Stat 21 2b: Topics In Deep Learning
Lecture 2|

Joan Bruna
UC Berkeley

IIIIIIIIIIIIIIIIIIIIII



* [Bottou & Bousquet '08] study four main rterative
algorithms In the large-scale learning regime:

— Gradient Descent

—Second Order Gradient Descent (1.e. Newton method)
— Stochastic Gradient Descent (SGD)

—Second Order Gradient Descent.

* Assumptions:
— Signal class F is fixed,

—linearly parametrized by w € R%: ®,,(z) = (®(z), w).
loss functions w +— £(®,,(x),y) convex and twice differentiable.



e Let H and G be respectively the Hessian and gradient covariance
matrices at the empirical optimum w,, = arg min,, F}, (P, ):
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e Let H and G be respectively the Hessian and gradient covariance
matrices at the empirical optimum w,, = arg min,, F}, (P, ):

H = %u};n (P, ) = %Z % é(q)g?fj?),%)
1 0Py (1), Yi) 0l( Py (), y;) d
e ( Ow > ( o ) |

* Suppose that
AH) C Mmins Amaz] 5 With Apmin > 0

tr(GH ) <v.

* Condition number: k£ = A\ a0/ Amin.



e When step size n = A}
to reach accuracy p (linear convergence).

Wi, = W — NV Frn (P, ) -

max’

O(rlog(p™1)) iterations

Cost per [terations Time to reach Time to reach
iteration | to reach p accuracy p F(®,) - F(®% <e
GD | O(nd) | O(klogp™) | O(ndrlogp™?) | O (d*ke=*log”(e™1))




Wiy = Wy — H_lvan(CI)wt) , H ™! known in advance.

Cost per Iterations Time to reach Time to reach
iteration to reach p accuracy p F(®,) — F(d% < e
GD O(nd) O(klogp™1) O(ndrlogp™1) O (d*ke~1/*log?(e™1))
2GD | O((n+d)d) | O(loglogp™") | O((n+ d)dloglogp™") | O (d*¢~'/“loglog(e~"!)log(e™!))

» Optimization s
* [he problem c

beed Is much faster

oes not depend on condition number.




Stochastic Gradient Descent (SGD)

e At each t, we draw random z; from training set.

W41 = Wy — ngf(q)w(zt)) :

e With n = A1 . we have ||[w; — wn|| = O(1//1).

man’

Cost per Iterations Time to reach Time to reach
iteration to reach p accuracy p F(®,) — F(®%) < ¢
GD O(nd) O(klogp™1) O(ndrlogp™1) O (d*ke~1/*log?(e™1))
2GD | O((n+d)d) | O(loglogp™) | O((n+d)dloglogp™!) | O (d*¢1/*loglog(e~1)log(e™1))
SGD | O(d) | ve’p~" +o(p™") O(%4) O(#)

* Optimization speed Is much worse than GD.

* However, learning speed Is better.




Second Order Stochastic Gradient Descent (25GD)

e At each ¢, we draw random z; from training set.

H~ 1
W1 = W — ——Vau [(Pulzt)) -
Cost per Iterations Time to reach Time to reach
iteration to reach p accuracy p F(®,) — F(®%) <e
GD O(nd) O(klogp™1) O(ndrlog p~1) O (ke 1/ *log?(e™1))

2GD | O((n+d)d) | O(loglogp™) | O((n+d)dloglogp™) | O (d*¢~1/“loglog(e~1)log(e™1))
SCD | O(d) [ wvw?p " +olp ) O(*2) O(#2)
2SGD O(d?) vp~t +o(pt) O(L2) O(Lx)

* [teration Is more expensive, but less Iterations.

 Constants are affected.




Objectives

e Accelerated Gradient Descent

* Regularization

—Weight Decay
— Dropout



* \We saw tha
convex func

steps:
Theorem: If

. Gradient Descent, when applied to smooth
lons, has a rate of convergencé/T" aftef

f is convex on R"™ and

for any =,y € R™ one has |V f(x) — Vf(y)|| < Bllx — vy ,
then the gradient descent with step n = 87! satisfies

. 28||z1 — argmin, f(z)]||?
f(2y) —min f(z) < P -
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* We saw that Gradient Descent, when applied to smooth
convex functions, has a rate of convergence 1/Tafter T
steps:

Theorem: If f is convex on R™ and

for any =,y € R™ one has |V f(x) — Vf(y)|| < Bllx — vy ,
then the gradient descent with step n = 87! satisfies

flzs) — min f(z) < 20lz1 — argmin, f(@)|®

T _ t+ 3

* Q: Can we improve this rate using only first order
information?
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Accelerated Gradient Descent

» Use a2 momentum term (Nesterov, 83):

1+\/1+4A§_1 1 — )\

)\Q:O,)\t: 9 s Yt =

At41

Yt+1 = Tt — %Vf(ﬂ?t) ;

Ter1 = (1 — %) Yer1 + VYt -

e Same complexity as Gradient descent.
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* But better provable convergence rate:

Theorem: (Nesterov 83) If f is convex on R" and
for any z,y € R" one has [|[Vf(z) = Vf(y)|| < Bllz —y| ,
then the accelerated gradient descent satisfies

|°

flye) — mxin f(x) < 2Bl ~ arg;minm /()
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* But better provable convergence rate:

Theorem: (Nesterov 83) If f is convex on R" and
for any z,y € R" one has [|[Vf(z) = Vf(y)|| < Bllz —y| ,
then the accelerated gradient descent satisfies
, 283||x1 — argmin, f(z)|?
f(y:) — min f(z) < | > @)l

e Q: Can we do better with a first order method?
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* Not in general:

Theorem: For any black-box optimization algorithm such that

Ts+1 € X1 +span{V f(z1),..., V[f(zs)}

and for any ¢t < (n — 1)/2, there exists f convex and S-smooth
such that

ming< /(@) min, f(z) > Cloegm I

» Second order methods (e.g. Newton) have access to
more Information: not concerned with this result.
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Interlude: Interpretation of Accelerated G.

. Nesterovs method is typically associated to a momentum
term:

1
Y41 — Ty — —Vf(ﬂ?t) ;
5
i1 = (1 — Y)yea1 + VeYs -

Tip1 — Ty = —Ve| Tt — Te—1] + %[Vf(il?t) — V f(zi-1)] .

%Vf(xt) -

Tir1 = —V¢Tt +
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Gradient Descent

Accelerated
Gradient Descent

fioure credit:
B. Recht [Simons’| 3]
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Gradient Descent

Accelerated
Gradient Descent

fioure credit:
B. Recht [simons’| 3]

* Q:Why does it work!?
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Interlude: Interpretation of Accelerated G.

L (ﬁ’om M. /—lardt)
. Suppose we want to minimize

1
f(x) = §ZISTA£B — bz

A € R™*"™ positive definite.

e [ts unique minimum is at z* = A~ 1b:
Vi) =0 Az =b.
e We run Gradient Descent starting at xg = 0 with step ¢:
Tri1 =Xk —tVf(zg) =1 —tA|lxg +tb .

e At iteration k£ we thus have

Tepr = | Y (I —tA) | (tb) .

<k
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_Interlude: Interpretation of Accelerated G.

jrom M. l—/ardt)
e Let 0 <[ < L < oo be the spectral bounds of

v, Hlzfl < [|Az]] < Lilz]] -

e = Eigenvalues of (I —tA) € (0,1)if t < L™1.

e [hus o
(tA) ' =[T— (I —tA)] =) (I—tAy
1(tA)~ — Z(I —tAY || = O(||(I — tA)"]]) = O((1 — %)k) .

* This corresponds to the rate of standard gradient

descent for strongly convex functions:
zp — 2| < (1= 2(k +1)71)"lwo — 27| -
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B \nte r\u | nterpretatlo n of Accelert G.
o M. {dardt)

* QQ: What is the best polynomial approximation in our setting?

e We are thus approximating (tA)~! with a polynomial g

for each £, min ||[I — Aqgr(A)|| .

dk
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_Interlude: Interpretation of Accelerated G.

o © —ard
e We are thus approximating (tA)~! with a polynomlal f ﬂ} /\é] ({egreez}g

* QQ: What is the best polynomial approximation in our setting?
for each £, min ||[I — Aqgr(A)|| .
dk

e A: Since A has eigenvalues in |[, L], and we need
qr(0) = 1, Chebyshev polynomials are optimal:

Lemma: There is a polynomial py of degree O(+/(L/1)log(e~1))
such that p(0) =1 and |px(x)| < € for all x € [, L].
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Interlude: Interpretation of Accelerated G.
e We are thus approximating (tA)~! with a polynomial g, (A) of degree k.

* QQ: What is the best polynomial approximation in our setting?

for each £, min ||[I — Aqgr(A)|| .

dk

e A: Since A has eigenvalues in |[, L], and we need

q1(0) = 1, Chebyshev polynomials are optimal:
Lemma: There is a polynomial py of degree O(+/(L/l)log(e=1))
such that p(0) =1 and |px(x)| < € for all x € [, L].

Moreover, p;. can be computed recursively from

previous two polynomials. It results that

Ll+1 — Tk -+ Oéka(ZEk) + 5ka($k_1) for suitable A, 5/4 :

gives a convergence rate ||z — z*|| = O(B*)

with 8 =1-2(yk+ 1) (“minimax” optimal)
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* Geometric optimization from [Bubeck et al. | | 5]
— Adaptation of the Ellipsoid Method

* ODE analysis from [Su, Boyd, Candes, | 4]

— Show that Nesterov accelerated gradient is the discretization of a
first-order ODE.
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* Stochastic Gradient improvements to recover better
convergence rate across many settings:

— Stochastic Average Gradient [Le Roux et al, 2012]
— Stochastic Dual Coordinate Ascent [Shalev-Shwarth et al, | 2]
— Stochastic Variance Reduced Gradient Descent [Johnson et al '| 3]

—elc...

* See [Bubeck, | 4] for an extensive treatment of convex
optimization.
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~ Generalization Error

e Recall

" = arg mqin F(®) , optimal model ,

b7 = arg qIPel?__ F(®) , optimal achievable model in F ,

O r ., = arg glig Fn(CID) , optimal empirical model in F
c

ED;,n = solution of our optimization of gli?__ £, (®)
-
* With
A 1
F(I):‘EZNWfZ;(I) ' Frp(®) = — i P) .
(@) 50 (@)=~ 3 flei)

1<n

* Q: How to modify our optimization in order to improve
oeneralization error?
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Popular Regularization Strategies

* [ikhonov regularization [ Tikhonov'43]

—aka ridge regression [Hoerl'62]

—aka Weight decay [krogh, hertz'91].
* Dropout [Hinton et al' [ 2]

* Lasso [ Tibshirani’95], LI regularization [Ng]

* Model averaging (ensemble methods)

—Bagging
—Boosting

—Bayesian ensembles

* "Computational’” Regularization

—See [Bach'| 3], [Less i1s More: Nystrom Computational Regularization,
Rudi et al'l 5].
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* Suppose we have the following inverse linear problem

min ||y — Azx||*, A € R"*P .
X

e When p < rank(A), the system has unique solution

Al (y —Az) =0= 2" = (AT A) 1Ay = Aly .
AT = (AT A)~t AT Moore-Penrose pseudoinverse of A.

e When p > rank(A), under-determined system.
Which solution to select?

Tikhonov proposed sel

smallest norm [|T'%/2z||:

ecting the solution ™ having

min (x,['x) , I' : Tikhonov psd kernel.

Ax=y
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e ' = Al : Ridge regression.

Let K = kerA and K= its orthogonal complement.

Then [|lz||* = || Pr|®

| Preox||?, and Ax = APy ..

Thus we project the solution onto the space K.

If A=USV' is the SVD of A, then

AT = VSU?t , Sii = & U

1

if s;;, > 0 ;
0 otherwise.

o (z,['x) :/\§\2|£(£)\2d§ . Sobolev Norm
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* Examples:
I'= Al : Ridge regression.

(2. T) / £215(6)|2dé : Sobolev Norm
* Lagrangian formulation:
1
min §H?J — Az|]? 4+ Mz, T'z)
Al (y — Az*) + X" =0 (ATA+ \D)z* = Ay

= o* = (ATA +2T) ATy
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« When I' = I, using again the SVD, the predictions become

p 2
§=Az* = AATA+ AT ATy =3 B ]
k=1 A+ Sk

— Shrinkage affects smaller empirical singular values than larger ones.

—Sample small eigenvectors/eigenvalues are more unreliable than
larger ones.

—In rank degenerate cases, the ridge kills the terms in the null space.
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* [n a simple linear learning setup, suppose

y = (x, ) + €, € zero mean. variance -

* Given training data {z;,y: }i<ny We optimize the loss
E(w) =Y — Xw|* + Mw|® , X = (z;) € R"** Y = (y;) € R

w* = (X' X+ )XY
* [ he generalization error is given by

(x,w") —y|* = B [(x, 8 — w")[* + *3e|€|2
= vl Y, v+0%. v=p —

4‘|
4T, €
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* By expressing X = USV?T. 3 =Ua we have
1

$%, + A

w*=X"Y =VS(Sa+e). Skk=

* S0 the generalization error becomes

(@, w*) —y|* = Z o + Sk .

-
4J

— (At sE,)?
* this has an optimum at \ — 022
E| x|

* Wiener filtering
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* Limrtations?
—Minimizing the L2 norm tends to spread out the weights. Lack of
sparsity In our predictions.
—In image applications, this tends to produce blurred estimates.

—We can regularize using different priors that favor sparsity (e.g.
Lasso).

—In machine learning, some models work better with LI regularization
(e.g. Logistic Regression, [Ng,04]).
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Stability vs Generalization
‘Bousquet, Eliseff]|, [Hardt, Recht, Singer]

* We can interpret generalization as a form of stability of
our learning protocol.

* Expected Generalization error:
€gen = Es,a[Fn(P(4,5)) — F(®(A,5))] ,

A : (randomized) algorithm
S : (random) sample

* Stability of a randomized algorithm:

A randomized algorithm A is e-uniformly stable if for all
datasets 5,5 differing in at most one sample we have

sup E4[f((A(S)); 2) — f(R(A(S)); 2)] < e .

Z
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Theorem [HBS’15]| If algorithm A is e-uniformly stable then

€gen < € .

* When Is Stochastic Gradient Descent uniformly stable?

e If loss f(-;2) is convex, has smooth gradients and is Lipschitz, then

T steps of SGD with step sizes ~; satisfies

Zth g

n
If loss f(-; z) is strongly convex, has smooth gradients

and is Lipschitz, then scaled SGD with constant step size satisfies

C

n

e < (C

€ <

36



Stability vs Generalization

* Stability increases mildly with iterations

e Optimization error decreases with terations

* Optimal tradeoffs can be studied In convex settings
* Results also extend to non-convex settings

—Partially explain why multiple epochs over the training have better
oeneralization.

* Stability-inducing operations/regularization

—Ridge regression improves stability constants.
— Dropout also improves the stability constants.

» Question: sharpness of results with respect to step size.
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* [ he ridge regression replaced the empirical data
covariance XTx by X1 X + I

— This Is equivalent as replacing data x; by

Tij = Ty -+ €5 “367;,]' — O,COV(E@J) =\ .

as 7 — oQ.
°Indeed
J— 00 1 .
_Z Z — (203, 80)* "= = D Be(yi — (@i, B) — {ei g, B))°
<N j<J 1<N
—Z yi — (@i, B))% + ABI12 = Y = X8|+ AlIB]1% -
<N

» Q:to what extent one can regularize by adding noise to
the Input! what noise distributions are appropriate?
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* Given a deep model
®(2;0) = o (Pr—1(-.. 91(X;01);02)...;Ok)
we consider the following noise distribution

~S

(I)(.CIZ‘,@) — ¢K(bK—1 y ¢K—1(- .. (bl y ¢1(b() y X;@l);@g) .. .;@K) ]

bo,...,brx—_1 Bernoulli p .

* At test time, we approximate E,®(z; ©) with ®(x;p0©).

* lypically, we choose p = 0.5 .
* Very robust, very efficient.
* Not clear why (yet).



Dropout performs a form of exponential ensemble of
tiny networks.
—Let ar — Z dim(0},) be the total number of weights.

k=1
—For each given training sample, on average we have pM active
welights. Number of different configurations is ( M >

pM
— At test time, we approximate the committee of these smaller
networks.

—Hinton argues that this fights feature “co-adaptation™: relying on
spurious, unreliable high-order dependencies within the data.
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Dropout and Adaptive Regularization

* [Wager et al'| 3] performed the first rigorous analysis of
Dropout In the context of Generalized Linear Models:

Suppose response y given input features x € R?

p(yl|z, B) = po(y) exp (y(z, B) — Az, B)) , £(B) = —logp(y|x, ) .
Standard MLE j: B = arg mﬁmZE%yz (B) .

Noisy features: z; = v(x;,&;).

Regularized MLE estimation:
— arg mmz Cely (2. 6); (B) -

e [he latter can be rewritten as

S ey (B) + R(B) , with R(B) =Y EeA(7;, 8) — Az, 5)

1
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By doing a laylor approximation of R, the authors show
that dropout noise performs adaptive regularization:

R(B) ~ B diag(X™ V(8)X)B
X1V (B)X : Fisher information




