
Stat 212b: Topics in Deep Learning
Lecture 22

Joan Bruna
UC Berkeley

1

Review: Optimization in ML

• Online stochastic optimization adapts well to the needs
of large-scale ML optimization.
– Interplay of generalization, approximation and optimization error

[Bottou & Bousquet]

• First order methods can be accelerated by incorporating
momentum term.

2

From rate O(1/t) to rate O(1/t2) for smooth, convex problems

From rate O((1� c�1
)

t
) to rate O((1� c�1/2

)

t
) for smooth,

strongly convex problems.

Minimax optimal rates in the class of smooth,

convex (resp. strongly convex) class for first

order methods.

Generalization Error

• Recall

• With

• Q: How to modify our optimization in order to improve
generalization error?

3

�

⇤
= argmin

�
F (�) , optimal model ,

�

⇤
F = arg min

�2F
F (�) , optimal achievable model in F ,

�F,n = arg min

�2F
ˆFn(�) , optimal empirical model in F ,

e
�F,n = solution of our optimization of min

�2F
ˆFn(�) ,

F (�) = Ez⇠⇡f(z;�) . F̂n(�) =
1

n

X

in

f(zi;�) .

Review: Tikhonov Regularization

• Suppose we have the following inverse linear problem

•

•

4

min
x

ky �Axk2 , A 2 Rn⇥p

.

When p  rank(A), the system has unique solution

A

T (y �Ax) = 0) x

⇤ = (AT
A)�1

A

T
y = A

†
y .

A†
= (ATA)

�1AT
: Moore-Penrose pseudoinverse of A.

When p > rank(A), under-determined system.

Which solution to select?

min

Ax=y

hx,�xi , � : Tikhonov psd kernel.

Tikhonov proposed selecting the solution x

⇤
having

smallest norm k�1/2
xk:

• Limitations?
– Minimizing the L2 norm tends to spread out the weights. Lack of

sparsity in our predictions.
– In image applications, this tends to produce blurred estimates.
– We can regularize using different priors that favor sparsity (e.g.

Lasso).

– In machine learning, some models work better with L1 regularization
(e.g. Logistic Regression, [Ng,’04]).

5

Review: Tikhonov Regularization

Review: Algorithmic Stability vs Generalization

• We can interpret generalization as a form of stability of
our learning protocol.

• Expected Generalization error:

• Stability of a randomized algorithm:

6

[Bousquet, Elise↵], [Hardt, Recht, Singer]

A : (randomized) algorithm

S : (random) sample

A randomized algorithm A is ✏-uniformly stable if for all

datasets S,S0
di↵ering in at most one sample we have

sup
z

EA[f(�(A(S)); z)� f(�(A(S0)); z)]  ✏ .

✏gen = ES,A[Fn(�(A,S))� F (�(A,S))] ,

Review: Dropout [Hinton’12]

• The ridge regression replaced the empirical data
covariance by .
– This is equivalent as replacing data by

7

XTX XTX + �I

xi

as j ! 1.
x̃i,j = xi + ✏i,j , E✏i,j = 0, cov(✏i,j) = �I .

Review: Dropout [Hinton’12]

• The ridge regression replaced the empirical data
covariance by .
– This is equivalent as replacing data by

• Indeed,

8

XTX XTX + �I

xi

as j ! 1.

1

N

X

iN

1

J

X

jJ

(yi � hx̃i,j ,�i)2
J!1! 1

N

X

iN

E✏(yi � hxi,�i � h✏i,j ,�i)2

=
1

N

X

iN

(yi � hxi,�i)2 + �k�k2 = kY �X�k2 + �k�k2 .

x̃i,j = xi + ✏i,j , E✏i,j = 0, cov(✏i,j) = �I .

Review: Dropout [Hinton’12]

• The ridge regression replaced the empirical data
covariance by .
– This is equivalent as replacing data by

• Indeed,

• Q: to what extent one can regularize by adding noise to
the input? what noise distributions are appropriate?

9

XTX XTX + �I

xi

as j ! 1.

1

N

X

iN

1

J

X

jJ

(yi � hx̃i,j ,�i)2
J!1! 1

N

X

iN

E✏(yi � hxi,�i � h✏i,j ,�i)2

=
1

N

X

iN

(yi � hxi,�i)2 + �k�k2 = kY �X�k2 + �k�k2 .

x̃i,j = xi + ✏i,j , E✏i,j = 0, cov(✏i,j) = �I .

Review: Dropout [Hinton et al.’12]

• Given a deep model

• we consider the following noise distribution

10

�(x;⇥) = �K(�K�1(. . .�1(X;⇥1);⇥2) . . . ;⇥K)

�̃(x;⇥) = �K(bK�1 · �K�1(. . . (b1 · �1(b0 ·X;⇥1);⇥2) . . . ;⇥K) ,

b0, . . . , bK�1 Bernoulli p .

Review: Dropout [Hinton et al.’12]

• Given a deep model

• we consider the following noise distribution

• At test time, we approximate with .
• Typically, we choose
• Very robust, very efficient.
• Not clear why (yet).

11

�(x;⇥) = �K(�K�1(. . .�1(X;⇥1);⇥2) . . . ;⇥K)

�̃(x;⇥) = �K(bK�1 · �K�1(. . . (b1 · �1(b0 ·X;⇥1);⇥2) . . . ;⇥K) ,

b0, . . . , bK�1 Bernoulli p .

Eb�̃(x;⇥) �(x; p⇥)

p = 0.5 .

Dropout and Ensemble Methods

• Dropout performs a form of exponential ensemble of
tiny networks.
– Let be the total number of weights.

– For each given training sample, on average we have active
weights. Number of different configurations is

– At test time, we approximate the committee of these smaller
networks.

– Hinton argues that this fights feature “co-adaptation”: relying on
spurious, unreliable high-order dependencies within the data.

12

M =
KX

k=1

dim(⇥k)

pM

⇠
✓
M

pM

◆

Dropout and Adaptive Regularization

• [Wager et al’13] performed the first rigorous analysis of
Dropout in the context of Generalized Linear Models:

Dropout and Adaptive Regularization

• [Wager et al’13] performed the first rigorous analysis of
Dropout in the context of Generalized Linear Models:

14

Suppose response y given input features x 2 Rd

p(y|x,�) = p0(y) exp (yhx,�i �A(x,�)) , `(�) = � log p(y|x,�) .

Standard MLE �̂: �̂ = argmin
�

X

i

`
xi,yi(�) .

Dropout and Adaptive Regularization

• [Wager et al’13] performed the first rigorous analysis of
Dropout in the context of Generalized Linear Models:

15

Suppose response y given input features x 2 Rd

p(y|x,�) = p0(y) exp (yhx,�i �A(x,�)) , `(�) = � log p(y|x,�) .

Standard MLE �̂: �̂ = argmin
�

X

i

`
xi,yi(�) .

Noisy features: x̃i = ⌫(xi, ⇠i).

Regularized MLE estimation:

�̂ = argmin
�

X

i

E
⇠

`
⌫(xi,⇠),yi

(�) .

Dropout and Adaptive Regularization

• [Wager et al’13] performed the first rigorous analysis of
Dropout in the context of Generalized Linear Models:

• The latter can be rewritten as

16

Suppose response y given input features x 2 Rd

p(y|x,�) = p0(y) exp (yhx,�i �A(x,�)) , `(�) = � log p(y|x,�) .

Standard MLE �̂: �̂ = argmin
�

X

i

`
xi,yi(�) .

Noisy features: x̃i = ⌫(xi, ⇠i).

Regularized MLE estimation:

�̂ = argmin
�

X

i

E
⇠

`
⌫(xi,⇠),yi

(�) .

X

i

`
xi,yi(�) +R(�) , with R(�) =

X

i

E⇠A(x̃i,�)�A(xi,�) .

Dropout and Adaptive Regularization

• Taylor approximation of a non-linear moment:

17

Ef(X) = f(EX) + f 0(EX)E(X � EX) +
1

2
f 00(EX)E(X � EX)2 +O(|f 000|1)µ3(X)

⇡ f(EX) +
1

2
f 00(EX)var(X) .

Dropout and Adaptive Regularization

• Taylor approximation of a non-linear moment:

• Applying it to R, the authors show that dropout noise
performs adaptive regularization:

18

R(�) ⇡ �Tdiag(XTV (�)X)� ,
XTV (�)X : Fisher information

Ef(X) = f(EX) + f 0(EX)E(X � EX) +
1

2
f 00(EX)E(X � EX)2 +O(|f 000|1)µ3(X)

⇡ f(EX) +
1

2
f 00(EX)var(X) .

V (�)i,i = A

00(hxi,�i) .

Dropout and Adaptive Regularization

• Taylor approximation of a non-linear moment:

• Applying it to R, the authors show that dropout noise
performs adaptive regularization:

• In logistic regression, this becomes

• In contrast to additive noise

19

R(�) ⇡ �Tdiag(XTV (�)X)� ,
XTV (�)X : Fisher information

Ef(X) = f(EX) + f 0(EX)E(X � EX) +
1

2
f 00(EX)E(X � EX)2 +O(|f 000|1)µ3(X)

⇡ f(EX) +
1

2
f 00(EX)var(X) .

V (�)i,i = A

00(hxi,�i) .

R(�) ⇡ �

2(1� �)

X

i,j

pi(1� pi)x
2
i,j�

2
j .

R(�) ⇡ 1

2
�2k�k2

X

i

pi(1� pi) .

(some) Dropout open questions

• Analysis for deep networks
– Statistical dependency not only on input distribution but also on

parameters that we are learning

• Dropout vs Dropconnect vs Structured Dropconnect
– Activate/desactivate weights rather than neurons. Why/ How?

• Relationship with Bootstrap
– Can we use dropout to construct confidence intervals of network

predictions?

20

Objectives

• Batch Normalization

• Tensor Methods in Deep Learning
– [Cohen, Sharir, Shashua]
– [Haeffele & Vidal]
– [Janzamin, Sedghi, Anandkumar]

• …and beyond [next week, time permitting].
– Spin glasses and deep networks: [Choromaska et al],[Chaudhari et al]
– Alternative to gradient descent? [Zhang, Lee, Wainwright, Jordan]

21

Conditioning in Gradient Descent

• Suppose we want to learn a function using
gradient descent with respect to , e.g.

• We saw that gradient descent is sensitive to the
conditioning of the problem:

22

lkx� yk  krf(x)�rf(y)k  Lkx� yk

�(x;⇥)

⇥

f(⇥) = kY � �(X;⇥)k2 = kY �X⇥k2 .

Conditioning in Gradient Descent

• Suppose we want to learn a function using
gradient descent with respect to , e.g.

• We saw that gradient descent is sensitive to the
conditioning of the problem:

• It results that

23

lkx� yk  krf(x)�rf(y)k  Lkx� yk

�(x;⇥)

⇥

f(⇥) = kY � �(X;⇥)k2 = kY �X⇥k2 .

rf(⇥)�rf(⇥0) = XTX(⇥�⇥0)

Conditioning in Gradient Descent

• Suppose we want to learn a function using
gradient descent with respect to , e.g.

• We saw that gradient descent is sensitive to the
conditioning of the problem:

• It results that

• Thus, we may improve the conditioning by whitening

24

lkx� yk  krf(x)�rf(y)k  Lkx� yk

X̃ = ⌃�1/2(X � µ) .

�(x;⇥)

⇥

f(⇥) = kY � �(X;⇥)k2 = kY �X⇥k2 .

rf(⇥)�rf(⇥0) = XTX(⇥�⇥0)

µ = E(X) , ⌃ = E{(X � µ)(X � µ)T } ,

Conditioning in Gradient Descent

• Suppose we want to learn a function using
gradient descent with respect to , e.g.

• We saw that gradient descent is sensitive to the
conditioning of the problem:

• It results that

• More generally, gradient descent can be adaptively
conditioned, e.g. using Adagrad [Duchi et al.]
• Learning rates are adjusted per feature.

25

lkx� yk  krf(x)�rf(y)k  Lkx� yk

�(x;⇥)

⇥

f(⇥) = kY � �(X;⇥)k2 = kY �X⇥k2 .

rf(⇥)�rf(⇥0) = XTX(⇥�⇥0)

The non-stationary learning problem

• Suppose now a two-layer model

26

f(⇥1,⇥2) = kY �⇥2(⇢(⇥1X))k2 .

The non-stationary learning problem

• Suppose now a two-layer model

• By denoting , good conditioning for now
would require to whiten .

27

f(⇥1,⇥2) = kY �⇥2(⇢(⇥1X))k2 .

X̃ = ⇢(⇥1X) ⇥2

X̃

The non-stationary learning problem

• Suppose now a two-layer model

• By denoting , good conditioning for now
would require to whiten .

• Problem: depends on , thus its distribution is non-
stationary as the learning of progresses.
–

28

f(⇥1,⇥2) = kY �⇥2(⇢(⇥1X))k2 .

X̃ = ⇢(⇥1X) ⇥2

X̃

X̃ ⇥1

⇥1

⇥1 ⇥2

The non-stationary learning problem

• Suppose now a two-layer model

• By denoting , good conditioning for now
would require to whiten .

• Problem: depends on , thus its distribution is non-
stationary as the learning of progresses.

• Note that the role of and is not symmetric in the
learning (sequential learning).
–
–

29

f(⇥1,⇥2) = kY �⇥2(⇢(⇥1X))k2 .

X̃ = ⇢(⇥1X) ⇥2

X̃

X̃ ⇥1

⇥1

⇥1 ⇥2

⇥2 a↵ects r⇥1 through

cov{⇥2⇢(⇥1X),⇥2diag(⇢0(⇥1X))X}.

⇥1 a↵ects r⇥2 through cov(⇥1X).

The non-stationary learning problem

• This is an instance of covariate shift [Shimodaira,’00].

• So the training estimator is biased.

30

Training set: {xi, yi} with xi ⇠ q0(x).

Model: p(y|x, ✓) trained as

But tested with

✓

⇤
= argmin

✓

X

xi⇠q0(x)

� log p(y

i

|x
i

, ✓) ,

E
x⇠q1 � log p(y|x, ✓⇤) , with q1 6= q0 .

The non-stationary learning problem

• This is an instance of covariate shift [Shimodaira,’00].

• So the training estimator is biased.

• Q: How to compensate for this effect?
• Q: How to apply it to the setting of deep networks?

Coupling of parameters
31

Training set: {xi, yi} with xi ⇠ q0(x).

Model: p(y|x, ✓) trained as

But tested with

✓

⇤
= argmin

✓

X

xi⇠q0(x)

� log p(y

i

|x
i

, ✓) ,

E
x⇠q1 � log p(y|x, ✓⇤) , with q1 6= q0 .

Batch Normalization [Ioffe & Szegedy]

32

x0
x

1 =
�(
x

0 ;⇥
1)

x

2 =
�(
x

1 ;⇥
2)

x

3 =
�(
x

2 ;⇥
3)

Batch Normalization [Ioffe & Szegedy]

• Idea1: Standardize the output of each layer to mitigate ill-
conditioning.

• Idea 2: Do it continuously during training to avoid “internal
covariate shift”.

33

x0

x1 = �(x0;⇥1) x3 = �(x̂2;⇥3)

x1 x̃1

x̃1 = �̂1
�1 � (x1 � µ̂1)

x2 = �(x̃1;⇥2)
x̃2 = �̂2

�1 � (x2 � µ̂2)

x2 x̃2 x̃3

Batch Normalization [Ioffe & Szegedy]

• Idea1: Standardize the output of each layer to mitigate ill-
conditioning.

• Idea 2: Do it continuously during training to avoid “internal
covariate shift”.

• Idea 3: Restore the first two moments with explicit linear
layers.

34

x0

x1 = �(x0;⇥1)

x1

x̃1 = �̂1
�1 � (x1 � µ̂1) x̃2 = �̂2

�1 � (x2 � µ̂2)

x2x̃1 x̃2 x3

x̄1 = �1 � (x̃1 + �1)

x̄1

x2 = �(x̄1;⇥2)

x̄2 = �2 � (x̃2 + �2)

x̄2

x3 = �(x̄2;⇥3)

Batch Normalization [Ioffe & Szegedy]

• Idea1: Standardize the output of each layer to mitigate ill-
conditioning.

• Idea 2: Do it continuously during training to avoid “internal
covariate shift”.

• Idea 3: Restore the first two moments with explicit linear
layers.

35

x0

x1 = �(x0;⇥1)

x1

x̃1 = �̂1
�1 � (x1 � µ̂1) x̃2 = �̂2

�1 � (x2 � µ̂2)

x2x̃1 x̃2 x3

x̄1 = �1 � (x̃1 + �1)

x̄1

x2 = �(x̄1;⇥2)

x̄2 = �2 � (x̃2 + �2)

x̄2

x3 = �(x̄2;⇥3)

Standardized distribution

Batch Normalization [Ioffe & Szegedy]

• Forward Pass: Standardized by design.
• Backward Pass: maps standardized data.

Jacobians might have better condition number (why?)
36

x1 = �(x0;⇥1)
x̃1 = �̂1

�1 � (x1 � µ̂1) x̃2 = �̂2
�1 � (x2 � µ̂2)

x̄1 = �1 � (x̃1 + �1)

x2 = �(x̄1;⇥2)

x̄2 = �2 � (x̃2 + �2)

x3 = �(x̄2;⇥3)

x0 x1 x2x̃1 x̃2 x3
x̄1 x̄2

Standardized distribution

 1 2

D 2D 1

D i

 i

Batch Normalization

• Q: How to estimate mean and variance efficiently?

37

Empirical average over whole training unfeasible

µ̂ =
1

n

X

in

x(i) , �̂

2 =
1

n� 1

X

in

(x(i) � µ̂)2 .

Instead, we consider estimations using minibatches of m examples:

µ̂b =
1

m

X

im

x(b(i)) , �̂

2
b =

1

m� 1

X

im

(x(b(i)) � µ̂b)
2
.

Batch Normalization

• Q: How to estimate mean and variance efficiently?

• Since the estimators are also function of the parameters,
we must update the gradients:

38

Empirical average over whole training unfeasible

µ̂ =
1

n

X

in

x(i) , �̂

2 =
1

n� 1

X

in

(x(i) � µ̂)2 .

Instead, we consider estimations using minibatches of m examples:

µ̂b =
1

m

X

im

x(b(i)) , �̂

2
b =

1

m� 1

X

im

(x(b(i)) � µ̂b)
2
.

xi = �(x̄i�1;⇥i)

x̃i = �̂

�1
i � (xi � µ̂i)

) x̃i = �̃({x̄i�1,j}j2minibatch,⇥i) .

Batch Normalization

• Consequence 1: Much faster, more robust training
– Less sensitive to initizaliation of the parameters
– Simpler learning rate decay schemes.
– Effectively larger learning rates.

39

10K 20K 30K 40K 50K
0.7

0.8

0.9

1

Without BN
With BN

−2

0

2

−2

0

2

(a) (b) Without BN (c) With BN

Figure 1: (a) The test accuracy of the MNIST network
trained with and without Batch Normalization, vs. the
number of training steps. Batch Normalization helps the
network train faster and achieve higher accuracy. (b,
c) The evolution of input distributions to a typical sig-
moid, over the course of training, shown as {15, 50, 85}th
percentiles. Batch Normalization makes the distribution
more stable and reduces the internal covariate shift.

3 fully-connected hidden layers with 100 activations each.
Each hidden layer computes y = g(Wu+b)with sigmoid
nonlinearity, and the weights W initialized to small ran-
dom Gaussian values. The last hidden layer is followed
by a fully-connected layer with 10 activations (one per
class) and cross-entropy loss. We trained the network for
50000 steps, with 60 examples per mini-batch. We added
Batch Normalization to each hidden layer of the network,
as in Sec. 3.1. We were interested in the comparison be-
tween the baseline and batch-normalized networks, rather
than achieving the state of the art performance on MNIST
(which the described architecture does not).
Figure 1(a) shows the fraction of correct predictions

by the two networks on held-out test data, as training
progresses. The batch-normalized network enjoys the
higher test accuracy. To investigate why, we studied in-
puts to the sigmoid, in the original network N and batch-
normalized network Ntr

BN (Alg. 2) over the course of train-
ing. In Fig. 1(b,c) we show, for one typical activation from
the last hidden layer of each network, how its distribu-
tion evolves. The distributions in the original network
change significantly over time, both in their mean and
the variance, which complicates the training of the sub-
sequent layers. In contrast, the distributions in the batch-
normalized network are much more stable as training pro-
gresses, which aids the training.

4.2 ImageNet classification

We applied Batch Normalization to a new variant of the
Inception network (Szegedy et al., 2014), trained on the
ImageNet classification task (Russakovsky et al., 2014).
The network has a large number of convolutional and
pooling layers, with a softmax layer to predict the image
class, out of 1000 possibilities. Convolutional layers use
ReLU as the nonlinearity. The main difference to the net-
work described in (Szegedy et al., 2014) is that the 5 × 5
convolutional layers are replaced by two consecutive lay-
ers of 3 × 3 convolutions with up to 128 filters. The net-
work contains 13.6 · 106 parameters, and, other than the
top softmax layer, has no fully-connected layers. More

details are given in the Appendix. We refer to this model
as Inception in the rest of the text. The model was trained
using a version of Stochastic Gradient Descent with mo-
mentum (Sutskever et al., 2013), using the mini-batch size
of 32. The trainingwas performed using a large-scale, dis-
tributed architecture (similar to (Dean et al., 2012)). All
networks are evaluated as training progresses by comput-
ing the validation accuracy @1, i.e. the probability of
predicting the correct label out of 1000 possibilities, on
a held-out set, using a single crop per image.
In our experiments, we evaluated several modifications

of Inception with Batch Normalization. In all cases, Batch
Normalization was applied to the input of each nonlinear-
ity, in a convolutional way, as described in section 3.2,
while keeping the rest of the architecture constant.

4.2.1 Accelerating BN Networks

Simply adding Batch Normalization to a network does not
take full advantage of our method. To do so, we further
changed the network and its training parameters, as fol-
lows:
Increase learning rate. In a batch-normalized model,

we have been able to achieve a training speedup from
higher learning rates, with no ill side effects (Sec. 3.3).
Remove Dropout. As described in Sec. 3.4, Batch Nor-

malization fulfills some of the same goals as Dropout. Re-
moving Dropout from Modified BN-Inception speeds up
training, without increasing overfitting.
Reduce the L2 weight regularization. While in Incep-

tion an L2 loss on the model parameters controls overfit-
ting, in Modified BN-Inception the weight of this loss is
reduced by a factor of 5. We find that this improves the
accuracy on the held-out validation data.
Accelerate the learning rate decay. In training Incep-

tion, learning rate was decayed exponentially. Because
our network trains faster than Inception, we lower the
learning rate 6 times faster.
Remove Local Response Normalization While Incep-

tion and other networks (Srivastava et al., 2014) benefit
from it, we found that with Batch Normalization it is not
necessary.
Shuffle training examples more thoroughly.We enabled

within-shard shuffling of the training data, which prevents
the same examples from always appearing in a mini-batch
together. This led to about 1% improvements in the val-
idation accuracy, which is consistent with the view of
Batch Normalization as a regularizer (Sec. 3.4): the ran-
domization inherent in our method should be most bene-
ficial when it affects an example differently each time it is
seen.
Reduce the photometric distortions. Because batch-

normalized networks train faster and observe each train-
ing example fewer times, we let the trainer focus on more
“real” images by distorting them less.

6

5M 10M 15M 20M 25M 30M
0.4

0.5

0.6

0.7

0.8

Inception
BN−Baseline
BN−x5
BN−x30
BN−x5−Sigmoid
Steps to match Inception

Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.

Model Steps to 72.2% Max accuracy
Inception 31.0 · 106 72.2%
BN-Baseline 13.3 · 106 72.7%
BN-x5 2.1 · 106 73.0%
BN-x30 2.7 · 106 74.8%

BN-x5-Sigmoid 69.8%

Figure 3: For Inception and the batch-normalized
variants, the number of training steps required to
reach the maximum accuracy of Inception (72.2%),
and the maximum accuracy achieved by the net-
work.

4.2.2 Single-Network Classification

We evaluated the following networks, all trained on the
LSVRC2012 training data, and tested on the validation
data:
Inception: the network described at the beginning of

Section 4.2, trained with the initial learning rate of 0.0015.
BN-Baseline: Same as Inception with Batch Normal-

ization before each nonlinearity.
BN-x5: Inception with Batch Normalization and the

modifications in Sec. 4.2.1. The initial learning rate was
increased by a factor of 5, to 0.0075. The same learning
rate increase with original Inception caused the model pa-
rameters to reach machine infinity.
BN-x30: Like BN-x5, but with the initial learning rate

0.045 (30 times that of Inception).
BN-x5-Sigmoid: Like BN-x5, but with sigmoid non-

linearity g(t) = 1
1+exp(−x) instead of ReLU. We also at-

tempted to train the original Inception with sigmoid, but
the model remained at the accuracy equivalent to chance.
In Figure 2, we show the validation accuracy of the

networks, as a function of the number of training steps.
Inception reached the accuracy of 72.2% after 31 · 106
training steps. The Figure 3 shows, for each network,
the number of training steps required to reach the same
72.2% accuracy, as well as the maximum validation accu-
racy reached by the network and the number of steps to
reach it.
By only using Batch Normalization (BN-Baseline), we

match the accuracy of Inception in less than half the num-
ber of training steps. By applying the modifications in
Sec. 4.2.1, we significantly increase the training speed of
the network. BN-x5 needs 14 times fewer steps than In-
ception to reach the 72.2% accuracy. Interestingly, in-
creasing the learning rate further (BN-x30) causes the
model to train somewhat slower initially, but allows it to
reach a higher final accuracy. It reaches 74.8% after 6·106
steps, i.e. 5 times fewer steps than required by Inception
to reach 72.2%.
We also verified that the reduction in internal covari-

ate shift allows deep networks with Batch Normalization

to be trained when sigmoid is used as the nonlinearity,
despite the well-known difficulty of training such net-
works. Indeed, BN-x5-Sigmoid achieves the accuracy of
69.8%. Without Batch Normalization, Inception with sig-
moid never achieves better than 1/1000 accuracy.

4.2.3 Ensemble Classification

The current reported best results on the ImageNet Large
Scale Visual Recognition Competition are reached by the
Deep Image ensemble of traditional models (Wu et al.,
2015) and the ensemble model of (He et al., 2015). The
latter reports the top-5 error of 4.94%, as evaluated by the
ILSVRC server. Here we report a top-5 validation error of
4.9%, and test error of 4.82% (according to the ILSVRC
server). This improves upon the previous best result, and
exceeds the estimated accuracy of human raters according
to (Russakovsky et al., 2014).
For our ensemble, we used 6 networks. Each was based

on BN-x30, modified via some of the following: increased
initial weights in the convolutional layers; using Dropout
(with the Dropout probability of 5% or 10%, vs. 40%
for the original Inception); and using non-convolutional,
per-activation Batch Normalization with last hidden lay-
ers of the model. Each network achieved its maximum
accuracy after about 6 · 106 training steps. The ensemble
prediction was based on the arithmetic average of class
probabilities predicted by the constituent networks. The
details of ensemble and multicrop inference are similar to
(Szegedy et al., 2014).
We demonstrate in Fig. 4 that batch normalization al-

lows us to set new state-of-the-art by a healthy margin on
the ImageNet classification challenge benchmarks.

5 Conclusion
We have presented a novel mechanism for dramatically
accelerating the training of deep networks. It is based on
the premise that covariate shift, which is known to com-
plicate the training of machine learning systems, also ap-

7

Batch Normalization

• Consequence 2: Better generalization

– State-of-the-art in Imagenet classification (ResNet).
– Key ingredient in recent GAN models.

40

Model Resolution Crops Models Top-1 error Top-5 error
GoogLeNet ensemble 224 144 7 - 6.67%
Deep Image low-res 256 - 1 - 7.96%
Deep Image high-res 512 - 1 24.88 7.42%
Deep Image ensemble variable - - - 5.98%
BN-Inception single crop 224 1 1 25.2% 7.82%
BN-Inception multicrop 224 144 1 21.99% 5.82%
BN-Inception ensemble 224 144 6 20.1% 4.9%*

Figure 4: Batch-Normalized Inception comparison with previous state of the art on the provided validation set com-
prising 50000 images. *BN-Inception ensemble has reached 4.82% top-5 error on the 100000 images of the test set of
the ImageNet as reported by the test server.

plies to sub-networks and layers, and removing it from
internal activations of the network may aid in training.
Our proposed method draws its power from normalizing
activations, and from incorporating this normalization in
the network architecture itself. This ensures that the nor-
malization is appropriately handled by any optimization
method that is being used to train the network. To en-
able stochastic optimization methods commonly used in
deep network training, we perform the normalization for
each mini-batch, and backpropagate the gradients through
the normalization parameters. Batch Normalization adds
only two extra parameters per activation, and in doing so
preserves the representation ability of the network. We
presented an algorithm for constructing, training, and per-
forming inference with batch-normalized networks. The
resulting networks can be trained with saturating nonlin-
earities, are more tolerant to increased training rates, and
often do not require Dropout for regularization.

Merely adding Batch Normalization to a state-of-the-
art image classification model yields a substantial speedup
in training. By further increasing the learning rates, re-
moving Dropout, and applying other modifications af-
forded by Batch Normalization, we reach the previous
state of the art with only a small fraction of training steps
– and then beat the state of the art in single-network image
classification. Furthermore, by combining multiple mod-
els trained with Batch Normalization, we perform better
than the best known system on ImageNet, by a significant
margin.

Interestingly, our method bears similarity to the stan-
dardization layer of (Gülçehre & Bengio, 2013), though
the two methods stem from very different goals, and per-
form different tasks. The goal of Batch Normalization
is to achieve a stable distribution of activation values
throughout training, and in our experiments we apply it
before the nonlinearity since that is where matching the
first and second moments is more likely to result in a
stable distribution. On the contrary, (Gülçehre & Bengio,
2013) apply the standardization layer to the output of the
nonlinearity, which results in sparser activations. In our
large-scale image classification experiments, we have not
observed the nonlinearity inputs to be sparse, neither with
nor without Batch Normalization. Other notable differ-

entiating characteristics of Batch Normalization include
the learned scale and shift that allow the BN transform
to represent identity (the standardization layer did not re-
quire this since it was followed by the learned linear trans-
form that, conceptually, absorbs the necessary scale and
shift), handling of convolutional layers, deterministic in-
ference that does not depend on the mini-batch, and batch-
normalizing each convolutional layer in the network.
In this work, we have not explored the full range of

possibilities that Batch Normalization potentially enables.
Our future work includes applications of our method to
Recurrent Neural Networks (Pascanu et al., 2013), where
the internal covariate shift and the vanishing or exploding
gradients may be especially severe, and which would al-
low us to more thoroughly test the hypothesis that normal-
ization improves gradient propagation (Sec. 3.3). We plan
to investigate whether Batch Normalization can help with
domain adaptation, in its traditional sense – i.e. whether
the normalization performed by the network would al-
low it to more easily generalize to new data distribu-
tions, perhaps with just a recomputation of the population
means and variances (Alg. 2). Finally, we believe that fur-
ther theoretical analysis of the algorithm would allow still
more improvements and applications.

References
Bengio, Yoshua and Glorot, Xavier. Understanding the
difficulty of training deep feedforward neural networks.
In Proceedings of AISTATS 2010, volume 9, pp. 249–
256, May 2010.

Dean, Jeffrey, Corrado, Greg S., Monga, Rajat, Chen, Kai,
Devin, Matthieu, Le, Quoc V., Mao, Mark Z., Ranzato,
Marc’Aurelio, Senior, Andrew, Tucker, Paul, Yang, Ke,
and Ng, Andrew Y. Large scale distributed deep net-
works. In NIPS, 2012.

Desjardins, Guillaume and Kavukcuoglu, Koray. Natural
neural networks. (unpublished).

Duchi, John, Hazan, Elad, and Singer, Yoram. Adaptive
subgradient methods for online learning and stochastic

8

Batch Normalization

• Some questions:
1. Combine forward normalization with backward
normalization possible? useful? i.e. ensure input gradients
to each layer are also normalized.

2. Particular to deep networks, or any “coupled” learning
model, i.e. where Lipschitz constants of
depend upon and viceversa?

3. Interplay with Dropout.
4. Better generalization explained by improved stability?

41

g⇥2(⇥1) = rf(⇥1,⇥2)

⇥2

Tensor Methods in Deep Learning

• Optimizing the training error with a generic deep
network is a non-convex problem.

• Consider a network of depth d with ReLU nonlinearities.
Seen as a function of its parameters ,
ressembles a homogeneous “piece-wise” polynomial:

42

⇥ �(x;⇥)

min
⇥

1

n

X

in

`(yi,�(xi;⇥)) +R(⇥) .

�(x;⇥) =
X

p

⇡(x;⇥)xp(1)

dY

j=1

⇥j
p(j) , ⇡(x;⇥) = {0, 1} .

⇥ = {⇥1, . . . ,⇥d} .

Tensor Methods in Deep Learning

• Optimizing the training error with a generic deep
network is a non-convex problem.

• Consider a network of depth d with ReLU nonlinearities.
Seen as a function of its parameters ,
ressembles a homogeneous “piece-wise” polynomial:

• The dependencies on are partly captured by the d-
order tensor

43

⇥ �(x;⇥)

min
⇥

1

n

X

in

`(yi,�(xi;⇥)) +R(⇥) .

�(x;⇥) =
X

p

⇡(x;⇥)xp(1)

dY

j=1

⇥j
p(j) , ⇡(x;⇥) = {0, 1} .

⇥ = {⇥1, . . . ,⇥d} .

⇥

⇥1 ⌦⇥2 · · ·⌦⇥d .

Tensor Methods

• Tensor factorizations are a broad class of non-convex
optimization problems.

44

min
⇥1,...,⇥d

F (Y, X(⇥1, . . . ,⇥d)) +R(⇥1, . . . ,⇥d) .

Tensor Methods

• Tensor factorizations are a broad class of non-convex
optimization problems.

• A particularly famous instance is the matrix factorization
problem:

– Low-rank factorizations (e.g. PCA)
– Sparse factorizations (Dictionary Learning, NMF)

45

min
⇥1,...,⇥d

F (Y, X(⇥1, . . . ,⇥d)) +R(⇥1, . . . ,⇥d) .

min
U,V

`(Y, UV T) +R(U, V) , Y 2 Rn⇥m, U 2 Rn⇥d, V 2 Rm⇥d .

Motivation: Matrix factorization

• Example: low-rank factorization.

– When OK
– We can lift the problem and relax the constraint:

– Factorized and relaxed formulations are connected via a variational
principle:

• Q: General case?

46

min
U,V

`(Y, UV T) , s.t. rank(UV T)  r .

`(Y,X) = kY �Xk
op

, `(Y,X) = kY �Xk
F

min
X

`(Y,X) + �kXk⇤ , kXk⇤ = Nuclear norm of X.

kXk⇤ = min
UV T=X

1

2
(kUk2F + kV k2F) .

Tensor Norms [Bach, Haeffele&Vidal]

• A first generalization is the tensor norm

• This produces an optimality certificate: we use a surrogate
convex problem to obtain a guarantee that a non-convex
problem is solved optimally.

47

kXku,v = inf
r

min
UV T=X

1

2

X

i

kUik2u + kVik2v

!
.

Theorem [H-V]: A local minimizer of the factorized problem

minU,V `(Y, UV T
) + �

P
ir kUikukVikv

such that for some i Ui = Vi = 0 is a global minimizer of the

convex problem minX `(Y,X) + �kXku,v as well as

the factorized problem.

From Tensor Factorizations to Deep Nets

• We start by generalizing a multilinear mapping (tensor)
to homogeneous maps :

• We construct models by adding r copies of homogenous
maps:

• We consider

48

�(⇥1, . . . ,⇥d)

8 ⇥ , 8 ↵ � 0 , �(↵⇥1, . . . ,↵⇥d) = ↵s�(⇥1, . . . ,⇥d) .
s: degree of homogeneity.

�r(⇥
1, . . . ,⇥d) =

X

ir

�(⇥1
i , . . . ,⇥

d
i) .

Ex: ReLU ⇢(x) = max(0, x) is homogeneous of degree 1.

min
⇥1,...,⇥d

`(Y,�r(⇥
1, . . . ,⇥d)) + �R(⇥1, . . . ,⇥d) ,

Key assumption: R is positively homogeneous of the same degree as �.

From Tensor Factorizations to Deep Nets

49

�r(⇥
1, . . . ,⇥d) =

rX

i=1

�(⇥1, . . . ,⇥d) .

Matrices:
�(U, V) = UV T =

rX

i=1

UiV
T
i (�(Ui, Vi) = UiV

T
i) .

Higher-order Tensors:

CHAPTER 4. GENERALIZED FACTORIZATIONS

X

1
1

X

3
1 X

3
2 X

3
r

X

2
1 X

2
2 X

2
r

X

1
2 X

1
r

r

�(X1 32
, X ,X)r

d1

d2 d3

r r r

X

1
X

2
X

3

d1 d2 d3

Figure 4.2: Rank-r CP decomposition of a 3rd order tensor.

(where ⌦ denotes the tensor outer product) results in �r(X1, . . . , XK) being the

mapping used in the rank-r CANDECOMP/PARAFAC (CP) tensor decomposition

model [29], which is visualized for a 3rd order tensor in figure 4.2. Further, instead

of choosing � to be a simple outer product, we can also generalize this to be any

multilinear function of the factor slices (X1
i , . . . , X

K
i). For example, the output could

be formed by taking convolutions between the factor slices. We note that more

general tensor decompositions, such as the general form of the Tucker decomposition,

do not explicitly fit inside the framework we describe here; however, by using similar

arguments to the ones we will develop here, it is possible to show analogous results to

those we derive in this paper for more general tensor decompositions, and we briefly

discuss these extensions in section 4.6.2.

98

figure credit:
R. Vidal

�(⇥1
i , . . . ,⇥

d
i) = ⇥1

i ⌦ · · ·⌦⇥d
i .

Candecomp/Parafac (CP) Tensor decomposition.

Adaptation to Deep Models
•

50

ReLU Network:

CHAPTER 4. GENERALIZED FACTORIZATIONS

V �4

X

1
1 X

3
1 X

4
1X

2
1�(, , ,)

X

1
4 X

3
4 X

4
4X

2
4�(, , ,)

X

1
X

3
X

4
X

2(, , ,)

X

1
1 X

3
1 X

4
1X

2
1

X

1
4 X

3
4 X

4
4X

2
4

V

X

1
1 X

2
1

X

1
4 X

2
4

�4(X1
, X

2)

Σ
0

ReLU Network with One Hidden Layer

Rectified Linear Unit (ReLU)

Multilayer ReLU
Parallel Network

Figure 4.3: Example ReLU networks. (Left panel) ReLU network with a single hidden
layer with the mapping described by the equation in (4.10) with (r = 4, d1 = 3, d2 =
2). Each color corresponds to one element of the elemental mapping �(X1

i , X
2
i). The

colored hidden units have rectifying non-linearities, while the black units are linear.
(Right panel) Multilayer ReLU network with 4 fully connected parallel subnetworks
(r=4) with elemental mappings defined by (4.11) with (d1 = 5, d2 = 3, d3 = 5, d4 =
1, d5 = 2). Each color corresponds to the subnetwork described by one element of the
elemental mapping �(X1

i , X
2
i , X

3
i , X

4
i).

the hidden layer units. In this case, the network has the architecture that there are r,

4 layer fully-connected subnetworks, with each subnetwork having the same number

of units in each layer as defined by the dimensions {d2, d3, d4}. The r subnetworks

are all then fed into a fully connected linear layer to produce the output. This is

visualized in figure 4.3 for (d1, d2, d3, d4, d5) = (5, 3, 5, 1, 2) and with r = 4.

More general still, since any positively homogenous transformation is a potential

elemental mapping, by an appropriate definition of �, one can describe neural net-

works with very general architectures, provided the non-linearities in the network are

compatible with positive homogeneity (ReLUs are one example, but non-linearities

100

figure credit:
R. Vidal

X

⇥1 ⇥2

�(⇥1,⇥2)
�(⇥1, . . . ,⇥d) =

X

i

�(⇥1
i , . . . ,⇥

d
i) .

Adaptation to Deep Models

• In the matrix case, the variational principle was

• This is generalized to

•

51

kXku,v = min
UV T=X

X

ir

kUikukVikv .

R(⇥) = min
⇥1,...,⇥d

X

ir

g(⇥1
i , . . . ,⇥

d
i) , s.t. �r(⇥

1, . . . ,⇥d) = ⇥ .

Proposition [H-V]: R is convex.

Also, if g is positively homogeneous of degree s, so is R.

Adaptation to Deep Models

• Global optimality certificate for a broad class of non-
convex optimization problems, including some form of
deep learning architectures.

• Q: How to use this certificate in practice?

52

Theorem [H-V]: A local minimizer of the factorized problem

min⇥k `(Y,
P

ir �r(⇥k
i)) + �

P
ir g(⇥

k
i)

such that for some i and all k ⇥

k
i = 0 is a global

minimizer for both factorized problem and the

convex formulation

min⇥ `(Y,⇥) + �R(⇥).

Adaptation to Deep Models

• Pros
– Global optimality certificate, easy to check
– Inclues nonlinear models as long as they are homogeneous.
– Provides a possible meta-algorithm: increase the lifting value r

progressively is local optimum does not very condition.

• Cons
– How much do we need to increase r in practice?
– How stringent is the homogenous regularization condition?

53

