Stat 212 b :Topics in Deep Learning Lecture 2

Joan Bruna
UC Berkeley

Objectives

- Classification, Kernels and metrics
- Representations for recognition
- curse of dimensionality
- invariance/covariance
- discriminability
- Variability models
- transformation groups and symmetries
- deformations
- stationarity
- clutter and class-specific
- Examples

High-dimensional Recognition Setup

- Input data x lives in a high-dimensional space:

$$
\begin{array}{ll}
x \in \Omega, \Omega \subset \mathbb{R}^{d} \quad & \text { finite-dimensional (b } \\
x \in L^{2}\left(\mathbb{R}^{m}\right), m=1,2,3 . & \text { infinite dimensional }
\end{array}
$$

High-dimensional Recognition Setup

- Input data x lives in a high-dimensional space:

$$
\begin{array}{ll}
x \in \Omega, \Omega \subset \mathbb{R}^{d} \quad & \text { finite-dimensional (but large } d!\text {) } \\
x \in L^{2}\left(\mathbb{R}^{m}\right), m=1,2,3 . & \text { infinite dimensional }
\end{array}
$$

- We observe $\left(x_{i}, y_{i}\right), i=1 \ldots n$, where

$$
\begin{array}{ll}
y_{i} \in \mathbb{R} & \text { (regression) } \\
y_{i} \in\{1, K\} & \text { (classification) }
\end{array}
$$

High-dimensional Recognition Setup

- Input data x lives in a high-dimensional space:

$$
\begin{aligned}
& x \in \Omega, \Omega \subset \mathbb{R}^{d} \quad \text { finite-dimensional (b } \\
& x \in L^{2}\left(\mathbb{R}^{m}\right), m=1,2,3 . \text { infinite dimensional }
\end{aligned}
$$

- We observe $\left(x_{i}, y_{i}\right), i=1 \ldots n$, where

$$
\begin{array}{ll}
y_{i} \in \mathbb{R} & \text { (regression) } \\
y_{i} \in\{1, K\} & \text { (classification) }
\end{array}
$$

- We can reduce the former to "interpolating" a function $f: \Omega \rightarrow \mathbb{R}^{K} \quad(f(x)=p(y \mid x)$ in the classification case $)$

How to "interpolate" in high-dimensions?

- Let's start with a (very) simple low-dimensional setting:

How to "interpolate" in high-dimensions?

- Let's start with a (very) simple low-dimensional setting:

$$
\hat{f}(x)=\operatorname{sign}\left(a^{T} x+b\right)
$$

$$
\begin{aligned}
& f\left(x_{i}\right)=1 \\
& f\left(x_{i}\right)=-1
\end{aligned}
$$

How to interpolate in high dimensions?

- We have found (linear) features $\Phi(x)=a^{T} x$ such that

$$
\left|f(x)-f\left(x^{\prime}\right)\right| \leq C\left\|\Phi(x)-\Phi\left(x^{\prime}\right)\right\|
$$

- The previous example corresponds to a binary classification problem that is linearly separable: there exists a hyperplane that separates the classes.
- The previous example corresponds to a binary classification problem that is linearly separable: there exists a hyperplane that separates the classes.
- By projecting $\Phi(x)=a^{T} x$ we transform the highdimensional problem into a simple low-dimensional interpolation problem:

Support Vector Machines

Support Vector Machines

- The previous example is formalized by Support Vector Machines [Vapnik et al, '90s]: given a binary classification problem with data $\left(x_{i}, y_{i}\right)$, we consider an estimator for $f(x)$ of the form

$$
\hat{f}(x)=\operatorname{sign}\left(a^{T} x+b\right)
$$

Support Vector Machines

- The previous example is formalized by Support Vector Machines [Vapnik et al, '90s]: given a binary classification problem with data $\left(x_{i}, y_{i}\right)$, we consider an estimator for $f(x)$ of the form

$$
\hat{f}(x)=\operatorname{sign}\left(a^{T} x+b\right)
$$

- Empirical Risk Minimization:

$$
\min _{a, b} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, \hat{f}\left(x_{i}\right)\right)+\lambda\|a\|^{2},
$$

enforces training examples to fall in the right side of the hyperplane
enforces large margin

$$
\ell(y, \hat{y})=\max (0,1-y \cdot \hat{y}) \quad: \text { hinge loss }
$$

- Not all problems are linearly separable:

$$
\begin{aligned}
& f\left(x_{i}\right)=1 \\
& f\left(x_{i}\right)=-1
\end{aligned}
$$

the " $X O R$ " problem

- By using the Lagrangian dual of the previous program, we can rewrite our previous solution as

$$
\hat{f}(x)=\operatorname{sign}\left(\sum_{i} \alpha_{i} y_{i} K\left(x_{i}, x\right)\right),
$$

where $K\left(x_{i}, x\right)=\left\langle x_{i}, x\right\rangle$ is the Euclidean dot product.

- By using the Lagrangian dual of the previous program, we can rewrite our previous solution as

$$
f(x)=\operatorname{sign}\left(\sum_{i} \alpha_{i}, y_{i} K\left(x_{i}, x\right)\right),
$$

where $K\left(x_{i}, x\right)=\left\langle x_{i}, x\right\rangle$ is the Euclidean dot product.

- We can replace the linear kernel by a non-linear one, eg
- polynomial: $K(x, y)=\langle x, y\rangle^{d}$.
- Gaussian radial basis function: $K(x, y)=\exp \left(-\|x-y\|^{2} / \sigma^{2}\right)$.

The Kernel "trick"

- For a wide class of psd kernels (Mercer Kernels), we have a representation in terms of an inner product:

$$
\forall x, x^{\prime} \in \Omega, K\left(x, x^{\prime}\right)=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle, \quad \Phi: \Omega \rightarrow \Omega^{\prime}
$$

The Kernel "trick"

- For a wide class of psd kernels (Mercer Kernels), we have a representation in terms of an inner product:

$$
\forall x, x^{\prime} \in \Omega, K\left(x, x^{\prime}\right)=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle, \quad \Phi: \Omega \rightarrow \Omega^{\prime}
$$

- It results that our estimate is linear in the features $\Phi(x)$:

$$
\hat{f}(x)=\operatorname{sign}(\langle w, \Phi(x)\rangle+b), \quad w=\sum_{i} \alpha_{i} y_{i} \Phi\left(x_{i}\right) .
$$

The Kernel "trick"

- For a wide class of psd kernels (Mercer Kernels), we have a representation in terms of an inner product:

$$
\forall x, x^{\prime} \in \Omega, K\left(x, x^{\prime}\right)=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle, \quad \Phi: \Omega \rightarrow \Omega^{\prime}
$$

- It results that our estimate is linear in the features $\Phi(x)$

$$
\hat{f}(x)=\operatorname{sign}(\langle w, \Phi(x)\rangle+b), \quad w=\sum_{i} \alpha_{i} y_{i} \Phi\left(x_{i}\right)
$$

- Features need to be discriminative:

$$
\left|f(x)-f\left(x^{\prime}\right)\right| \leq C\left\|\Phi(x)-\Phi\left(x^{\prime}\right)\right\|
$$

The Kernel "trick"

- For a wide class of psd kernels (Mercer Kernels), we have a representation in terms of an inner product:

$$
\forall x, x^{\prime} \in \Omega, K\left(x, x^{\prime}\right)=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle, \quad \Phi: \Omega \rightarrow \Omega^{\prime}
$$

- It results that our estimate is linear in the features $\Phi(x)$:

$$
\hat{f}(x)=\operatorname{sign}(\langle w, \Phi(x)\rangle+b), \quad w=\sum_{i} \alpha_{i} y_{i} \Phi\left(x_{i}\right) .
$$

- Features need to be discriminative:

$$
\left|f(x)-f\left(x^{\prime}\right)\right| \leq C\left\|\Phi(x)-\Phi\left(x^{\prime}\right)\right\|
$$

- Is this enough to characterize good features/kernels?

Generalization Error

- It is easy to construct discriminative features:
- Using a Gaussian RBF, it suffices to let $\sigma^{2} \rightarrow 0$.
- The estimator converges to the nearest neighbor classifier:

$$
\hat{f}(x)=f\left(x_{i(x)}\right), \quad i(x)=\arg \min _{i}\left\|x-x_{i}\right\|
$$

Generalization Error

- It is easy to construct discriminative features:
- Using a Gaussian RBF, it suffices to let $\sigma^{2} \rightarrow 0$.
- The estimator converges to the nearest neighbor classifier:

$$
\hat{f}(x)=f\left(x_{i(x)}\right), i(x)=\arg \min _{i}\left\|x-x_{i}\right\|
$$

- While it may be easy to correctly classify our training examples, we do not necessarily improve our generalization error:

$$
\mathbf{E}_{(x, y)}(\ell(\hat{f}(x), y))
$$

Generalization Error

- It is easy to construct discriminative features:
- Using a Gaussian RBF, it suffices to let $\sigma^{2} \rightarrow 0$.
- The estimator converges to the nearest neighbor classifier:

$$
\hat{f}(x)=f\left(x_{i(x)}\right), \quad i(x)=\arg \min _{i}\left\|x-x_{i}\right\|
$$

- While it may be easy to correctly classify our training examples, we do not necessarily improve our generalization error:

$$
\mathbf{E}_{(x, y)}(\ell(\hat{f}(x), y))
$$

- The larger the embedding dimension, the higher is the risk of overfitting.

Generalization Error

- It is easy to construct discriminative features:
- Using a Gaussian RBF, it suffices to let $\sigma^{2} \rightarrow 0$.
- The estimator converges to the nearest neighbor classifier:

$$
\hat{f}(x)=f\left(x_{i(x)}\right), i(x)=\arg \min _{i}\left\|x-x_{i}\right\|
$$

- While it may be easy to correctly classify our training examples, we do not necessarily improve our generalization error:

$$
\mathbf{E}_{(x, y)}(\ell(\hat{f}(x), y))
$$

- The larger the embedding dimension, the higher is the risk of overfitting.
- Underlying question: how to compare signals in high-dim?

Curse of Dimensionality

- In a finite-dimensional, bounded space, all metrics are equivalent:

> for each $x \in \Omega$, exists constants c, C such that $\forall x^{\prime} \in \Omega, c d\left(x, x^{\prime}\right) \leq \tilde{d}\left(x, x^{\prime}\right) \leq C d\left(x, x^{\prime}\right)$.

Curse of Dimensionality

- In a finite-dimensional, bounded space, all metrics are equivalent:

$$
\begin{aligned}
& \text { for each } x \in \Omega \text {, exists constants } c, C \text { such that } \\
& \forall x^{\prime} \in \Omega, c d\left(x, x^{\prime}\right) \leq \tilde{d}\left(x, x^{\prime}\right) \leq C d\left(x, x^{\prime}\right) .
\end{aligned}
$$

- But as the dimension increases, metrics start to "diverge".
- In particular, the Euclidean distance in high-dimensional spaces is typically a poor measure of similarity for practical purposes.

Curse of Dimensionality

- In a finite-dimensional, bounded space, all metrics are equivalent:

$$
\begin{aligned}
& \text { for each } x \in \Omega \text {, exists constants } c, C \text { such that } \\
& \forall x^{\prime} \in \Omega, c d\left(x, x^{\prime}\right) \leq \tilde{d}\left(x, x^{\prime}\right) \leq C d\left(x, x^{\prime}\right)
\end{aligned}
$$

- But as the dimension increases, metrics start to "diverge".
- In particular, the Euclidean distance in high-dimensional spaces is typically a poor measure of similarity for practical purposes.
- Local decisions around training do not extend to the whole space.
- So, we need a guiding principle that plays well with our data (images, sounds, etc.)

2-dimensional embedding of CIFAR-I 0 using

Euclidean similarity
from A. Karpathy

Linearization

- We want to obtain a representation $\Phi(x)$ such that

$$
\hat{f}(x)=\operatorname{sign}\left(a^{T} \Phi(x)+b\right)
$$

is a good approximation of $f(x)$.

Linearization

- We want to obtain a representation $\Phi(x)$ such that

$$
\hat{f}(x)=\operatorname{sign}\left(a^{T} \Phi(x)+b\right)
$$

is a good approximation of $f(x)$. Thus $f(x)$ is approximately linearized by $\Phi(x)$:

$$
f(x) \approx \operatorname{sign}\left(a^{T} \Phi(x)+b\right)
$$

Linearization

- We want to obtain a representation $\Phi(x)$ such that

$$
\hat{f}(x)=\operatorname{sign}\left(a^{T} \Phi(x)+b\right)
$$

is a good approximation of $f(x)$. Thus $f(x)$ is approximately linearized by $\Phi(x)$:

$$
f(x) \approx \operatorname{sign}\left(a^{T} \Phi(x)+b\right)
$$

- In particular, we should have

$$
a^{T}\left(\Phi(x)-\Phi\left(x^{\prime}\right)=0 \quad \Longrightarrow \quad f(x)=f\left(x^{\prime}\right) .\right.
$$

Linearization

- We want to obtain a representation $\Phi(x)$ such that

$$
\hat{f}(x)=\operatorname{sign}\left(a^{T} \Phi(x)+b\right)
$$

is a good approximation of $f(x)$. Thus $f(x)$ is approximately linearized by $\Phi(x)$:

$$
f(x) \approx \operatorname{sign}\left(a^{T} \Phi(x)+b\right)
$$

- In particular, we should have

$$
a^{T}\left(\Phi(x)-\Phi\left(x^{\prime}\right)=0 \quad \Longrightarrow \quad f(x)=f\left(x^{\prime}\right) .\right.
$$

Thus the level sets of f should be mapped to parallel hyperplanes by Φ

Linearization

In order to beat the curse of dimensionality, we need features that linearize intra-class variability and preserve inter-class variability.

Invariance and Symmetry

- A global symmetry is an operator $\varphi \in \operatorname{Aut}(\Omega)$ that leaves finvariant:

$$
\forall x \in \Omega, f(\varphi(x))=f(x) .
$$

Invariance and Symmetry

- A global symmetry is an operator $\varphi \in \operatorname{Aut}(\Omega)$ that leaves finvariant:

$$
\forall x \in \Omega, f(\varphi(x))=f(x) .
$$

- They can be absorbed by Φ to varying degrees:

Invariants: $\Phi(\varphi(x))=\Phi(x)$ for each x.
Covariants: $\Phi(\varphi(x))=A_{\varphi} \Phi(x)$ for each x, where A_{φ} is "simpler" than φ

Invariance and Symmetry

- A global symmetry is an operator $\varphi \in \operatorname{Aut}(\Omega)$ that leaves finvariant:

$$
\forall x \in \Omega, f(\varphi(x))=f(x) .
$$

- They can be absorbed by Φ to varying degrees:

Invariants: $\Phi(\varphi(x))=\Phi(x)$ for each x. Covariants: $\Phi(\varphi(x))=A_{\varphi} \Phi(x)$ for each x, where A_{φ} is "simpler" than φ

- What are those symmetries? How to impose them on Φ without breaking discriminability?

Discrete symmetries

-Which transformations leave this square unchanged?

Discrete symmetries

-Which transformations leave this square unchanged?

RO

R1

R2

R3

M1

M2

D1

D2

- They form a group

Discrete symmetries

-Which transformations leave this square unchanged?

RD

R1

R3

MI

M2

DI

D2

- The set of all symmetries forms a group G :
- group operation: $\forall g_{1}, g_{2} \in G, g_{1} \cdot g_{2} \in G$.
- identity element: $\exists e \in G$ s.t. $g \cdot e=e \cdot g=g \quad \forall g \in G$.
- inverse:

$$
\forall g \in G \exists g^{-1} \in G \text { s.t. } g \cdot g^{-1}=e .
$$

(from http://www.cs.umb.edu/~eb/)

Discrete symmetries

-Which transformations leave this square unchanged?

R0

R1

- Discrete groups are completely characterized by their multiplication table:

(from http://www.cs.umb.edu/~eb/)

Rigid transformation symmetries

- Which symmetries are we likely to find in image recognition problems?

Rigid transformation symmetries

- Which symmetries are we likely to find in image recognition problems?

Translations: $\left\{\varphi_{v} ; v \in \mathbb{R}^{2}\right\}$, with $\varphi_{v}(x)(u)=x(u-v)$.

Rigid transformation symmetries

- Which symmetries are we likely to find in image recognition problems?

Dilations: $\left\{\varphi_{s} ; s \in \mathbb{R}_{+}\right\}$, with $\varphi_{s}(x)(u)=s^{-1} x\left(s^{-1} u\right)$.

Rigid transformation symmetries

- Which symmetries are we likely to find in image recognition problems?

Rotations: $\left\{\varphi_{\theta} ; \theta \in[0,2 \pi)\right\}$, with $\varphi_{\theta}(x)(u)=x\left(R_{\theta} u\right)$.

Rigid transformation symmetries

- Which symmetries are we likely to find in image recognition problems?

Mirror symmetry: $\{e, M\}$, with $M x\left(u_{1}, u_{2}\right)=x\left(-u_{1}, u_{2}\right)$.

Rigid transformation symmetries

- We can combine all these transformations into a single group, the Affine Group Aff $\left(\mathbb{R}^{2}\right)$.
- It has 6 degrees of freedom; in the representation

$$
\begin{aligned}
& \binom{u_{1}}{u_{2}} \mapsto\binom{v_{1}}{v_{2}}+\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)\binom{u_{1}}{u_{2}} \\
& g=\left(v_{1}, v_{2}, a_{1}, a_{2}, a_{3}, a_{4}\right)
\end{aligned}
$$

Rigid transformation symmetries

- We can combine all these transformations into a single group, the Affine Group Aff $\left(\mathbb{R}^{2}\right)$.
- It has 6 degrees of freedom; in the representation

$$
\begin{aligned}
& \binom{u_{1}}{u_{2}} \mapsto\binom{v_{1}}{v_{2}}+\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)\binom{u_{1}}{u_{2}} \\
& g=\left(v_{1}, v_{2}, a_{1}, a_{2}, a_{3}, a_{4}\right)
\end{aligned}
$$

- Note that this is in general a non-commutative group.
- For some groups, we might only observe partial invariance (e.g. rotation and dilation).

Rigid transformation symmetries

- We can combine all these transformations into a single group, the Affine Group $\operatorname{Aff}\left(\mathbb{R}^{2}\right)$.
- It has 6 degrees of freedom; in the representation

$$
\begin{aligned}
& \binom{u_{1}}{u_{2}} \mapsto\binom{v_{1}}{v_{2}}+\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)\binom{u_{1}}{u_{2}} \\
& g=\left(v_{1}, v_{2}, a_{1}, a_{2}, a_{3}, a_{4}\right)
\end{aligned}
$$

- Note that this is in general a non-commutative group.
- For some groups, we might only observe partial invariance (e.g. rotation and dilation).
- In speech, the underlying group modeling time-frequency shifts is the Heisenberg group.

Invariant Representations

- Given a transformation group G and an input x, the action of G onto x is called an orbit:

$$
G \cdot x=\left\{\varphi_{g}(x), g \in G\right\}
$$

Invariant Representations

- Given a transformation group G and an input x, the action of G onto x is called an orbit:

$$
G \cdot x=\left\{\varphi_{g}(x), g \in G\right\}
$$

- Impact on the learning task?
- Since our estimator is linear in $\Phi(x), \Phi(G \cdot x)$ should be "flat".

Invariant Representations

-Problem?

Invariant Representations

- Problem? A 6-dimensional curvy space looks flat in a high-dimensional space.

Invariant Representations

- Problem? A 6-dimensional curvy space looks flat in a high-dimensional space.
- Group symmetries are not sufficient to beat the curse of dimensionality.

From Invariance to Stability

- Symmetry is a very strict criteria. Can we relax it?

From Invariance to Stability

- Symmetry is a very strict criteria. Can we relax it?
- Although image and audio recognition does not have high-dimensional symmetry groups, it is stable to local deformations.

$$
\begin{aligned}
& x \in L^{2}\left(\mathbb{R}^{m}\right), \tau: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m} \text { diffeomorphism } \\
& x_{\tau}=\varphi_{\tau}(x), x_{\tau}(u)=x(u-\tau(u))
\end{aligned}
$$

φ_{τ} is a change of variables: (think of x_{τ} as adding noise to the pixel locations rather than to the pixel values)

From Invariance to Stability

- Informally, if $\|\tau\|$ measures the amount of deformation, many recognition tasks satisfy

$$
\forall x, \tau,\left|f(x)-f\left(x_{\tau}\right)\right| \lesssim\|\tau\|
$$

From Invariance to Stability

- Informally, if $\|\tau\|$ measures the amount of deformation, many recognition tasks satisfy

$$
\forall x, \tau,\left|f(x)-f\left(x_{\tau}\right)\right| \lesssim\|\tau\|
$$

- If our representation is stable, then

$$
\forall x, \tau,\left\|\Phi(x)-\Phi\left(x_{\tau}\right)\right\| \leq C\|\tau\| \Longrightarrow\left|\hat{f}(x)-\hat{f}\left(x_{\tau}\right)\right| \leq \tilde{C}\|\tau\|
$$

Filling the space with deformations

symmetry group: low dimension

Deformations in Image/Audio Recognition

- Can model 3D viewpoint changes, changes in pitch/ timbre in speech recognition.

Deformations in Image/Audio Recognition

- Can model 3D viewpoint changes, changes in pitch/timbre in speech recognition.
- Deformable parts model [Feltzenszwalb et al, 'IO]

- State-of-the-art on object detection pre-CNN.

Deformations in Image/Audio Recognition

- Can model 3D viewpoint changes, changes in pitch/ timbre in speech recognition.
- Deformable templates [Grenader,Younes,Trouvé, Amit et al.]
- Equip deformable templates with differentiable structure

Deformations in Image/Audio Recognition

- Can model 3D viewpoint changes, changes in pitch/ timbre in speech recognition.
- Deformable templates [Grenader,Younes, Trouvé, Amit et al.]
- Equip deformable templates with differentiable structure
- Data augmentation in Object classification
- Mostly rigid transformations (random shifts, flips).

Stability Condition

- We introduced the stability condition

$$
\forall x, \tau,\left\|\Phi(x)-\Phi\left(x_{\tau}\right)\right\| \lesssim\|\tau\| .
$$

Stability Condition

-We introduced the stability condition

$$
\forall x, \tau,\left\|\Phi(x)-\Phi\left(x_{\tau}\right)\right\| \lesssim\|\tau\| .
$$

- If we fix the 'template' x and consider the mapping

$$
F: \tau \mapsto \Phi\left(x_{\tau}\right)
$$

the previous condition becomes

$$
\|F(\tau)-F(0)\| \leq C\|\tau\|
$$

thus F is Lipschitz with respect to the deformation metric $\|\tau\|$ uniformly on x.

Stationarity Prior

- Two clips. Goal: distinguish which is which.
clip 1
clip2
clip?

Stationarity Prior

- Same experiment. Goal: distinguish which is which.

clip4
clip?

Stationarity Prior

- Same experiment. Goal: distinguish which is which.

clip4
clip?
- Typically, the latter is harder. Reasons?

Stationarity Prior

- Same experiment. Goal: distinguish which is which.

clip3

clip4
clip?

- Typically, the latter is harder. Reasons?
- Despite having more information, the discrimination is worse because we construct temporal averages in presence of stationary inputs.

Representation of Stationary Processes

$x(u)$: realizations of a stationary process $X(u)$ (not Gaussian)

Representation of Stationary Processes

$x(u)$: realizations of a stationary process $X(u)$ (not Gaussian)

$$
\Phi(X)=\left\{E\left(f_{i}(X)\right)\right\}_{i}
$$

Estimation from samples $x(n): \widehat{\Phi}(X)=\left\{\frac{1}{N} \sum_{n} f_{i}(x)(n)\right\}_{i}$
Discriminability: need to capture high-order moments Stability: $E\left(\|\widehat{\Phi}(X)-\Phi(X)\|^{2}\right)$ small

Ergodicity

-Which class of processes satisfy the following?

$$
\forall i, \frac{1}{N} \sum_{n} f_{i}(x)(n) \rightarrow \mathbf{E}\left(f_{i}(X)\right) \quad(N \rightarrow \infty)
$$

Ergodicity

-Which class of processes satisfy the following?

$$
\forall i, \frac{1}{N} \sum_{n} f_{i}(x)(n) \rightarrow \mathbf{E}\left(f_{i}(X)\right) \quad(N \rightarrow \infty)
$$

- These are called ergodic processes.
- In statistical physics, a process with an Integral Scale is ergodic.
- In statistics, linear processes are ergodic (provided the moments are finite).

Class-specific variability

- Besides deformations and stationary variability, object recognition is exposed to much more complex variability:
- clutter

- class-specific diversity

