetry, 

- We “pay” n/2 degrees of freedom to remove group variability, 
independently of the group dimensionality.

- If the group has dimension p, a G-invariant representation has at 
most n-p d.f. : we are losing discriminability when p is small. 

• Fourier Phases encode most of the relevant signal 
information.

�(x) = |V x|
� : Rn ! Rdn/2e
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Limits of Group Diagonalisation

• Stable to deformations?
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Limits of Group Diagonalisation

• Stable to deformations?

• The diagonalisation ensures that                             , but 
we have no control outside the group         in general.

�('tx) = �(x) 8 t, x
{'t}t
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Limits of Group Diagonalisation

• Stable to deformations?

• The diagonalisation ensures that                             , but 
we have no control outside the group         in general.

•  To evaluate stability, we first need to quantify the amount 
of deformation. 

• Also, we need the notion of scale: in many applications, 
we are interested in local invariance rather than global 
group invariance.

�('tx) = �(x) 8 t, x
{'t}t
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Deformation Metric

•                                       

•  
•  

•  

Assume ⌧ : Rd ! Rd
di↵erentiable, and denote

'⌧x(u) := x(u� ⌧(u)) .

kr⌧(u)k: operator norm of Jacobian of ⌧ at u.

If kr⌧k1 = supu kr⌧(u)k < 1,

then '⌧ is invertible, and it defines a di↵eomorphism.

We consider the following deformation cost:

k⌧k := 2�Jk⌧k1 + kr⌧k1 .
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•                                       

•  

•   
•  

Deformation Metric

We consider the following deformation cost:

k⌧k := 2�Jk⌧k1 + kr⌧k1 .

Scale J controls how much we pay for absolute displacements

We can define similar metrics for di↵eomorphisms associated with

other transformation groups (e.g. rotation).

Stability criterion: 8 kxk = 1, ⌧, k�(x)� �(x⌧ )k  Ck⌧k.
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Shallow invariants are unstable
•  

•  Chapter 2. Invariant Scattering Representations

ω

|x̂| |x̂τ |

ξ (1 + s)ξ

σx (1 + s)σx

Figure 2.1: Dilation of a complex bandpass window. If ξ ≫ σxs−1, then the supports
are nearly disjoint.

Besides deformation instabilities, the Fourier modulus and the autocorrelation lose
too much information. For example, a Dirac δ(u) and a linear chirp eiu

2
are two signals

having Fourier transforms whose moduli are equal and constant. Very different signals
may not be discriminated from their Fourier modulus.

A canonical invariant [KDGH07; Soa09] Φ(x) = x(u − a(x)) registers x ∈ L2(Rd)
with an anchor point a(x), which is translated when x is translated:

a(xc) = a(x) + c .

It thus defines a translation invariant representation: Φxc = Φx. For example, the anchor
point may be a filtered maximum a(x) = argmaxu |x ⋆ h(u)|, for some filter h(u). A
canonical invariant Φx(u) = x(u−a(x)) carries more information than a Fourier modulus,
and characterizes x up to a global absolute position information [Soa09]. However, it
has the same high-frequency instability as a Fourier modulus transform. Indeed, for any
choice of anchor point a(x), applying the Plancherel formula proves that

∥x(u− a(x))− x′(u− a(x′))∥ ≥ (2π)−1 ∥|x̂(ω)|− |x̂′(ω)|∥ .

If x′ = xτ , the Fourier transform instability at high frequencies implies that Φx =
x(u− a(x)) is also unstable with respect to deformations.

2.2.5 SIFT and HoG

SIFT (Scale Invariant Feature Transform) is a local image descriptor introduced by Lowe
in [Low04], which achieved huge popularity thanks to its invariance and discriminability
properties.

The SIFT method originally consists in a keypoint detection phase, using a Dif-
ferences of Gaussians pyramid, followed by a local description around each detected
keypoint. The keypoint detection computes local maxima on a scale space generated
by isotropic gaussian differences, which induces invariance to translations, rotations and
partially to scaling. The descriptor then computes histograms of image gradient ampli-
tudes, using 8 orientation bins on a 4× 4 grid around each keypoint, as shown in Figure
2.2.

19

Consider a lowpass window h(u) of bandwidth �h

and x(u) = h(u)e

i⇠u
.

(bandwidth: �2
h =

R
|ĥ(!)|2|!|2d!.)

Consider a deformation of the form

'⌧x(u) = x((1 + s)u) with s ⌧ 1.
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Shallow invariants are unstable
•  

•  Chapter 2. Invariant Scattering Representations

ω

|x̂| |x̂τ |

ξ (1 + s)ξ

σx (1 + s)σx

Figure 2.1: Dilation of a complex bandpass window. If ξ ≫ σxs−1, then the supports
are nearly disjoint.

Besides deformation instabilities, the Fourier modulus and the autocorrelation lose
too much information. For example, a Dirac δ(u) and a linear chirp eiu

2
are two signals

having Fourier transforms whose moduli are equal and constant. Very different signals
may not be discriminated from their Fourier modulus.

A canonical invariant [KDGH07; Soa09] Φ(x) = x(u − a(x)) registers x ∈ L2(Rd)
with an anchor point a(x), which is translated when x is translated:

a(xc) = a(x) + c .

It thus defines a translation invariant representation: Φxc = Φx. For example, the anchor
point may be a filtered maximum a(x) = argmaxu |x ⋆ h(u)|, for some filter h(u). A
canonical invariant Φx(u) = x(u−a(x)) carries more information than a Fourier modulus,
and characterizes x up to a global absolute position information [Soa09]. However, it
has the same high-frequency instability as a Fourier modulus transform. Indeed, for any
choice of anchor point a(x), applying the Plancherel formula proves that

∥x(u− a(x))− x′(u− a(x′))∥ ≥ (2π)−1 ∥|x̂(ω)|− |x̂′(ω)|∥ .

If x′ = xτ , the Fourier transform instability at high frequencies implies that Φx =
x(u− a(x)) is also unstable with respect to deformations.

2.2.5 SIFT and HoG

SIFT (Scale Invariant Feature Transform) is a local image descriptor introduced by Lowe
in [Low04], which achieved huge popularity thanks to its invariance and discriminability
properties.

The SIFT method originally consists in a keypoint detection phase, using a Dif-
ferences of Gaussians pyramid, followed by a local description around each detected
keypoint. The keypoint detection computes local maxima on a scale space generated
by isotropic gaussian differences, which induces invariance to translations, rotations and
partially to scaling. The descriptor then computes histograms of image gradient ampli-
tudes, using 8 orientation bins on a 4× 4 grid around each keypoint, as shown in Figure
2.2.
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Consider a lowpass window h(u) of bandwidth �h

and x(u) = h(u)e

i⇠u
.

(bandwidth: �2
h =

R
|ĥ(!)|2|!|2d!.)

Consider a deformation of the form

'⌧x(u) = x((1 + s)u) with s ⌧ 1.

If (1 + s)⇠ � ⇠ = s⇠ � �h(2 + s)
(central frequency separation � bandwidth)

=) k|x̂|� |d'⌧x|k ⇠ kxk
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Shallow invariants are unstable

• Fourier Modulus is therefore unstable: high-frequency 
information spans a large linear subspace as soon as 
there is non-rigid deformation.
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Shallow invariants are unstable

• Fourier Modulus is therefore unstable: high-frequency 
information spans a large linear subspace as soon as 
there is non-rigid deformation.

• Similarly, we can obtain a translation-invariant 
representation with the signal auto-correlation:

- This suffers from the same problem as Fourier.

R

x

(v) =

Z
x(u)x⇤(u+ v)du

⇣
kR

x

�R

y

k = kR̂
x

� R̂

y

k = k|x̂|2 � |ŷ|2k
⌘
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Shallow invariants are unstable

• Fourier Modulus is therefore unstable: high-frequency 
information spans a large linear subspace as soon as 
there is non-rigid deformation.

• Similarly, we can obtain a translation-invariant 
representation with the signal auto-correlation:

- This suffers from the same problem as Fourier.

• How to fix it?

R

x

(v) =

Z
x(u)x⇤(u+ v)du

⇣
kR

x

�R

y

k = kR̂
x

� R̂

y

k = k|x̂|2 � |ŷ|2k
⌘
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Local invariants and convolution

• Local translation invariance:

x

x

0 = 't0x

k�(x)� �('vx)k  C2

�Jkvk , or

8 v, kxk = 1 ,

k�(x)� �('vx)k
kvk  C2�J

.
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Local invariants and convolution

• Local translation invariance:

• So, we want to smooth along the orbits.
• Local averaging within the translation orbit:

x

x

0 = 't0x

k�(x)� �('vx)k  C2

�Jkvk , or

8 v, kxk = 1 ,

k�(x)� �('vx)k
kvk  C2�J

.

�(x) = 2�dJ

Z

v
�(2�J

v)'vxdv ,

✓Z
�(v)dv = 1,� � 0

◆
.
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• Local averaging within the translation orbit:

• In coordinates, it becomes

Local invariants and convolution

x

x

0 = 't0x

�(x)(u) =

Z
�J(v)x(u� v)dv = x ⇤ �J(u) ,with

�J(v) = 2�Jd�(2�Jv)

�(x) = 2�dJ

Z

v
�(2�J

v)'vxdv ,

✓Z
�(v)dv = 1,� � 0

◆
.
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Local average and stability
Proposition: The local averaging �(x) = x ⇤ �J satisfies

8 kxk = 1 2 L

2
, ⌧ , k�(x)� �('⌧x)k  Ck⌧k .
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Local average and stability

• Not surprising, since this operator removes the 
problematic high-frequencies. 

• Are there other linear operators with the same 
property?

Proposition: The local averaging �(x) = x ⇤ �J satisfies

8 kxk = 1 2 L

2
, ⌧ , k�(x)� �('⌧x)k  Ck⌧k .
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Average and uniqueness

• The only linear, translation-invariant operator is the 
average:

• And a similar argument can be used locally.  

8 v , �(x) = �('vx) =) �(x) =
1

|G|

Z
�('vx)dv

=) �(x) = �

✓
1

|G|

Z
'vxdv

◆
= �

✓
1

|G|

Z
x(u)du

◆
.
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From averages to Wavelets
• Low-pass information is insufficient:

Chapter 2. Invariant Scattering Representations

ω

|x̂| |x̂τ |

ξ (1 + s)ξ

σx (1 + s)σx

Figure 2.1: Dilation of a complex bandpass window. If ξ ≫ σxs−1, then the supports
are nearly disjoint.

Besides deformation instabilities, the Fourier modulus and the autocorrelation lose
too much information. For example, a Dirac δ(u) and a linear chirp eiu

2
are two signals

having Fourier transforms whose moduli are equal and constant. Very different signals
may not be discriminated from their Fourier modulus.

A canonical invariant [KDGH07; Soa09] Φ(x) = x(u − a(x)) registers x ∈ L2(Rd)
with an anchor point a(x), which is translated when x is translated:

a(xc) = a(x) + c .

It thus defines a translation invariant representation: Φxc = Φx. For example, the anchor
point may be a filtered maximum a(x) = argmaxu |x ⋆ h(u)|, for some filter h(u). A
canonical invariant Φx(u) = x(u−a(x)) carries more information than a Fourier modulus,
and characterizes x up to a global absolute position information [Soa09]. However, it
has the same high-frequency instability as a Fourier modulus transform. Indeed, for any
choice of anchor point a(x), applying the Plancherel formula proves that

∥x(u− a(x))− x′(u− a(x′))∥ ≥ (2π)−1 ∥|x̂(ω)|− |x̂′(ω)|∥ .

If x′ = xτ , the Fourier transform instability at high frequencies implies that Φx =
x(u− a(x)) is also unstable with respect to deformations.

2.2.5 SIFT and HoG

SIFT (Scale Invariant Feature Transform) is a local image descriptor introduced by Lowe
in [Low04], which achieved huge popularity thanks to its invariance and discriminability
properties.

The SIFT method originally consists in a keypoint detection phase, using a Dif-
ferences of Gaussians pyramid, followed by a local description around each detected
keypoint. The keypoint detection computes local maxima on a scale space generated
by isotropic gaussian differences, which induces invariance to translations, rotations and
partially to scaling. The descriptor then computes histograms of image gradient ampli-
tudes, using 8 orientation bins on a 4× 4 grid around each keypoint, as shown in Figure
2.2.
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From averages to Wavelets
• Low-pass information is insufficient:

• Thus, we must capture high-frequency.
• These new measurements must involve a non-linearity.

Chapter 2. Invariant Scattering Representations

ω

|x̂| |x̂τ |

ξ (1 + s)ξ

σx (1 + s)σx

Figure 2.1: Dilation of a complex bandpass window. If ξ ≫ σxs−1, then the supports
are nearly disjoint.

Besides deformation instabilities, the Fourier modulus and the autocorrelation lose
too much information. For example, a Dirac δ(u) and a linear chirp eiu

2
are two signals

having Fourier transforms whose moduli are equal and constant. Very different signals
may not be discriminated from their Fourier modulus.

A canonical invariant [KDGH07; Soa09] Φ(x) = x(u − a(x)) registers x ∈ L2(Rd)
with an anchor point a(x), which is translated when x is translated:

a(xc) = a(x) + c .

It thus defines a translation invariant representation: Φxc = Φx. For example, the anchor
point may be a filtered maximum a(x) = argmaxu |x ⋆ h(u)|, for some filter h(u). A
canonical invariant Φx(u) = x(u−a(x)) carries more information than a Fourier modulus,
and characterizes x up to a global absolute position information [Soa09]. However, it
has the same high-frequency instability as a Fourier modulus transform. Indeed, for any
choice of anchor point a(x), applying the Plancherel formula proves that

∥x(u− a(x))− x′(u− a(x′))∥ ≥ (2π)−1 ∥|x̂(ω)|− |x̂′(ω)|∥ .

If x′ = xτ , the Fourier transform instability at high frequencies implies that Φx =
x(u− a(x)) is also unstable with respect to deformations.

2.2.5 SIFT and HoG

SIFT (Scale Invariant Feature Transform) is a local image descriptor introduced by Lowe
in [Low04], which achieved huge popularity thanks to its invariance and discriminability
properties.

The SIFT method originally consists in a keypoint detection phase, using a Dif-
ferences of Gaussians pyramid, followed by a local description around each detected
keypoint. The keypoint detection computes local maxima on a scale space generated
by isotropic gaussian differences, which induces invariance to translations, rotations and
partially to scaling. The descriptor then computes histograms of image gradient ampli-
tudes, using 8 orientation bins on a 4× 4 grid around each keypoint, as shown in Figure
2.2.
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From averages to Wavelets
• Low-pass information is insufficient:

• Thus, we must capture high-frequency.
• These new measurements must involve a non-linearity.
• We want them to preserve stability to deformations.
• And we want them to preserve inter-class variability.

Chapter 2. Invariant Scattering Representations

ω

|x̂| |x̂τ |

ξ (1 + s)ξ

σx (1 + s)σx

Figure 2.1: Dilation of a complex bandpass window. If ξ ≫ σxs−1, then the supports
are nearly disjoint.

Besides deformation instabilities, the Fourier modulus and the autocorrelation lose
too much information. For example, a Dirac δ(u) and a linear chirp eiu

2
are two signals

having Fourier transforms whose moduli are equal and constant. Very different signals
may not be discriminated from their Fourier modulus.

A canonical invariant [KDGH07; Soa09] Φ(x) = x(u − a(x)) registers x ∈ L2(Rd)
with an anchor point a(x), which is translated when x is translated:

a(xc) = a(x) + c .

It thus defines a translation invariant representation: Φxc = Φx. For example, the anchor
point may be a filtered maximum a(x) = argmaxu |x ⋆ h(u)|, for some filter h(u). A
canonical invariant Φx(u) = x(u−a(x)) carries more information than a Fourier modulus,
and characterizes x up to a global absolute position information [Soa09]. However, it
has the same high-frequency instability as a Fourier modulus transform. Indeed, for any
choice of anchor point a(x), applying the Plancherel formula proves that

∥x(u− a(x))− x′(u− a(x′))∥ ≥ (2π)−1 ∥|x̂(ω)|− |x̂′(ω)|∥ .

If x′ = xτ , the Fourier transform instability at high frequencies implies that Φx =
x(u− a(x)) is also unstable with respect to deformations.

2.2.5 SIFT and HoG

SIFT (Scale Invariant Feature Transform) is a local image descriptor introduced by Lowe
in [Low04], which achieved huge popularity thanks to its invariance and discriminability
properties.

The SIFT method originally consists in a keypoint detection phase, using a Dif-
ferences of Gaussians pyramid, followed by a local description around each detected
keypoint. The keypoint detection computes local maxima on a scale space generated
by isotropic gaussian differences, which induces invariance to translations, rotations and
partially to scaling. The descriptor then computes histograms of image gradient ampli-
tudes, using 8 orientation bins on a 4× 4 grid around each keypoint, as shown in Figure
2.2.
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Wavelets

|�̂�(⇥)|2
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�� �0

|�̂(⇥)|2

Dilated wavelets: �j(u) = 2�j�(2�ju) , j 2 Z

•     well localized in space and frequency.
• At least one vanishing moment:
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Littlewood-Paley Wavelet Filter Banks

• Wavelet transform convolutional filter bank: 
x ?  (u) =

Z
x(v) (u� v)dv .

Wx = {x ? �(u) , x ?  �(u)}�2⇤

• For images, dilated and rotated wavelets:

Theorem (Littlewood-Paley): If there exists � > 0 such that

8! > 0 , 1� �  |ˆ�(!)|2 + 1

2

X

�

| ˆ (��1
!)|2  1 ,

then 8x 2 L

2
, (1� �)kxk2  kWxk2  kxk2 .

|�̂2jr(⇥)|2

�1

�2

 �(u) = 2�j/2 (2�jru) , with � = 2jr
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Wavelets in Vision

• V1 Model of Simple and Complex cells: First layer of 
processing is selective in orientation, scale and position.

- cells are organized in pinwheels. (more on that later).
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Wavelets and learning

• Why are wavelets a good idea?
- We will see that they provide stability to deformations because they 

commute nicely with diffeomorphisms:

- We will also see that the discriminability of                           is 
controlled by the sparsity produced by     : 

kW'⌧x� '⌧Wxk . k⌧k .

�(x) = ⇢(Wx)
W

{x ⇤  �(u)}�,u has few non-zero coe�cients.
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Examples

• Olshausen and Field Sparse coding model trained on 
natural images:

[Olshausen and Field,’96]
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Examples

• Top performing shallow network unsupervised learning:

Figure 1: Illustration showing feature extraction using a w-by-w receptive field and stride s. We first
extract w-by-w patches separated by s pixels each, then map them to K-dimensional feature vectors
to form a new image representation. These vectors are then pooled over 4 quadrants of the image to
form a feature vector for classification. (For clarity we have drawn the leftmost figure with a stride
greater than w, but in practice the stride is almost always smaller than w.

(a) K-means (with and without whitening) (b) GMM (with and without whitening)

(c) Sparse Autoencoder (with and without whitening) (d) Sparse RBM (with and without whitening)

Figure 2: Randomly selected bases (or centroids) trained on CIFAR-10 images using different learn-
ing algorithms. Best viewed in color.

3.2.2 Classification

Before classification, it is standard practice to reduce the dimensionality of the image representation
by pooling. For a stride of s = 1, our feature mapping produces a (n�w+1)-by-(n�w+1)-by-K
representation. We can reduce this by summing up over local regions of the y

(ij)’s extracted as
above. Specifically, we split the y

(ij)’s into four equal-sized quadrants, and compute the sum of the
y

(ij)’s in each. This yields a reduced (K-dimensional) representation of each quadrant, for a total
of 4K features that we use for classification.

Given these pooled (4K-dimensional) feature vectors for each training image and a label, we apply
standard linear classification algorithms. In our experiments we use (L2) SVM classification. The
regularization parameter is determined by cross-validation.

4 Experiments and Analysis

The above framework includes a number of parameters that can be changed: (i) whether to use
whitening, (ii) the number of features K, (iii) the stride s, and (iv) receptive field size w. In this

5

[Coates, Le & Ng, ‘10]58


