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Review: Optimization in ML

* Online stochastic optimization adapts well to the needs
of large-scale ML optimization.

—Interplay of generalization, approximation and optimization error
[Bottou & Bousquet]

momen

e First order mef

‘um te

thods can be accelerated by incorporating

CM.

From rate O(1/t) to rate O(1/t?) for smooth, convex problems

From rate O((1 — ck™ 1)) to rate O((1 — ck~1/2)!) for smooth,
strongly convex problems.

Minimax optimal rates in the class of smooth,
convex (resp. strongly convex) class for first

order me

thods.



~ Generalization Error

e Recall

" = arg mqin F(®) , optimal model ,

b7 = arg qIPel?__ F(®) , optimal achievable model in F ,

O r ., = arg glig Fn(CID) , optimal empirical model in F
c

ED;,n = solution of our optimization of gli?__ £, (®)
-
* With
A 1
F(I):‘EZNWfZ;(I) ' Frp(®) = — i P) .
(@) 50 (@)=~ 3 flei)

1<n

* Q: How to modify our optimization in order to improve
oeneralization error?



* Suppose we have the following inverse linear problem

min ||y — Azx||*, A € R"*P .
X

e When p < rank(A), the system has unique solution

Al (y —Az) =0= 2" = (AT A) 1Ay = Aly .
AT = (AT A)~t AT Moore-Penrose pseudoinverse of A.

e When p > rank(A), under-determined system.
Which solution to select?

Tikhonov proposed sel

smallest norm [|T'%/2z||:

ecting the solution ™ having

min (x,['x) , I' : Tikhonov psd kernel.

Ax=y
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* Limrtations?
—Minimizing the L2 norm tends to spread out the weights. Lack of
sparsity In our predictions.
—In image applications, this tends to produce blurred estimates.

—We can regularize using different priors that favor sparsity (e.g.
Lasso).

—In machine learning, some models work better with LI regularization
(e.g. Logistic Regression, [Ng,04]).



Review: Algorithmic Stability vs Generalization
‘Bousquet, Eliseff]|, [Hardt, Recht, Singer]

* We can interpret generalization as a form of stability of
our learning protocol.

* Expected Generalization error:
€gen = Es,a[Fn(P(4,5)) — F(®(A,5))] ,

A : (randomized) algorithm
S : (random) sample

* Stability of a randomized algorithm:

A randomized algorithm A is e-uniformly stable if for all
datasets 5,5 differing in at most one sample we have

sup E4[f((A(S)); 2) — f(R(A(S)); 2)] < e .

Z
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* [ he ridge regression replaced the empirical data
covariance X7 X by X' X + \I.

— This 1s equivalent as replacing data x; by
537;73' = X; + € “367;7]' — O, COV(Ei,j) =\ .

as 7 — oQ.



~ Review:

* [ he ridge regression replaced the empirical data
covariance X7 X by X' X + \I.

— This 1s equivalent as

replacing data x; by

Tij = Ty -+ €5 “367;,]' — O,COV(E@J) =\ .

as 7 — oQ.

-Indeed

e S S (g BT Y Bl — (i, )

<N j<J

AT Z Yi — xz»

7,<N

i<N

CHABIT = 1Y = XBIF + MBI

<€i,j7 6>)2



* [ he ridge regression replaced the empirical data
covariance XTx by X1 X + I

— This Is equivalent as replacing data x; by

Tij = Ty -+ €5 “367;,]' — O,COV(E@J) =\ .

as 7 — oQ.
°Indeed
J— 00 1 .
_Z Z — (203, 80)* "= = D Be(yi — (@i, B) — {ei g, B))°
<N j<J 1<N
—Z yi — (@i, B))% + ABI12 = Y = X8|+ AlIB]1% -
<N

» Q:to what extent one can regularize by adding noise to
the Input! what noise distributions are appropriate?
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* Given a deep model
®(2;0) = o (Pr—1(-.. 91(X;01);02)...;Ok)
we consider the following noise distribution

~

(I)(ZIZ‘,@) — ¢K(bK—1 y QbK—l(- .. (bl y ¢1(bo y X;@l);@g) .. .;@K) ]

bo,...,brx—_1 Bernoulli p .



* Given a deep model
®(2;0) = o (Pr—1(-.. 91(X;01);02)...;Ok)
we consider the following noise distribution

~S

(I)(.CIZ‘,@) — ¢K(bK—1 y ¢K—1(- .. (bl y ¢1(b0 y X;@l);@g) .. .;@K) ]

bo,...,brx—_1 Bernoulli p .

* At test time, we approximate E,®(z; ©) with ®(x;p0©).

* lypically, we choose p = 0.5 .
* Very robust, very efficient.
* Not clear why (yet).



Dropout performs a form of exponential ensemble of
tiny networks.
—Let ar — Z dim(0},) be the total number of weights.

k=1
—For each given training sample, on average we have pM active
welights. Number of different configurations is ( M >

pM
— At test time, we approximate the committee of these smaller
networks.

—Hinton argues that this fights feature “co-adaptation™: relying on
spurious, unreliable high-order dependencies within the data.
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‘Wager et

| 3] performed the

Dropout |

irst rigorous analysis of

the context of Gene

ralized Linear Models:



* [Wager et al'| 3] performed the first rigorous analysis of
Dropout In the context of Generalized Linear Models:

Suppose response y given input features x € R?

p(yl|z, B) = po(y) exp (y(z, B) — A(x,B)) , £(B8) = —logp(yl|x, ) .
Standard MLE j: B = arg mgng%yz (B) .
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* [Wager et al'| 3] performed the first rigorous analysis of
Dropout In the context of Generalized Linear Models:

Suppose response y given input features x € R?

p(yl|z, B) = po(y) exp (y(z, B) — A(x,B)) , £(B8) = —logp(yl|x, ) .
Standard MLE j: B = arg mgng%yz (B) .

Noisy features: z; = v(x;,&;).

Regularized MLE estimation:
f = arg mﬁiﬂz Sy (21.6).0: () -
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Dropout and Adaptive Regularization

* [Wager et al'| 3] performed the first rigorous analysis of
Dropout In the context of Generalized Linear Models:

Suppose response y given input features x € R?

p(ylz, 8) = po(y) exp (y(z, B) — A(z, B)) , £(B) = —logp(y|z,B) .
Standard MLE j: B = arg mﬁmZE%yz (B) .

Noisy features: z; = v(x;,&;).

Regularized MLE estimation:
— arg mmz Cely (2. 6); (B) -

e [he latter can be rewritten as

S ey (B) + R(B) , with R(B) =Y EeA(7;, 8) — Az, 5)

1
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* Taylor approximation of a non-linear moment:
Ef(X) = (EX) + f/(EX)E(X — EX) + o /" (EX)E(X — EX)? + ("] )ts(X)

~ f(EX) + % £(EXvar(X)



* Taylor approximation of a non-linear moment:
Ef(X) = (EX) + f/(EX)E(X — EX) + o /" (EX)E(X — EX)? + ("] )ts(X)

~ f(EX) + % £(EX)var(X) .

* Applying it to R, the authors show that dropout noise
performs adaptive regularization:

R(B) ~ " diag(X" V(8)X)8 ,
XTV(B)X : Fisher information V(8);; = A" ({x;,8)) .



Dropout and Adaptive Regularization

* Taylor approximation of a non-linear moment:
Ef(X) = f(EX) + ['(EX)E(X — EX) + 3 f'(EX)E(X — EX)? + O f""|so)us(X)
~ f(EX) + % £(EX)var(X) .

* Applying it to R, the authors show that dropout noise
performs adaptive regularization:

R(B) = B diag(X" V(B)X)5 ,
XTV(B)X : Fisher information V(8);; = A" ({x;,5)) .
* In logistic regressmn th|s becomes
R(3 sz (1 —pi)i ;35 .
* [n contrast to addltlve no'

R(B) ~ %ﬁwwzp@ 1-p).




* Analysis for deep networks

— Statistical dependency not only on input distribution but also on
parameters that we are learning

* Dropout vs

Dropconnect vs Structured

Dropconnect

— Activate/desactivate weights rather than neurons. Why/ How!?

* Relationship with Bootstrap

— Can we use dropout to construct confidence intervals of network

predictions!
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_Objectives

e Batch Normalization

* [ensor Methods In Deep Learning
—[Cohen, Sharir, Shashua]

—[Haeftele & Vidal]
—[Janzamin, Sedghi, Anandkumar]

* ...and beyond [next week, time permitting].

—Spin glasses and deep networks: [Choromaska et al],[Chaudhari et al]

— Alternative to gradient descent! [Zhang, Lee, Wainwright, Jordan]
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* Suppose we want to learn a function ®(x; ©) using
oradient descent with respect to 9, e.g.

f(©) =Y - (X;0)[° =Y — XOl* .

* We saw that gradient descent Is sensitive to the

conditioning of the pro

dlem:

Hr -yl <||Vf(x) = Vi) < Ljlz -y
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* Suppose we want to learn a function ®(x; ©) using
oradient descent with respect to 9, e.g.

f(©) =Y - (X;0)[° =Y — XOl* .

* We saw that gradie
conditioning of the

e [t results that

Nt descent Is sensitive to the

DO

dlem:

Hr -yl <||Vf(x) = Vi) < Ljlz -y

Vf(©)-Vf(O)=X X(©-6
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Conditioning in Gradient Descent

* Suppose we want to learn a function ®(x; ©) using
oradient descent with respect to 9, e.g.

f(©) =Y - (X;0)[° =Y — XOl* .

* We saw that gradient

conditioning of the p

e [t results that

O

descent Is sensitive to the

dlem:

Hr -yl <||Vf(x) = Vi) < Ljlz -y

Vf(O)-VfO)=X'X(6-06)
* [hus, we may improve the conditioning by whitening
p=EX), D=E{(X —p)(X —p)"},

~

X ="YX —-p).
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Conditioning in Gradient Descent

* Suppose we want to learn a function ®(x; ©) using
oradient descent with respect to 9, e.g.

f(©) =Y - (X;0)[° =Y — XOl* .

* We saw that gradient

conditioning of the p

e [t results that

O

descent Is sensitive to the

dlem:

Hr -yl <||Vf(x) = Vi) < Ljlz -y

Vf(©)-Vf(O)=X"X(©-0)

* More generally, gradient descent can be adaptively

conditioned, e.g. using Adagrad [Duchi et al ]

* Learning rates are adjusted per feature.
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* Suppose now a two-layer model
f(©1,02) = [|[Y — O2(p(01X))|" .



* Suppose now a two-layer model

f(©1,02) = |[Y — O2(p(01X))]* .

* By denoting X = p(0,X), good conditioning for ©2 now
would require to whiten X .



* Suppose now a two-layer model
f(©1,02) = [|[Y — O2(p(0:1X))|* .

* By denoting X = p(0,X), good conditioning for ©2 now
would require to whiten X .

* Problem: X depends on ©1, thus its distribution is non-
stationary as the learning of ©1 progresses.

o @1 @2
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The non-stationary learning problem

* Suppose now a two-layer model
f(©1,02) = [|[Y — O2(p(0:1X))|* .

* By denoting X = p(0,X), good conditioning for ©2 now
would require to whiten X .

* Problem: X depends on ©1, thus its distribution is non-
stationary as the learning of ©1 progresses.

* Note that the role of ©; and ©5 Is not symmetric in the
earning (sequential learning).
— 0, affects VO5 through cov(©:X).

— O affects VO, through
cov{O2p(01X ), Ozdiag(p' (01 X)) X }.
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* This Is an instance of covariate shift [Shimodaira,00].

Training set: {x;,y;} with x; ~ qo(x).
Model: p(y|x,d) trained as

0" = argmm Z —log p(y;|x:,0) ,

But tested with zi~qo(2)
4333qu o lng(y‘Q?,(g*) 9 with d1 # qdo -

* S0 the training estimator Is biased.

30



The non-stationary learning problem

* This Is an instance of covariate shift [Shimodaira,00].
Training set: {x;,y;} with x; ~ qo(x).
Model: p(y|x,d) trained as
0" = argmm Z —log p(yi|x4,0) ,

But tested with zi~q0()
{"QZNC]l o lng(y‘CE',(g*) 9 with d1 # qdo -

* S0 the training estimator Is biased.

* Q: How to compensate for this effect?

* Q: How to apply It to the setting of deep networks!
Coupling of parameters
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T3
r1 = ¢(Qj ;@1) Ty = ¢(jj]17 @2) L3 = ¢(£2; @3)
T1 =01 O(@1—f1) T2=02 O (22— li2)

* |deal: Standardize the output of each layer to mitigate |ll-
conditioning.

* |dea 2: Do 1t continuously during training to avoid “internal
covariate shift’.
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_

T = <b($(i; O1) To = ¢(f%; O7)
T1 =01 ®~($1—,L51) To = 02 Q(l‘z—ﬂz)
T1 =M O (T1+ B1) To = A2 O (T2 + B2)

* |deal: Standardize the output of each layer to mitigate Ill-
conditioning.

* |dea 2: Do it continuously during training to avoid “internal
covariate shift”.

* |dea 3: Restore the first two moments with explicit linear
ayers.

34



~ Batch Normalization [loffe & Szegedy]
. Standardized dlstrlbItlon

xr1 = ¢($0; @1) To = ¢(fl; @2) L3 = ¢(£2; @3)
T 251_162(331 — ) Fo =0y O (wg — fid)
T1 =M O (21 + 51) Ty = A2 © (22 + B2)

* |deal: Standardize the output of each layer to mitigate ill-
conditioning.

* |dea 2: Do it continuously during training to avoid “internal
covariate shift”.

* |dea 3: Restore the first two moments with explicit linear
ayers.
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~ Batch Normalization [loffe & Szegedy]
~ Standardized distribution

DV, D5

< < <

r1 = ¢(QZ‘Q; @1) To = ¢(Zf1; @2) L3 = ¢(3_32; @3)
=01 O(r1— 1) Ta=0d2 O (z2— fin)
T1 =M O (T1+ B1) To = Ao @ (T2 + B2)

* Forward Pass: Standardized by design.

* Backward Pass: ¥; maps standardized data.
Jacoblans DWW, might have better condition number (why?)
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* Q: How to estimate mean and variance efficiently?

o1 A 1 N9
=D w00 = g D (@ — i)

1<n 1<n
Empirical average over whole training unfeasible

Instead, we consider estimations using minibatches of m examrg

1 ~ 2
Z Loy > 0% = —— > () — fiv)

z<m 1<m
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Batch Normalization

* Q: How to estimate mean and variance efficiently?

o1 A 1 N9
=D w00 = g D (@ — i)

1<n 1<n
Empirical average over whole training unfeasible

Instead, we consider estimations using minibatches of m examrg

1 ~ \2
Z Loy > 0% = —— > () — fiv)

'L<m 1<m

* Since the estimators are also function of the parameters,
we must update the gradients:

i = Q(Ti-1;0;)
515 —(3'_1 @(ZE@ —/ALZ)

~

- XI; = &({fi_l,j}jEminiba’ccha @’L) .
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* Consequence |: Much faster, more robust training
— Less sensitive to initizaliation of the parameters
—Simpler learning rate decay schemes.

— Effectively larger learning rates.

1

/7’, —= = = - - 2 I ] 2 W
09t 7
I
0.8 ,’ — — — Without BN
, With BN M
070K 20K 30K 40K 50K 2| | -21
(a) (b) Without BN (c) With BN
0.8
w - LSl S -
= = = Inception
''''' BN-Baseline
------- BN-x5
BN-x30

"+ BN-x5-Sigmoid
4 Steps to match Inception
| | |

1 1
10M 15M 20M 25M 30M




» Consequence 2: Better generalization

Model Resolution Crops Models Top-1 error Top-5 error
GoogleNet ensemble 224 144 7 - 6.67%
Deep Image low-res 256 - 1 - 7.96%
Deep Image high-res 512 - 1 24 .88 7.42%
Deep Image ensemble variable - - - 5.98%
BN-Inception single crop 224 1 1 25.2% 7.82%
BN-Inception multicrop 224 144 1 21.99% 5.82%
BN-Inception ensemble 224 144 6 20.1% 4.9 % *

— State-of-the-art in Imagenet classification (ResNet).
—Key ingredient in recent GAN models.
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Batch Normalization

e Some questions:

|. Combine forward normalization with backward
normalization possible? useful? 1.e. ensure input gradients
to each layer are also normalized.

2. Particular to deep networks, or any “coupled” learning

model, .e. w
depend upo

nere Lipschitz constants of ge,(©1) = V (01, 02)

N ©, and viceversa?

3. Interplay with Dropout.

4. Better generalization explained by improved stability?
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Tensor Methods In

Deep Learning

* Optimizing the training error with a generic deep
network Is a non-convex problem.

1
ménn; (y;, P(x

:0)) +R(O) .

» Consider a network of depth d with RelLU nonlineartties.
Seen as a function of its parameters © , ®(z;0)
ressembles a homogeneous ' piece-wise” polynomial

Zﬂ'x@ p(1>H@p(])’ a:@)—{() 1}

42
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Tensor Methods In Deep Learning

* Optimizing the training error with a generic deep
network Is a non-convex problem.

min - Uy, 8(2::0)) + R(O)

» Consider a network of depth d with RelLU nonlineartties.

Seen as a fu

nction of its parameters © , ®(z; ©)

ressembles a homogeneous ' piece-wise” polynomial

* [he depenc

Zﬂ'w@ p(1>H@p(])’ a:@)—{() 1}
0={6'. ..,0%.

encles on O are partly captured by the d-

order tenso

~ @1®@2®@d
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,min_ F(Y,Ux(©',...,0%)) +R(O,...,0%) .

e Tensor factorizations are a broad class of non-convex
optimization problems.
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,min_ F(Y,Ux(©',...,0%)) +R(O,...,0%) .

e Tensor factorizations are a broad class of non-convex
optimization problems.

* A particularly famous instance Is the matrix factorization
problem:

min (Y, UVTY+R(U, V), Y e R U e R V e R™*%

— Low-rank factorizations (e.g. PCA)
— Sparse factorizations (Dictionary Learning, NMF)
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* Example: low-rank factorization.

I(IJliélg(Y, UV?Y) | s.t. rank(UV*) <7 .
“When (Y, X) = [[Y = X[|op, £(Y,X) = Y — X]|| OK

—We can lift the problem and relax the constraint:

m)}né(Y,X) + A X[« | X ||« = Nuclear norm of X.

— Factorized and relaxed formulations are connected via a variational
principle:

1
[ X[l = min S(UlE+[VIE) -

e Q: General case!
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Tensor Norms [Bach, Haeffele&Vidal]

* A first generalization Is the tensor norm

. ]
X o = inf min (Z U2 + v) |

Theorem [H-V]: A local minimizer of the factorized problem
ming,y (Y, UV") + A3 7 o [[Uillul[Villo

such that for some ¢« U; = V; = 0 is a global minimizer of the
convex problem minx £(Y, X) + A|| X ||, as well as

the factorized problem.

* This produces an optimality certificate: we use a surrogate
convex problem to obtain a guarantee that a non-convex

problem s solved optimally.
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From lensor Factorizations to Deep Nets

* We start by generalizing a multilinear mapping (tensor)
to homogeneous maps ¢(01,...,0%);

VO,Va>0, ¢(a@l,...,a0% =a’p(0,...,0%) .

s: degree of homogeneity.

Ex: ReLU p(x) = max(0, x) is homogeneous of degree 1.

* We construct models by adding r copies of homogenous
T g0, 0 =Y ¢(el,...,09) .
1<r
* We consider
min /Y, ®,.(0%,...,0%) + \R(6',...,0%) ,

Key assumption: 7R is positively homogeneous of the same degree as ®.
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¢,.(0,...,00) =) ¢©',...,09.
1=1

Matrices:

QU V)=UV" =) UV (¢(U;,V;) = U V") .
i=1
X3
Higher-order Tensors: dl. d2. figure credit:
R. Vidal
d(X X%, X9 X3 e
/ p
L _SIISTNEIN
6(0},...,0)=0lx...0ef." L

Candecomp /Parafac (CP) Tensor decomposition.
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* ReLLU Network:

ReLU Network with One Hidden Layer
O

0'¥.0°
Rectified Linear Unit (ReLU)
> -

»(©", 0%

figure credit:
R.Vidal

! Multilayer ReLU
Parallel Network
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* [n the matrix case, the variational principle was

| Xl = min > [U;]u]Villo -

UVI=
1<r

* [his Is generalized to

R(©)= min » g¢(6;,...,07), st. ®,(0',...,01) =0 .

° Proposition [H-V]: R is convex.
Also, if g is positively homogeneous of degree s, so is K.
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Adaptation to Deep Models

Theorem [H-V]: A local minimizer of the factorized problem

mingr £(Y, ) <, ér(OF)) + A D i<y 9(07)

such that for some ¢ and all k ©F = 0 is a global
minimizer for both factorized problem and the
convex formulation

ming /(Y,0) + MR (O).

» Global optimality certificate for a broad class of non-
convex optimization problems, including some form of
deep learning architectures.

» Q: How to use this certificate in practice!

52



* Pros

— Global optimality certificate, easy to check

nclues nonlinear models as long as they are homogeneous.

Provides a possible meta-algorithm: increase the lifting value r

brogressively I1s local optimum does not very condition.

e Cons

ow much do we need to increase r In practice?

ow stringent Is the homogenous regularization condition?
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