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* [ensor Decompositions and Deep Learning
— Optimality certificates
—Learning with high-order score function.,
—Hierarchical Tensor Decompositions

* Spin Glasses and Deep Learning

* Richard Zhang: “Colorful Image Colorization™

* Hoang Duong: “Learning Polynomial Factorization”



Tensor Methods In Deep Learning

* Optimizing the training error with a generic deep
network Is a non-convex problem.

min - Uy, B(2::0)) + R(O)

e Consider a network of
Seen as a function of r

d

LS

epth d with ReLLU nonlineartties.

parameters © , ¢(z; ©)

ressembles a homogeneous piece-wise polynomial:

o={0,...,04.

Zm@ pmH@(), (2;0) ={0,1} .
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Tensor Methods In Deep Learning

* Optimizing the training error with a generic deep
network Is a non-convex problem.

min - Uy, B(2::0)) + R(O)

» Consider a network of depth d with RelLU nonlineartties.

Seen as a fu

nction of its parameters © , ®(z; ©)

ressembles a homogeneous ' piece-wise” polynomial

* [he depenc

Zﬂ'w@ p(1>H@p(])’ a:@)—{() 1}
0={6'. ..,0%.

encles on O are partly captured by the d-

order tenso

~ @1®@2®@d
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,min_ F(Y,Ux(©',...,0%)) +R(O,...,0%) .

e Tensor factorizations are a broad class of non-convex
optimization problems.



,min_ F(Y,Ux(©',...,0%)) +R(O,...,0%) .

e Tensor factorizations are a broad class of non-convex
optimization problems.

* A particularly famous instance Is the matrix factorization
problem:

min (Y, UVTY+R(U, V), Y e R U e R V e R™*%

— Low-rank factorizations (e.g. PCA)
— Sparse factorizations (Dictionary Learning, NMF)
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* Example: low-rank factorization.

I(IJliélg(Y, UV?Y) | s.t. rank(UV*) <7 .
“When (Y, X) = [[Y = X[|op, £(Y,X) = Y — X]|| OK

—We can lift the problem and relax the constraint:

m)}né(Y,X) + A X[« | X ||« = Nuclear norm of X.

— Factorized and relaxed formulations are connected via a variational
principle:

1
[ X[l = min S(IUlE+[VIE) -



* Example: low-rank factorization.

I(IJliélg(Y, UV?Y) | s.t. rank(UV*) <7 .

~When £(Y, X) = [[Y = X|lop, (Y, X) = |Y = X[ OK

—We can lift the problem and relax the constraint:

m)}né(Y,X) + A X[« | X ||« = Nuclear norm of X.

— Factorized and relaxed formulations are connected via a variational

principle: |
| X = Lin §(HUH% +|VI]I%) -
e Q: General case!



* A first generalization Is the tensor norm

. .1
X0 = inf min 2 (Z U2 + v) |

Theorem [H-V]: A local minimizer of the factorized problem
ming,y (Y, UV®) + A7 [[Uillul[Villo

such that for some ¢« U; = V; = 0 is a global minimizer of the
convex problem minx £(Y, X) + A|| X ||, as well as

the factorized problem.



Tensor Norms [Bach, Haeffele&Vidal]

* A first generalization Is the tensor norm

. ]
X o = inf min (Z U2 + v) |

Theorem [H-V]: A local minimizer of the factorized problem
ming,y (Y, UV®) + A7 [[Uillul[Villo

such that for some 1 U; = V; = 0 is a global minimizer of the
convex problem minx £(Y, X) + A|| X ||, as well as

the factorized problem.

* This produces an optimality certificate: we use a surrogate
convex problem to obtain a guarantee that a non-convex

problem s solved optimally.
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e We s

fart by generalizing a multilinear mapping (tensor)

to ho

mogeneous maps ¢(0!,...,0%):

VO,Va>0, ¢(a@,...,a0% =a’p(0,...,0%) .

s: degree of homogeneity.

Ex: ReLU p(x) = max(0, x) is homogeneous of degree 1.
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e We s

fart by generalizing a multilinear mapping (tensor)

to ho

mogeneous maps ¢(0!,...,0%):

VO,Va>0, ¢(a@,...,a0% =a’p(0,...,0%) .

s: degree of homogeneity.

Ex: ReLU p(x) = max(0, x) is homogeneous of degree 1.

* We construct models by adding r copies of homogenous

Maps:

¢,.(0,....0%) =) ¢(6],...,07) .

1 <r
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From lensor Factorizations to Deep Nets

* We start by generalizing a multilinear mapping (tensor)
to homogeneous maps ¢(01,...,0%);

VO,Va>0, ¢(a@,...,a0% =a’p(0,...,0%) .

s: degree of homogeneity.

Ex: ReLU p(x) = max(0, x) is homogeneous of degree 1.

* We construct models by adding r copies of homogenous
N g0, 00 =Y ¢(el,...,09) .
1<r
* We consider
min (Y, ®,.(0%,...,0%) + \R(6',...,0%) ,

Key assumption: 7R is positively homogeneous of the same degree as ®.
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¢,.(0,...,0) =) ¢©',...,09.
1=1

Examples -
Matrices:  ®U,V)=UVT =) UV (Ui, V;) = U; V") .
i=1
X3
Higher-order Tensors: dl. d2. figure credit:
R.Vidal
d(X X%, X9 X3 e
/ e
L _SIISTNEIN
s(6},....00) =0lw wel." .

Candecomp /Parafac (CP) Tensor decomposition.
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¢,.(0,...,0) =) ¢©',...,09.
1=1

ReLLU Network:

ReLU Network with One Hidden Layer
. O

=
0" % 07

Rectified Linear Unit (ReLU)

! Multilayer RelLU
Parallel Network

fioure credit:
R. Vidal




* [n the matrix case, the variational principle was

| X o = min > [U;]u]Villo -

UV’=
1 <r
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* [n the matrix case, the variational principle was

| X o = min > [U;]u]Villo -

UVI=
1<r

* [his Is generalized to

R(©)= min » g¢(6},...,0)), s.t. ®,(0',...,07) =0 .

° Proposition [H-V]: R is convex.
Also, if g is positively homogeneous of degree s, so is K.
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Theorem [H-V]: A local minimizer of the factorized problem

such that for some ¢ and all k ©F = 0 is a global
minimizer for both factorized problem and the
convex formulation

ming /(Y,0) + NR(O).
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Adaptation to Deep Models

Theorem [H-V]: A local minimizer of the factorized problem

mingr £(Y, ) <, ér(OF)) + A D i<r 9(07)

such that for some ¢ and all k ©F = 0 is a global
minimizer for both factorized problem and the
convex formulation

ming /(Y,0) + NR(O).

» Global optimality certificate for a broad class of non-
convex optimization problems, including some form of
deep learning architectures.

» Q: How to use this certificate in practice!
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* Pros

— Global optimality certificate, easy to check

nclues nonlinear models as long as they are homogeneous.

Provides a possible meta-algorithm: increase the lifting value r

brogressively I1s local optimum does not very condition.

e Cons

ow much do we need to increase 1 In practice!

ow stringent Is the homogenous regularization condition?
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* Suppose a label generating model of the form

L(ylx) = fo(x) = (az,0(A1z + b1)) + b2,

o(-): point-wise nonlinearity
Aq € RAXF
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Tensor

Decompositions and Neural Nets

* Suppose a label generating model of the form

L(y|r) =

fo(il?) - <CL2,0’(A1£I? —+ b1)> —+ bz .

o(-): point-wise nonlinearity
Aq € RAXF

* Q: Given training samples {(zs, %) ; i = fo(z)}i<n , can
we estimate the parameters a,, A;, by, by With provable

risk?

* Q:Using a computationally efficient algorithm?
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Breaking the Perils of (...)

Janzamin, Sedghi, Anandkumar]

* If one assumes knowledge of the input distribution p(z)
then one can exploit the relationship between score
functions and condrtional expectations:

Def: The m-th order score function S,,(x) is the m-th order tensor
V"p(x)

Proposition: If f(z) = E(y|x), then
iy - S3(2)) = E(V f(2)) .
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Breaking the Perils of (...)

[Janzamin, Sedghi, Anandkumar]|

* If one assumes knowledge of the input distribution p(z),
then one can exploit the relationship between score
functions and condrtional expectations.

e [t results that when E(y|z) = fo(x), we have

y Sg Z)\ Al )@(Al)j GRdXdXd, )\jER.

1<k
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Breaking the Perils of (...)

[Janzamm Sedghi, Anandkumar]
* | earning generalization bound In the “realizable” setting:

Theorem: The tensor algorithm NN-Lift learns the target

function E(y|z) = fo(x) up to error ¢ when the number
of samples is of the order of

kd® Aoz (A1) (k: size of hidden layer)
n >0 2 Nmin(A)6 ) (d: input dimension)

e Comments:

— Polynomial sample complexity.
— Algorithm has polynomial complexity as well.

— Extension to non-realizable setting (see paper for details).
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Breaking the Perils of (...)

Janzamin, Sedghi, Anandkumar]
* Pros

— Statistical Guarantees that also incorporate computational feasibility.

—Learning I1s essentially reduced to finding low-rank tensor
factorizations.

e Cons

—very strong hypothesis: knowledge of p(x).

—only a particular Neural network architecture (one hidden layer so
far).

—restrictive class of nonlinearities! : the proof requires

i(07(2)) , E(0"(2))
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Deep I\Iets and I—I|erarch|ca| Tensor Decomp03|t|ons

[Cohen, Sharir, Shashua’15]

» Consider an input image z and Its features extracted on
dense, localized patches:
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Deep I\Iets and I—I|erarch|ca| Tensor Decomp03|t|ons

[Cohen, Sharir, Shas

a'15]

» Consider an Input Image = and Its features extractec
dense, localized patches:

on

» Aggregate features by combmmg high-order information:

p(yle) = Z Ay, de‘I’d ,

Ldy=1 AY: N-th order tensor
s of dimensions M, = M.



%' Deep I\Iets and I—I|erarch|ca| Tensor Decomp03|t|ons
| ~ [Cohen, Sharir, Shashua’15]

» Q: How to parametrize/factorize the tensors AY !
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% Deep Nets and I—I|erarch|ca| Tensor Decomp03|t|ons
| ~ [Cohen, Sharir, Shashua’15]

» Q: How to parametrize/factorize the tensors AY !

» CP (Candecomp/Parafac) decomposition:

A:Zakalf®a§®...a]f\, ,ay € RM
k=1
sum of K rank-1 N-th order tensors of size M.
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Deep Nets and Hierarchical Tensor Decompositions
'Cohen, Sharir, Shashua’15]

» Q: How to parametrize/factorize the tensors AY !

» CP (Candecomp/Parafac) decomposition:

A:Zakalf®a§®...alf\, ,ay € RM
k=1
sum of K rank-1 N-th order tensors of size M.

* [he resulting model Is a shallow network:

il onn)

Feat. 1 x1 harmonic linear

— . =" conv. — — —

extraction (P pooling o

K maps.
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Deep Nets and Hierarchical lensor Decompositions
'Cohen, Sharir, Shashua’15]

» Q: How to parametrize/factorize the tensors AY !

* Hierarchical- Tucker (HT) decompositions:

¢17j77 — Z a/él-xaj7'7¢072j_170é ® ¢O,2j70é ’ Order 2

a=1

rr—1

qbl,j,v Z l,j,wgbl 1,27—1,c ®gbl 1,27, | siteler 2[

a=1

rL—1
Ay — 5 ajcl)za.]7’7¢L_172]_17a ® ¢L—1,2],C¥ : Ol"del“ 2L — N )
a=1

— Corresponds to a deep representation with L = log IV layers,



Deep Nets and I—I|erarch|ca| Tensor Decomp03|t|ons

~ [Cohen, Sharir, Shashua’15]
* In both decompositions, given enough terms, any tensor

can be approximated arbitrarily well.

» Depth efficiency question: for tensors

e and vice-versa!

33
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_ Deep Nets and I—I|erarch|ca| Tensor Decomp05|t|ons
| ~ [Cohen, Sharir, Shashua’15]

Theorem: Let A be a tensor of order NV

and dimension M in each slice, generated by the HT
formula using ranks v, = r = O(M).

Then A will have CP-rank at least /2 almost
everywhere.
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Deep Nets and Hierarchical Tensor Decompositions
'Cohen, Sharir, Shashua’15]

Theorem: Let A be a tensor of order NV

and dimension M in each slice, generated by the HT
formula using ranks v, = r = O(M).

Then A will have CP-rank at least /2 almost
everywhere.

* The HT space with rank r blocks has O(r“N) parameters.

* Besides a negligible set, all functions that can be realized
oy a polynomially sized HT model require exponential
size In order to be approximated by a CP model.

* [he converse Is not true: a CP model of size O(NMK)

can be represented In HT with
O(NK max(K,M)) ~ O(NK?)
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Deep Nets and I—I|erarch|ca| Tensor Decomp03|t|ons
| ~ [Cohen, Sharir, Shashua’15|

e Pros

—Framework that explains that depth efficiency is universal: all
nierarchical decompositions require exponentially more effort to
barametrize using non-hierarchical factorizations.

—Role of Convolution: weight sharing in a CP decomposition reduces
to symmetric tensors. Not the case In the HI decomposition.

e Cons

—Nonlinearities are multiplicative in this model: numerically and
statistically unstable. Logarithms do not fully resolve unstability.

— Approximation error results. Interplay with estimation and
optimization error?
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~ Deep Networks and Spin Glasses
- [Choromaska, Henaff, Mathieu, LeCun, Ben Arous,’ 14

* Suppose we have a linear deep network:
(I)(CC; @1, c o e @K) — @K@K—l c o @1517 .
* And suppose we train using least squares regression:

ZH%_(I) zi; © H2

z<n

37



Deep Networks and Spin Glasses
'Choromaska, Henaff, Mathieu, LeCun, Ben Arous,’14

* Suppose we have a linear deep network:
(I)(LE; @1, c o e @K) — @K@K—l c o @1517 .
* And suppose we train using least squares regression:

Z lyi — (25017 .

7,<n

* In coordinates, (0,z)’ = Z@{’latl ,

l
' Ll 2,1
(@2@1,%)] _ E @%7 2@12, 1$l1 ’
l1,l2

(Ok ...0,0,7)] Z zh @K H Q1
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~ [Choromaska, Henaff, Mathieu, LeCun, Ben Arous,’14
@l17l2 Io,l3 @lKalK—|—
1

'. O, K
X 0* ®(z;0)
‘*‘ — >

* Equivalently, we can define paths p = (los 11, .-, lk+1)
P=A{p=~(o,. - lk41);1 <l < My}



~ Deep Networks and Spin Glasses
~ [Choromaska, Henaff, Mathieu, LeCun, Ben Arous, 14

1,0 Iy L it
O 0, Ok’

e~

X 0/ (I)($§@)
¢ 2

* Equivalently, we can define paths p = (los 11, .-, lk+1)
PZ{pz (l(),.. lK_|_1> 1 <lk <Mk}

O(z:O) = Z 4P(1) H @Z(k),p(kﬂ) |

pEP;p(K+1)=j k<K
* Homogeneous polynomial on © .

e« Q:What about a RelLU network instead?
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~ Deep Networks and Spin Glasses
- [Choromaska, Henaff, Mathieu, LeCun, Ben Arous, 14

i Ozl _g Ok o
@ @
r & & d(z;0)
— e —
¢ e
* Now some paths will be stopped: p(z) = max(0, 2) .
o0y = D wlpr0) -2 [T ey n(p 2,0) = {0,1}
pEP;p(K+1)=j k<K

° p:(l())le) ’ ﬁ:(l())"')lK—l)

7T(p7 Qj’ @) p— 7'(‘(]5, Qj’ (—)) . ( Z 7_‘_(Z?/7 Qj, @) H @Z’(k)ap/(k—|—1) > O)
p' €P;p’ (K)=p(K) k<K
—Biases produce low-order terms (we ignore them for now)



Deep Networks and Spin Glasses
~ [Choromaska, Henaff, Mathieu, LeCun, Ben Arous,’14

e [ 0ss becomes

B(©) = — 3 |lyi — ®(x:;0)|°

: S:Sj yf - Z m(p, zi, ©) ‘xﬁj(l) H @Z(k)’p(kﬂ)

i<n j=1 pEP;p(K+1)=j k<K
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Deep Networks and Spin Glasses
'Choromaska, Henaff, Mathieu, LeCun, Ben Arous,’14

e [ 0ss becomes

1
B©) = -3 lly: — oz 0)|
1<n
A 2
1 ~ [ 1 k).p(k+1
SE55) 3l PEIED SRRSO IELY ) R
1<n jg=1 pEP;p(K+1)=j k<K
IO+ ) qX.Y.0,p) ] oY
pEP E<K
_|_ Z Q(X, @7p,p/) H @Z(k>7p(k+1)@Z/(k)ap,(k+1) : Wlth
p,p' €P E<K

o(X,Y,0,p) = Exy (7(p, X,0)Y?E x71) |

Q(X,0,p,1) = Ex (n(p, X,0)7(p/, X,0)X?D X' (1)
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Deep Networks and Spin Glasses
'Choromaska, Henaff, Mathieu, LeCun, Ben Arous,’14

* [he loss "“looks™ like a polynomial iIn © provided we
break the dependency of 7(p,z,©) with respect to ©.
— It means that thresholding 1s iIndependent of ©.

* For large enough n (assuming i1d samples), It results that

Q(Xa va) ™~ N(/Lp,O'z) y

Q(Xapap,) ™~ N(:up,plv U;,p’) )
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Deep Networks and Spin Glasses
'Choromaska, Henaff, Mathieu, LeCun, Ben Arous,’14

* Furthermore, If one also assumes redundancy (welights
shared across layers), uniformity (same weights are not
used too often along surviving paths) and normalized
weights, authors arrive at

A
1
E(©) ~ LA k() = 7 Zl_lzll ,,,,, 1O - Ol
£(0): Hamil f the H with [©]F = A
: 1toni t -Spl
7 (0): Hamiltonian of the H-spin Z, ~ N(0,0?) .

spherical spin glass model.
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Deep Networks and Spin Glasses
~ [Choromaska, Henaff, Mathieu, LeCun, Ben Arous,’14

 [Auffinger et al "10] [Auffinger, Ben Arous’13],
obtained a complete description of the behavior
of critical points of spherical spin glasses.

In particular, critical points (ratio of negative
to positive eigenvalues of the Hessian) occur at
different energy bands:

A

; O



~ Deep Networks and Spin Glasses
- [Choromaska, Henaff, Mathieu, LeCun, Ben Arous,’ 14

 [Auffinger et al "10] [Auffinger, Ben Arous’13],
obtained a complete description of the behavior
of critical points of spherical spin glasses.

In particular, index of critical points (ratio of negative

to positive eigenvalues of the Hessian) occur at
different energy bands:

A

SRS RN
|
DO — O

. O



~ Deep Networks and Spin Glasses
- [Choromaska, Henaff, Mathieu, LeCun, Ben Arous,’ 14

e As A — o0, the distributions concentrate along
different bands: each index concentrates in different bands.

As A — oo, the number of local minima dominate
the rest of the indices.

S, S, S
|-
DO — O
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e See also:

—"The effect of Gradient Noise on the Energy Landscape of Deep
Networks”, Chaudhari & Soatto. They study exterior magnitude field
and Its associated smoothing annealing schemes to reduce number

of critical points.

— "Explorations on high dimensional landscapes”, Sagun, Guney, Ben
Arous, LeCun. Study the existence of a narrow band containing the
bulk of the critical points of deep energy landscapes in the high-
dimensional setting.
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Deep Networks and Spin Glasses

- [Choromaska, Henaff, Mathieu, LeCun, Ben Arous, 14
* Pros

—Macroscopic picture that explains some of the behavior of stochastic
oradient descent on deep neural networks.

— Analysis tools from Random Matrix theory that explain non-local
behavior and might complement invariance/symmetry arguments.

e Cons

— The simplifications on the model are very strong.

—Does not inform about the role of convolutions in the energy
andscape

—Does not really inform about the role of depth In the optimization.
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