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Iterative Optimization Algorithms

• [Bottou & Bousquet ’08] study four main iterative 
algorithms in the large-scale learning regime:
– Gradient Descent
– Second Order Gradient Descent (i.e. Newton method)
– Stochastic Gradient Descent (SGD)
– Second Order Gradient Descent. 

• Assumptions:
–  
–  
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Signal class F is fixed,

loss functions w 7! `(�w(x), y) convex and twice di↵erentiable.

linearly parametrized by w 2 Rd: �w(x) = h�(x), wi.



Iterative Optimization

•  
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Let H and G be respectively the Hessian and gradient covariance
matrices at the empirical optimum wn = argminw Fn(�w):
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Iterative Optimization

•  

• Suppose that 

•  
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Let H and G be respectively the Hessian and gradient covariance
matrices at the empirical optimum wn = argminw Fn(�w):
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Gradient Descent (GD)

•     
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wt+1 = wt � ⌘rwFn(�wt) .

When step size ⌘ = ��1
max

, O( log(⇢�1
)) iterations

to reach accuracy ⇢ (linear convergence).

Cost per Iterations Time to reach Time to reach

iteration to reach ⇢ accuracy ⇢ F (

˜

�n)� F (�

⇤
F < ✏

GD O(nd) O( log ⇢�1
) O(nd log ⇢�1

) O
�
d2✏�1/↵

log

2
(✏�1

)

�



Second Order Gradient Descent

• Optimization speed is much faster
• The problem does not depend on condition number.
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Cost per Iterations Time to reach Time to reach
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Stochastic Gradient Descent (SGD)

•   

•  

• Optimization speed is much worse than GD.
• However, learning speed is better.
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At each t, we draw random zt from training set.

wt+1 = wt �
⌘

t
rwf(�w(zt)) .

With ⌘ = ��1
min, we have kwt � wnk = O(1/

p
t).

Cost per Iterations Time to reach Time to reach

iteration to reach ⇢ accuracy ⇢ F (

˜

�n)� F (�

⇤
F ) < ✏

GD O(nd) O( log ⇢�1
) O(nd log ⇢�1

) O
�
d2✏�1/↵

log

2
(✏�1

)

�

2GD O((n+ d)d) O(log log ⇢�1
) O((n+ d)d log log ⇢�1

) O
�
d2✏�1/↵

log log(✏�1
) log(✏�1

)

�

SGD O(d) ⌫2⇢�1
+ o(⇢�1

) O(

d⌫2

⇢ ) O(

d⌫2

✏ )



Second Order Stochastic Gradient Descent (2SGD)

•   

• Iteration is more expensive, but less iterations.
• Constants are affected.
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At each t, we draw random zt from training set.

wt+1 = wt �
H�1

t
rwf(�w(zt)) .
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Objectives

• Accelerated Gradient Descent

• Regularization
– Weight Decay
– Dropout
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Accelerated Gradient Descent

• We saw that Gradient Descent, when applied to smooth 
convex functions, has a rate of convergence       after    
steps: 
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1/T T

Theorem: If f is convex on Rn

and

for any x, y 2 Rn

one has krf(x)�rf(y)k  �kx� yk ,

then the gradient descent with step ⌘ = �

�1
satisfies

f(x
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f(x)  2�kx1 � argmin
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f(x)k2

t+ 3

.



Accelerated Gradient Descent
• We saw that Gradient Descent, when applied to smooth 

convex functions, has a rate of convergence       after    
steps: 

• Q: Can we improve this rate using only first order 
information?
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1/T T

Theorem: If f is convex on Rn

and

for any x, y 2 Rn

one has krf(x)�rf(y)k  �kx� yk ,

then the gradient descent with step ⌘ = �

�1
satisfies
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Accelerated Gradient Descent
• Use a momentum term (Nesterov,’83):

• Same complexity as Gradient descent.
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�0 = 0 , �t =
1 +

q
1 + 4�2

t�1

2
, �t =

1� �t

�t+1
.

yt+1 = xt �
1

�

rf(xt) ,

xt+1 = (1� �t)yt+1 + �tyt .



Accelerated Gradient Descent

• But better provable convergence rate: 
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Theorem: (Nesterov 83) If f is convex on Rn

and

for any x, y 2 Rn

one has krf(x)�rf(y)k  �kx� yk ,

then the accelerated gradient descent satisfies

f(y
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.



Accelerated Gradient Descent

• But better provable convergence rate: 

• Q: Can we do better with a first order method?
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Theorem: (Nesterov 83) If f is convex on Rn

and

for any x, y 2 Rn

one has krf(x)�rf(y)k  �kx� yk ,

then the accelerated gradient descent satisfies

f(y
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Accelerated Gradient Descent
• Not in general:

• Second order methods (e.g. Newton) have access to 
more information: not concerned with this result. 
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Theorem: For any black-box optimization algorithm such that

x

s+1 2 x1 + span{rf(x1), . . . ,rf(x

s

)}
and for any t  (n� 1)/2, there exists f convex and �-smooth
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Interlude: Interpretation of Accelerated G.
• Nesterov’s method is typically associated to a momentum 

term:
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yt+1 = xt �
1

�

rf(xt) ,

xt+1 = (1� �t)yt+1 + �tyt .

xt+1 � xt = ��t[xt � xt�1] +
�t

�

[rf(xt)�rf(xt�1)] .

ẋt+1 = ��tẋt +
�t

�

ṙf(xt) .
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Interlude: Interpretation of Accelerated G.Interlude: Interpretation of Accelerated G.

figure credit:
B. Recht [Simons’13]

Gradient Descent
Accelerated 

Gradient Descent
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Interlude: Interpretation of Accelerated G.Interlude: Interpretation of Accelerated G.

figure credit:
B. Recht [simons’13]

Gradient Descent
Accelerated 

Gradient Descent

• Q: Why does it work?



• Suppose we want to minimize 

•  

•   

•  
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Interlude: Interpretation of Accelerated G.

f(x) =
1

2
x

T
Ax� b

T
x .

A 2 Rn⇥n
positive definite.

Its unique minimum is at x⇤ = A

�1
b:

rf(x) = 0 , Ax = b .

We run Gradient Descent starting at x0 = 0 with step t:

xk+1 = xk � trf(xk) = [I � tA]xk + tb .

At iteration k we thus have

xk+1 =

0

@
X

jk

(I � tA)j

1

A (tb) .

(from M. Hardt)



•  

•  
• Thus

• This corresponds to the rate of standard gradient 
descent for strongly convex functions:
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Interlude: Interpretation of Accelerated G.

Let 0 < l  L < 1 be the spectral bounds of A:

8 x , lkxk  kAxk  Lkxk .

(tA)�1 = [I � (I � tA)]�1 =
1X

j=0

(I � tA)j

k(tA)�1 �
kX

j=0

(I � tA)jk = O(k(I � tA)kk) = O((1� l

L
)k) .

kxk � x

⇤k  (1� 2(+ 1)�1)kkx0 � x

⇤k .

) Eigenvalues of (I � tA) 2 (0, 1) if t < L�1
.

(from M. Hardt)



•   
•  

•  
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Interlude: Interpretation of Accelerated G.
We are thus approximating (tA)

�1
with a polynomial qk(A) of degree k.

Q: What is the best polynomial approximation in our setting?

for each k , min

qk
kI �Aqk(A)k .

(from M. Hardt)



•   
•  

•  
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Interlude: Interpretation of Accelerated G.
We are thus approximating (tA)

�1
with a polynomial qk(A) of degree k.

Q: What is the best polynomial approximation in our setting?

for each k , min

qk
kI �Aqk(A)k .

A: Since A has eigenvalues in [l, L], and we need

qk(0) = 1, Chebyshev polynomials are optimal:

Lemma: There is a polynomial pk of degree O(

p
(L/l) log(✏�1

))

such that pk(0) = 1 and |pk(x)|  ✏ for all x 2 [l, L].

(from M. Hardt)



•   
•  

•  
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Interlude: Interpretation of Accelerated G.
We are thus approximating (tA)

�1
with a polynomial qk(A) of degree k.

Q: What is the best polynomial approximation in our setting?

for each k , min

qk
kI �Aqk(A)k .

A: Since A has eigenvalues in [l, L], and we need

qk(0) = 1, Chebyshev polynomials are optimal:

Lemma: There is a polynomial pk of degree O(

p
(L/l) log(✏�1

))

such that pk(0) = 1 and |pk(x)|  ✏ for all x 2 [l, L].

Moreover, pk can be computed recursively from

previous two polynomials. It results that

xk+1 = xk + ↵krf(xk) + �krf(xk�1) for suitable ↵k,�k .

gives a convergence rate kxk � x⇤k = O(�k
)

with � = 1� 2(

p
+ 1)

�1 (“minimax” optimal)



Other existing analysis

• Geometric optimization from [Bubeck et al. ,’15]
– Adaptation of the Ellipsoid Method

• ODE analysis from [Su, Boyd, Candes,’14]
– Show that Nesterov accelerated gradient is the discretization of a 

first-order ODE.
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Many other results

• Stochastic Gradient improvements to recover better 
convergence rate across many settings:
– Stochastic Average Gradient [Le Roux et al, 2012]
– Stochastic Dual Coordinate Ascent  [Shalev-Shwarth et al,’12]
– Stochastic Variance Reduced Gradient Descent [Johnson et al ’13]
– etc…

• See [Bubeck,’14] for an extensive treatment of convex 
optimization.
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Generalization Error

• Recall 

• With 

• Q: How to modify our optimization in order to improve 
generalization error?
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�

⇤
= argmin

�
F (�) , optimal model ,

�

⇤
F = arg min

�2F
F (�) , optimal achievable model in F ,

�F,n = arg min

�2F
ˆFn(�) , optimal empirical model in F ,

e
�F,n = solution of our optimization of min

�2F
ˆFn(�) ,

F (�) = Ez⇠⇡f(z;�) . F̂n(�) =
1

n

X

in

f(zi;�) .



Popular Regularization Strategies

• Tikhonov regularization [Tikhonov’43] 
– aka ridge regression [Hoerl’62] 
– aka Weight decay [krogh, hertz’91].

• Dropout [Hinton et al’12]
• Lasso [Tibshirani’95], L1 regularization [Ng]
• Model averaging (ensemble methods)

– Bagging
– Boosting
– Bayesian ensembles

• “Computational” Regularization
– See [Bach’13], [Less is More: Nystrom Computational Regularization, 

Rudi et al’15].
27



Tikhonov Regularization

• Suppose we have the following inverse linear problem

•  

•  

28

min
x

ky �Axk2 , A 2 Rn⇥p

.

When p  rank(A), the system has unique solution

A

T (y �Ax) = 0 ) x

⇤ = (AT
A)�1

A

T
y = A

†
y .

A†
= (ATA)

�1AT
: Moore-Penrose pseudoinverse of A.

When p > rank(A), under-determined system.

Which solution to select?

min

Ax=y

hx,�xi , � : Tikhonov psd kernel.

Tikhonov proposed selecting the solution x

⇤
having

smallest norm k�1/2
xk:



Tikhonov Regularization Examples

•  

•  
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� = �I : Ridge regression.

hx,�xi =
Z

|⇠|2|x̂(⇠)|2d⇠ : Sobolev Norm

Let K = kerA and K?
its orthogonal complement.

Then kxk2 = kPKxk2 + kPK?xk2, and Ax = APK?x.

Thus we project the solution onto the space K?
.

If A = USV T
is the SVD of A, then

A†
= V ¯SUT , s̄ii =

⇢ 1
sii

if sii > 0 ,
0 otherwise.

.



Tikhonov Regularization

• Examples:

• Lagrangian formulation:
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� = �I : Ridge regression.

hx,�xi =
Z

|⇠|2|x̂(⇠)|2d⇠ : Sobolev Norm

min
x

1

2
ky �Axk2 + �hx,�xi

�A

T (y �Ax

⇤) + ��x⇤ = 0 , (AT
A+ ��)x⇤ = A

T
y

) x

⇤ = (AT
A+ ��)�1

A

T
y



Tikhonov Regularization

•  

– Shrinkage affects smaller empirical singular values than larger ones.
– Sample small eigenvectors/eigenvalues are more unreliable than 

larger ones.

– In rank degenerate cases, the ridge kills the terms in the null space. 
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ŷ = Ax

⇤ = A(AT
A+ �I)�1

A

T
y =

pX

k=1

s

2
kk

�+ s

2
kk

uku
T
k

When � = I, using again the SVD, the predictions become



Tikhonov Regularization

• In a simple linear learning setup, suppose 

• Given training data                 we optimize the loss  

• The generalization error is given by 
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y = hx,�i+ ✏ , ✏ zero mean.

{xi, yi}iN

E(w) = kY �Xwk2 + �kwk2 , X = (xi) 2 RN⇥d
, Y = (yi) 2 RN

.

w⇤ = (XTX + �I)�1XTY .

E
x,✏

|hx,w⇤i � y|2 = E
x

|hx,� � w

⇤i|2 + E
✏

|✏|2

= v

T⌃
x

v + �

2
.

variance �2

v = � � w⇤



Tikhonov Regularization
• By expressing                               we have 

• So the generalization error becomes

• this has an optimum at 

• Wiener filtering
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X = USV T ,� = U↵

w⇤ = X†Y = V S̄(S↵+ ✏) . s̄kk =
1

s2kk + �

E|hx,w⇤i � y|2 =
X

k

�

2
↵

2
k + s

2
kk�

2

(�+ s

2
kk)

2
.

� =
�

2

E|x|2



• Limitations?
– Minimizing the L2 norm tends to spread out the weights. Lack of 

sparsity in our predictions.
– In image applications, this tends to produce blurred estimates.
– We can regularize using different priors that favor sparsity (e.g. 

Lasso). 

– In machine learning, some models work better with L1 regularization 
(e.g. Logistic Regression, [Ng,’04]).
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Tikhonov Regularization



Stability vs Generalization

• We can interpret generalization as a form of stability of 
our learning protocol. 

• Expected Generalization error:

• Stability of a randomized algorithm:
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[Bousquet, Elise↵], [Hardt, Recht, Singer]

A : (randomized) algorithm

S : (random) sample

A randomized algorithm A is ✏-uniformly stable if for all

datasets S,S0
di↵ering in at most one sample we have

sup
z

EA[f(�(A(S)); z)� f(�(A(S0)); z)]  ✏ .

✏gen = ES,A[Fn(�(A,S))� F (�(A,S))] ,



Stability vs Generalization

• When is Stochastic Gradient Descent uniformly stable?

•  

36

Theorem [HBS’15] If algorithm A is ✏-uniformly stable then

✏gen  ✏ .

If loss f(·; z) is convex, has smooth gradients and is Lipschitz, then

T steps of SGD with step sizes �t satisfies

✏  C

P
tT ↵t

n
.

If loss f(·; z) is strongly convex, has smooth gradients

and is Lipschitz, then scaled SGD with constant step size satisfies

✏  C

n
.



Stability vs Generalization

• Stability increases mildly with iterations
• Optimization error decreases with iterations
• Optimal tradeoffs can be studied in convex settings
• Results also extend to non-convex settings

– Partially explain why multiple epochs over the training have better 
generalization.

• Stability-inducing operations/regularization
– Ridge regression improves stability constants.
– Dropout also improves the stability constants.

• Question: sharpness of results with respect to step size. 
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Dropout [Hinton’12]

• The ridge regression replaced the empirical data 
covariance         by                .
– This is equivalent as replacing data       by     

• Indeed,

• Q: to what extent one can regularize by adding noise to 
the input? what noise distributions are appropriate?
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XTX XTX + �I

xi

as j ! 1.

1

N

X

iN

1

J

X

jJ

(yi � hx̃i,j ,�i)2
J!1! 1

N

X

iN

E✏(yi � hxi,�i � h✏i,j ,�i)2

=
1

N

X

iN

(yi � hxi,�i)2 + �k�k2 = kY �X�k2 + �k�k2 .

x̃i,j = xi + ✏i,j , E✏i,j = 0, cov(✏i,j) = �I .



Dropout [Hinton et al.’12]

• Given a deep model 

• we consider the following noise distribution

• At test time, we approximate                with             .
• Typically, we choose 
• Very robust, very efficient. 
• Not clear why (yet).
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�(x;⇥) = �K(�K�1(. . .�1(X;⇥1);⇥2) . . . ;⇥K)

�̃(x;⇥) = �K(bK�1 · �K�1(. . . (b1 · �1(b0 ·X;⇥1);⇥2) . . . ;⇥K) ,

b0, . . . , bK�1 Bernoulli p .

Eb�̃(x;⇥) �(x; p⇥)

p = 0.5 .



Dropout and Ensemble Methods

• Dropout performs a form of exponential ensemble of 
tiny networks.
– Let                                 be the total number of weights. 

– For each given training sample, on average we have        active 
weights. Number of different configurations is  

– At test time, we approximate the committee of these smaller 
networks. 

– Hinton argues that this fights feature “co-adaptation”: relying on 
spurious, unreliable high-order dependencies within the data. 

40

M =
KX

k=1

dim(⇥k)

pM

⇠
✓
M

pM

◆



Dropout and Adaptive Regularization

• [Wager et al’13] performed the first rigorous analysis of 
Dropout in the context of Generalized Linear Models:

• The latter can be rewritten as 
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Suppose response y given input features x 2 Rd

p(y|x,�) = p0(y) exp (yhx,�i �A(x,�)) , `(�) = � log p(y|x,�) .

Standard MLE �̂: �̂ = argmin
�

X

i

`
xi,yi(�) .

Noisy features: x̃i = ⌫(xi, ⇠i).

Regularized MLE estimation:

�̂ = argmin
�

X

i

E
⇠

`
⌫(xi,⇠),yi

(�) .

X

i

`
xi,yi(�) +R(�) , with R(�) =

X

i

E⇠A(x̃i,�)�A(xi,�) .



Dropout and Adaptive Regularization

• By doing a Taylor approximation of R, the authors show 
that dropout noise performs adaptive regularization:

42

R(�) ⇡ �Tdiag(XTV (�)X)� ,

XTV (�)X : Fisher information


