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LEARNING DEEP NETS

▸ The key idea of back-propagation 
was introduced by (Rumelhart et al, 
1986). 

▸ We consider the parameters as the 
coordinate of a point on a surface 
defined by the loss. 

▸ Computing the gradient with the 
chain-rule tells us where to move in 
that space.



LOCAL MINIMA CAN GREATLY 
DOMINATE THE GLOBAL MINIMA 
IMPLYING A HIGH PROBABILITY 
FAILURE OF BACK-PROPAGATION

(Brady & Raghavan, 1989) on training 2D nets









TRAINING HUGE 
DEEP NETS MAY 
SEEM DOOMED
Training a in 2D seems 
impossible so how could 
we optimize 106 weights?



IT JUST WORKS!
Why? Could our 
imagination is wrong?



2D IS VERY DIFFERENT FROM 106D

▸ We believe most of the mass 
of a Gaussian always lies near 
the mean 

▸ This is true in low-dimension

▸ It is not always true (!) 

▸ Most of the mass in high 
dimension lies at the edges of 
the distribution.



AN INTUITION FROM RANDOM QUADRATICS

▸ Consider a random function 
 
f(θ) = θTHθ 
 
where the Hessian H ~ N(μ, Σ). 

▸ The eigenvalues λi of the Hessian 
tell us what kind of critical point we 
have sampled.



SADDLE POINT
Occur when there are positive and negative 
eigenvalues λi.

MINIMUM

MAXIMUM

Occur when the eigenvalues λi are all positive.

Occur when the eigenvalues λi are all negative.



SEMI-CIRCULAR LAW AND COIN FLIPPING

▸ The distribution of eigenvalues is 
given by the semi-circular law 
(Wigner, 1958). 

▸ The sign of an eigenvalue is 
determined by a coin flip. 

▸ The number of eigenvalues is the 
number of parameters. 

▸ What is the likelihood of falling on 
heads 106 times in a row?



A MORE GENERAL CASE

▸ Gaussian random fields can be seen 
as multi-dimensional Gaussian 
processes. 

▸ They occur naturally in many 
applications due to the central limit 
theorem. 

▸ In the context of statistical physics, 
(Bray & Dean, 2007) show that the 
critical points of these models 
follow the semi-circular rule shifted 
by the error ε.



The shift is increases with accuracy



THE DISTRIBUTION OF CRITICAL POINTS

▸ (Bray and Dean, 2007) show critical points lie with high-
probability on a curve in the space of error vs fraction of 
negative eigenvalues.

Fraction of negative eigenvalues

Error



HIGH ERROR 
SOLUTIONS ARE 
LIKELY SADDLE 
POINTS

Observation 1



LOCAL MINIMA 
LIKELY HAVE 
NEAR OPTIMAL 
ERROR

Observation 2



DO THESE RESULTS HOLD IN PRACTICE?

▸ It is not clear if neural nets exhibit this behavior in practice. 

▸ Are the loss surfaces of neural nets similar to Gaussian random fields?

Fraction of negative eigenvalues

Error



EXPERIMENTAL SETUP

▸ Does the Hessian follow Wigner's 
law in practice? 

▸ We consider 1 hidden layer nets 
for object recognition with around 
20k parameters. 

▸ The datasets are MNIST and CIFAR 
resized to 10x10. 

▸ This setup allows us to compute 
the Hessian exactly.



DO NEURAL NETS FOLLOW WIGNER'S LAW?

▸ The networks seem to loosely follow Wigner's law. 

▸ The spectrum of eigenvalues shifts to the right as the error 
decreases.

MNIST CIFAR



IS THE DISTRIBUTION OF CRITICAL POINTS REGULAR?

▸ The distribution exhibits a strong correlation between the error and 
the number of negative eigenvalues as caused by Wigner's law. 

▸ The high error solutions are all saddle points leading to the near-
optimum error as the index decreases.

CIFARMNIST

Fraction of negative eigenvalues Fraction of negative eigenvalues



NEURAL NETS AND SPIN GLASS

▸ (Choromanska et al, 2014) show 
that under some conditions 
rectified networks are a spin glass 
model. 

▸ This explains the applicability of 
random matrix theory to neural 
nets. 

▸ http://arxiv.org/abs/1412.0233

http://arxiv.org/abs/1412.0233


CONSEQUENCES OF THE PREVALENCE OF SADDLE POINTS

▸ Finding a local minimum is actually 
a desirable outcome for 
optimization. 

▸ A local minimum can be found by 
following a sequence of saddle 
points. 

▸ Do our optimizers behave correctly 
near saddle points? ?



BACK-PROPAGATION

▸ Saddle points curves the trajectory 
of gradient descent. 

▸ Gradient descent slows down near 
saddle points. 

▸ Can second-order methods help 
us?



NEWTON METHOD

▸ The Newton method jumps directly 
to the saddle point. 

▸ The Newton method seeks any 
critical points indiscriminately. 

▸ The recommended solution is to 
damp the eigenvalues by a factor α 
such that we have H + αI



DAMPING 
OBFUSCATES 
NEGATIVE 
CURVATURE

Damping by α 



DAMPING 
OBFUSCATES 
NEGATIVE 
CURVATURE
We need to properly deal 
with negative curvature.



PRECONDITIONING

▸ Preconditioning is a way to solve a 
problem by tackling an easier but 
equivalent problem. 

▸ It is made by a change of variables 
 
 
which transforms the derivates

Original

Preconditioned



PRECONDITIONING

▸ The trick is to choose D so that the 
preconditioned Hessian has less 
curvature 

▸ It is easier to make progress in 
each direction if they have the 
same curvature. 

▸ The amount of curvature is 
measured by the condition 
number 

Original

Preconditioned



PRECONDITIONING

▸ The optimal choice to reduce the 
curvature would be H if it is 
positive definite. 

▸ The issue is that it is to 
computationally intensive to store 
and invert the Hessian. 

▸ Diagonal preconditioners are used 
for this reason.



JACOBI

▸ The most common type of 
preconditioned is to use the 
diagonal of the Hessian. 

▸ It effectively gives us an adaptive 
learning rate for each parameter 
based on the curvature 

▸ Jacobi does not work well for non-
convex problems.
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OPPOSING 
CURVATURES
CANCEL
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SOLUTION

▸ Prevent the signs from cancelling by taking the absolute value. 

▸ This solution is not tractable as it requires an eigen-decomposition.
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EQUILIBRATION

▸ Equilibration is a technique 
developed in the mathematics 
community by (Sluis, 1969) that we 
rediscovered. 

▸ Equilibration rescales each row by 
its norm. 

▸ We are able to prove the new 
result that it reduces this upper 
bound of the condition number
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DOES THIS TRANSLATE IN PRACTICE?

▸ There is not much difference in performance in the convex case 
as there is no negative curvature. 

▸ There is a sizable difference in the non-convex case.

Non-ConvexConvex



IMPLEMENTATION

▸ D is an average leveraging the identity 

▸ We can estimate the products Hv for the price of 2 gradients (Pearlmutter, 1994)



R-OPERATOR

▸ The R-Operator is a set of rules to apply. 

▸ These rule can be applied automatically, just like for differentiation.



IMPLEMENTATION RMSPROP (HINTON, 2014)

▸ RMSPROP uses the approximation  

▸ Then we recover a very biased form of equilibration with

Equilibration RMSPROP

∇f(θ) ≈ H∆θ



EXPERIMENTAL VALIDATION

▸ We compare RMSProp, Jacobi and 
equilibration on the task of training 
deep auto encoders following 
(Martens, 2010). 

▸ We evaluate on MNIST and 
CURVES. 

▸ The auto encoders have up to 10 
layers and millions of parameters.



RESULTS

▸ All preconditioning methods perform better than simple SGD 

▸ Equilibration performs better or at least as well as RMSProp 

▸ Equilibration outperforms Jacobi

MNIST CURVES



NEW DIRECTIONS

▸ Tensor methods (Janzamin et al, 2015) 

▸ Graduated optimization (Hazan et al, 
2015) 

▸ Preconditioned Spectral Descent 
(Carlson et al, 2015) 

▸  Stochastic Gradient Langevin 
Dynamics (Li et al, 2015) 

▸ Debunking the myth of bad local 
minima is stimulating the field of non-
convex optimization.



CONCLUSIONS

▸ High-dimensional loss surfaces do 
not suffer significantly from local 
minima. 

▸ Non-convex optimization methods 
must appropriately handle 
negative curvature. 

▸ RMSProp and equilibration can 
speed up SGD for non-convex 
problems by using the squared 
curvature.


