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Objective

• Tensor Decompositions and Deep Learning
– Optimality certificates
– Learning with high-order score function.
– Hierarchical Tensor Decompositions

• Spin Glasses and Deep Learning

• Richard Zhang: “Colorful Image Colorization”

• Hoang Duong: “Learning Polynomial Factorization”
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Tensor Methods in Deep Learning

• Optimizing the training error with a generic deep 
network is a non-convex problem. 

• Consider a network of depth d with ReLU nonlinearities. 
Seen as a function of its parameters    ,             
ressembles a homogeneous piece-wise polynomial:

3

⇥ �(x;⇥)

min
⇥

1

n

X

in

`(yi,�(xi;⇥)) +R(⇥) .

�(x;⇥) =
X

p

⇡(x;⇥)xp(1)

dY

j=1

⇥j
p(j) , ⇡(x;⇥) = {0, 1} .

⇥ = {⇥1, . . . ,⇥d} .



Tensor Methods in Deep Learning

• Optimizing the training error with a generic deep 
network is a non-convex problem. 

• Consider a network of depth d with ReLU nonlinearities. 
Seen as a function of its parameters    ,             
ressembles a homogeneous “piece-wise” polynomial:

• The dependencies on    are partly captured by the d-
order tensor  
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Tensor Methods

• Tensor factorizations are a broad class of non-convex 
optimization problems.
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Tensor Methods

• Tensor factorizations are a broad class of non-convex 
optimization problems.

• A particularly famous instance is the matrix factorization 
problem: 

– Low-rank factorizations (e.g. PCA)
– Sparse factorizations (Dictionary Learning, NMF)
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Motivation: Matrix factorization

• Example: low-rank factorization.

– When                                                                           OK
– We can lift the problem and relax the constraint:

– Factorized and relaxed formulations are connected via a variational 
principle:
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Motivation: Matrix factorization

• Example: low-rank factorization.

– When                                                                           OK
– We can lift the problem and relax the constraint:

– Factorized and relaxed formulations are connected via a variational 
principle:

• Q: General case?
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Tensor Norms [Bach, Haeffele&Vidal]

• A first generalization is the tensor norm
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Tensor Norms [Bach, Haeffele&Vidal]

• A first generalization is the tensor norm

• This produces an optimality certificate: we use a surrogate 
convex problem to obtain a guarantee that a non-convex 
problem is solved optimally.  
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minU,V `(Y, UV T
) + �
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such that for some i Ui = Vi = 0 is a global minimizer of the

convex problem minX `(Y,X) + �kXku,v as well as

the factorized problem.



From Tensor Factorizations to Deep Nets

• We start by generalizing a multilinear mapping (tensor) 
to homogeneous maps                    :
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Ex: ReLU ⇢(x) = max(0, x) is homogeneous of degree 1.



From Tensor Factorizations to Deep Nets

• We start by generalizing a multilinear mapping (tensor) 
to homogeneous maps                    :

• We construct models by adding r copies of homogenous 
maps:
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From Tensor Factorizations to Deep Nets

• We start by generalizing a multilinear mapping (tensor) 
to homogeneous maps                    :

• We construct models by adding r copies of homogenous 
maps:

• We consider
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From Tensor Factorizations to Deep Nets
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Matrices: �(U, V ) = UV T =
rX
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UiV
T
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Higher-order Tensors:

CHAPTER 4. GENERALIZED FACTORIZATIONS
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Figure 4.2: Rank-r CP decomposition of a 3rd order tensor.

(where ⌦ denotes the tensor outer product) results in �r(X1, . . . , XK) being the

mapping used in the rank-r CANDECOMP/PARAFAC (CP) tensor decomposition

model [29], which is visualized for a 3rd order tensor in figure 4.2. Further, instead

of choosing � to be a simple outer product, we can also generalize this to be any

multilinear function of the factor slices (X1
i , . . . , X

K
i ). For example, the output could

be formed by taking convolutions between the factor slices. We note that more

general tensor decompositions, such as the general form of the Tucker decomposition,

do not explicitly fit inside the framework we describe here; however, by using similar

arguments to the ones we will develop here, it is possible to show analogous results to

those we derive in this paper for more general tensor decompositions, and we briefly

discuss these extensions in section 4.6.2.
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figure credit:
R. Vidal
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Candecomp/Parafac (CP) Tensor decomposition.

�r(⇥
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Examples



Adaptation to Deep Models
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ReLU Network:

figure credit:
R. Vidal

CHAPTER 4. GENERALIZED FACTORIZATIONS
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Figure 4.3: Example ReLU networks. (Left panel) ReLU network with a single hidden
layer with the mapping described by the equation in (4.10) with (r = 4, d1 = 3, d2 =
2). Each color corresponds to one element of the elemental mapping �(X1

i , X
2
i ). The

colored hidden units have rectifying non-linearities, while the black units are linear.
(Right panel) Multilayer ReLU network with 4 fully connected parallel subnetworks
(r=4) with elemental mappings defined by (4.11) with (d1 = 5, d2 = 3, d3 = 5, d4 =
1, d5 = 2). Each color corresponds to the subnetwork described by one element of the
elemental mapping �(X1

i , X
2
i , X

3
i , X

4
i ).

the hidden layer units. In this case, the network has the architecture that there are r,

4 layer fully-connected subnetworks, with each subnetwork having the same number

of units in each layer as defined by the dimensions {d2, d3, d4}. The r subnetworks

are all then fed into a fully connected linear layer to produce the output. This is

visualized in figure 4.3 for (d1, d2, d3, d4, d5) = (5, 3, 5, 1, 2) and with r = 4.

More general still, since any positively homogenous transformation is a potential

elemental mapping, by an appropriate definition of �, one can describe neural net-

works with very general architectures, provided the non-linearities in the network are

compatible with positive homogeneity (ReLUs are one example, but non-linearities
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Adaptation to Deep Models

• In the matrix case, the variational principle was 
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Adaptation to Deep Models

• In the matrix case, the variational principle was 

• This is generalized to 

•  
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Proposition [H-V]: R is convex.

Also, if g is positively homogeneous of degree s, so is R.



Adaptation to Deep Models
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Adaptation to Deep Models

• Global optimality certificate for a broad class of non-
convex optimization problems, including some form of 
deep learning architectures.

• Q: How to use this certificate in practice?
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Adaptation to Deep Models

• Pros
– Global optimality certificate, easy to check
– Inclues nonlinear models as long as they are homogeneous.
– Provides a possible meta-algorithm: increase the lifting value r 

progressively is local optimum does not very condition.

• Cons
– How much do we need to increase    in practice?
– How stringent is the homogenous regularization condition?

20
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Tensor Decompositions and Neural Nets

• Suppose a label generating model of the form

21

E(y|x) = f0(x) = ha2,�(A1x+ b1)i+ b2 ,

�(·): point-wise nonlinearity

A1 2 Rd⇥k .



Tensor Decompositions and Neural Nets

• Suppose a label generating model of the form

• Q: Given training samples                                   , can 
we estimate the parameters                  with provable 
risk? 

• Q: Using a computationally efficient algorithm? 

22

E(y|x) = f0(x) = ha2,�(A1x+ b1)i+ b2 ,

�(·): point-wise nonlinearity

a2, A1, b1, b2

{(xi, yi) ; yi = f0(xi)}in

A1 2 Rd⇥k .



Breaking the Perils of (…)

• If one assumes knowledge of the input distribution       , 
then one can exploit the relationship between score 
functions and conditional expectations:

23

[Janzamin, Sedghi, Anandkumar]

p(x)

Sm(x) = (�1)m
rm

p(x)

p(x)
.

Def: The m-th order score function Sm(x) is the m-th order tensor

Proposition: If f(x) = E(y|x), then
E(y · S3(x)) = E(r3

f(x)) .



Breaking the Perils of (…)

• If one assumes knowledge of the input distribution       , 
then one can exploit the relationship between score 
functions and conditional expectations.

• It results that when                     , we have  
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[Janzamin, Sedghi, Anandkumar]

p(x)

E(y|x) = f0(x)

E(y · S3(x)) =
X

jk

�j(A1)j ⌦ (A1)j ⌦ (A1)j 2 Rd⇥d⇥d
, �j 2 R .



• Learning generalization bound in the “realizable” setting:

• Comments:
– Polynomial sample complexity.
– Algorithm has polynomial complexity as well.
– Extension to non-realizable setting (see paper for details).
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Breaking the Perils of (…)
[Janzamin, Sedghi, Anandkumar]

Theorem: The tensor algorithm NN-Lift learns the target

function E(y|x) = f0(x) up to error ✏ when the number

of samples is of the order of

n � O

✓
kd3

✏2
�
max

(A1)2

�
min

(A1)6

◆
.

(k: size of hidden layer)

(d: input dimension)



Breaking the Perils of (…)

• Pros
– Statistical Guarantees that also incorporate computational feasibility. 
– Learning is essentially reduced to finding low-rank tensor 

factorizations.

• Cons 
– very strong hypothesis: knowledge of p(x).
– only a particular Neural network architecture (one hidden layer so 

far).
– restrictive class of nonlinearities? : the proof requires 
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[Janzamin, Sedghi, Anandkumar]

E(�000(z)) , E(�00(z))



Deep Nets and Hierarchical Tensor Decompositions

• Consider an input image    and its features extracted on 
dense, localized patches:  

27

[Cohen, Sharir, Shashua’15]
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Deep Nets and Hierarchical Tensor Decompositions

• Consider an input image    and its features extracted on 
dense, localized patches:  

• Aggregate features by combining high-order information:

28

[Cohen, Sharir, Shashua’15]

x
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• Q: How to parametrize/factorize the tensors      ?
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Deep Nets and Hierarchical Tensor Decompositions
[Cohen, Sharir, Shashua’15]
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• Q: How to parametrize/factorize the tensors      ?
• CP (Candecomp/Parafac) decomposition:

30

Deep Nets and Hierarchical Tensor Decompositions
[Cohen, Sharir, Shashua’15]
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• Q: How to parametrize/factorize the tensors      ?
• CP (Candecomp/Parafac) decomposition:

• The resulting model is a shallow network:

31

Deep Nets and Hierarchical Tensor Decompositions
[Cohen, Sharir, Shashua’15]
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• Q: How to parametrize/factorize the tensors      ?
• Hierarchical-Tucker (HT) decompositions:

– Corresponds to a deep representation with                  layers. 

Deep Nets and Hierarchical Tensor Decompositions
[Cohen, Sharir, Shashua’15]
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• In both decompositions, given enough terms, any tensor 
can be approximated arbitrarily well. 

• Depth efficiency question: for tensors that require a 
polynomial size in the HT decomposition, how many 
parameters in the CP representation do we need? 

• and vice-versa? 
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Deep Nets and Hierarchical Tensor Decompositions
[Cohen, Sharir, Shashua’15]
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Deep Nets and Hierarchical Tensor Decompositions
[Cohen, Sharir, Shashua’15]

Theorem: Let A be a tensor of order N
and dimension M in each slice, generated by the HT
formula using ranks rl = r = O(M).
Then A will have CP-rank at least rN/2 almost
everywhere.



•  
• Besides a negligible set, all functions that can be realized 

by a polynomially sized HT model require exponential 
size in order to be approximated by a CP model.

• The converse is not true: a CP model of size                
can be represented in HT with  
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Deep Nets and Hierarchical Tensor Decompositions
[Cohen, Sharir, Shashua’15]

Theorem: Let A be a tensor of order N
and dimension M in each slice, generated by the HT
formula using ranks rl = r = O(M).
Then A will have CP-rank at least rN/2 almost
everywhere.

The HT space with rank r blocks has O(r2N) parameters.

O(NMK)

O(NKmax(K,M)) ' O(NK2
)



• Pros
– Framework that explains that depth efficiency is universal: all 

hierarchical decompositions require exponentially more effort to 
parametrize using non-hierarchical factorizations.

– Role of Convolution: weight sharing in a CP decomposition reduces 
to symmetric tensors. Not the case in the HT decomposition.

• Cons
– Nonlinearities are multiplicative in this model: numerically and 

statistically unstable. Logarithms do not fully resolve unstability.
– Approximation error results. Interplay with estimation and 

optimization error? 
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Deep Nets and Hierarchical Tensor Decompositions
[Cohen, Sharir, Shashua’15]



Deep Networks and Spin Glasses

• Suppose we have a linear deep network:

• And suppose we train using least squares regression:

37

[Choromaska, Hena↵, Mathieu, LeCun, Ben Arous,’14]
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Deep Networks and Spin Glasses

• Suppose we have a linear deep network:

• And suppose we train using least squares regression:

• In coordinates,
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Deep Networks and Spin Glasses

39

[Choromaska, Hena↵, Mathieu, LeCun, Ben Arous,’14]

• Equivalently, we can define paths  
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Deep Networks and Spin Glasses
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[Choromaska, Hena↵, Mathieu, LeCun, Ben Arous,’14]

• Equivalently, we can define paths  

• Homogeneous polynomial on    . 
• Q: What about a ReLU network instead? 
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Deep Networks and Spin Glasses
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[Choromaska, Hena↵, Mathieu, LeCun, Ben Arous,’14]

• Now some paths will be stopped:

•  

– Biases produce low-order terms (we ignore them for now)
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Deep Networks and Spin Glasses
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k , with
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• Loss becomes
E(⇥) =

1

n

X

in

kyi � �(xi;⇥)k2

=
1

n

X

in

MKX

j=1

0

@
y

j
i �

X

p2P;p(K+1)=j

⇡(p, xi,⇥) · xp(1)
i

Y

kK

⇥p(k),p(k+1)
k

1

A
2

n!1! C +
X

p2P
q(X,Y,⇥, p)

Y

kK

⇥p(k),p(k+1)
k

+
X

p,p02P
Q(X,⇥, p, p

0)
Y

kK

⇥p(k),p(k+1)
k ⇥p0(k),p0(k+1)

k , with

q(X,Y,⇥, p) = EX,Y

⇣
⇡(p,X,⇥)Y p(K)Xp(1)

⌘
,

Q(X,⇥, p, p0) = EX

⇣
⇡(p,X,⇥)⇡(p0, X,⇥)Xp(1)Xp0(1)

⌘
.
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• The loss “looks” like a polynomial in    provided we 
break the dependency of               with respect to    .  
– It means that thresholding is independent of    . 

• For large enough    (assuming iid samples), it results that
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⇥
⇡(p, x,⇥) ⇥

n

q(X,Y, p) ⇠ N (µp,�
2
p) ,

Q(X, p, p0) ⇠ N (µp,p0 ,�2
p,p0) ,

⇥
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• Furthermore, if one also assumes redundancy (weights 
shared across layers), uniformity (same weights are not 
used too often along surviving paths) and normalized 
weights, authors arrive at
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LH(⇥): Hamiltonian of the H-spin
spherical spin glass model.

E(⇥) ' L⇤,K(⇥) =
1

⇤(K�1)/2

⇤X

l1,...,lK=1

Zl1,...,lK⇥l1 . . .⇥lK ,

with k⇥k2 = ⇤ .

Zp ⇠ N (0,�2) .
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[Au�nger et al ’10] [Au�nger, Ben Arous’13],

obtained a complete description of the behavior

of critical points of spherical spin glasses.

In particular, critical points (ratio of negative
to positive eigenvalues of the Hessian) occur at
di↵erent energy bands:

⇥
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[Au�nger et al ’10] [Au�nger, Ben Arous’13],

obtained a complete description of the behavior

of critical points of spherical spin glasses.

⇥

i = 0
i = 1
i = 2

In particular, index of critical points (ratio of negative
to positive eigenvalues of the Hessian) occur at
di↵erent energy bands:
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⇥

i = 0
i = 1
i = 2

As ⇤ ! 1, the distributions concentrate along

di↵erent bands: each index concentrates in di↵erent bands.

As ⇤ ! 1, the number of local minima dominate

the rest of the indices.
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• See also:
– “The effect of Gradient Noise on the Energy Landscape of Deep 

Networks”, Chaudhari & Soatto. They study exterior magnitude field 
and its associated smoothing annealing schemes to reduce number 
of critical points.

– “Explorations on high dimensional landscapes”, Sagun, Guney, Ben 
Arous, LeCun. Study the existence of a narrow band containing the 
bulk of the critical points of deep energy landscapes in the high-
dimensional setting. 
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• Pros
– Macroscopic picture that explains some of the behavior of stochastic 

gradient descent on deep neural networks.
– Analysis tools from Random Matrix theory that explain non-local 

behavior and might complement invariance/symmetry arguments.

• Cons
– The simplifications on the model are very strong.
– Does not inform about the role of convolutions in the energy 

landscape
– Does not really inform about the role of depth in the optimization.
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