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_Objectives

e Classification, Kernels and metrics
* Representations for recognition

- curse of dimensionality

- Invariance/covariance
- discriminability
* Variability models
- transformation groups and symmetries

- deformations
- stationarity

- clutter and class-specific

* Examples



* Input data T lives In a high-dimensional space:
r €, QcCR finite-dimensional (but large d!)

r € L*(R™), m=1,2,3 . infinite dimensional
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* Input data T lives In a high-dimensional space:
r €, QcCR finite-dimensional (but large d!)

r € L*(R™), m=1,2,3 . infinite dimensional

* We observe (z;,y;), i=1...n , where

y; € R (regression)
y; € {1, K} . (classification)

* We can reduce the former to “interpolating” a function
f:Q—=RY (f(x)=p(y| z) in the classification case)
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~ How to"interpolate” in high-dimensions!

. Lets Start with a (very) simple Iovv dimensional setting:
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~ How to"interpolate” in high-dimensions!

. Lets start with a (very) simple Iow dimensional setting:

f(:z;) = Sign(aT:z: + b)



f(x) = sign(aTz + b)

* We have found (linear) features ®(z) = a” = such that

f(x) = f(2)] < Cl|®(x) — 2(2)]




* [ he previous example corresponds to a binary

classification problem that is linearly separable: there
exists a hyperplane that separates the classes.
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* [he previous example Is formalized by Support Vector
Machines [Vapnik et al, 90s]: given a binary classification
broblem with data (zi,¥:), we consider an estimator for
f(x) of the form

f(z) = sign (' + b)
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* [he previous example Is formalized by Support Vector
Machines [Vapnik et al, 90s]: given a binary classification
broblem with data (zi,¥:), we consider an estimator for
f(x) of the form

f(z) = sign (' + b)

* Empirical Risk Minimization:

1 ;
min Ezé(yi,f(xi))Jr)\HaHQ»

a,b zzl/v \

enforces training examples

to fall in the right side of the hyperplane enforces large margin

((y,y) = max(0,1 —y-gy) :hinge loss .
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* Not all problems are linearly separable:
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* By using the Lagrangian dual of the previous program, we
can rewrrte our previous solution as

= sign (Z a1y I 33@7 ) ;

where K (x;,x) = (x;,x) is the Euclidean dot product.
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* By using the Lagrangian dual of the previous program, we
can rewrrte our previous solution as

= sign (Z a1y I 5527 ) ;

(i, x) is the Euclidean dot product.

where K (x;,x)

* We can replace the linear kernel by a non-linear one, eg
- polynomial: K(z,y) = (x,y)%.

- Gaussian radial basis function: K(x,y) = exp(—||z — y||*/c?).
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* For a wide class of psd kernels (Mercer Kernels), we have
a representation In terms of an inner product:

Vi, e, K(z,o') =(2(z), (<), @& : Q-

|7
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Mercer Kernels), we have

nner product:

Vi, e, K(z,o') =(2(z), (<), @& : Q-

* [t results that our estimate s linear In the features ®(z) :

f(z) = sign({(w, ®(z)) +b), w= Zaiyiq)(xi).
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The Kernel “trick’”

e For a wide ¢
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a representa

kernels (

lon 1IN ter

ms of an |

Vercer Kernels), we have

nner product:

Va,r e, Kr,z') =(®(x), (), &: Q-

* [t results that our estimate Is linear In the features ®(x)

f(z) = sign({(w, ®(z)) +b), w= Zoziyiq)(x@-).

e Features need to be discriminative:

f(x) = f(2)] < Cl|®(x) — 2(2)]
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The Kernel “trick’”

* For a wide class of psc

kernels (

a representation In ter

ms of an |

Vercer Kernels), we have

nner product:

Va,r e, Kr,z') =(®(x), (), &: Q-

* [t results that our estimate Is linear In the features ®(x):

f(z) = sign({(w, ®(z)) +b), w= Zoziyiq)(x@-).

e Features need to be discriminative:

f(x) = f(2)] < Cl|®(x) — 2(2)]

* |s this enough to characterize good features/kernels?
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* [t Is easy to construct discriminative features:

- Using a Gaussian RBF, it suffices to let 0* =0 .
- The estimator converges to the nearest neighbor classifier:
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Generalization Error

* [t Is easy to construct discriminative features:

- Using a Gaussian RBF, it suffices to let 0% =0 .
- The estimator converges to the nearest neighbor classifier:

* While |

examp
oenera

t may be easy to correctly classity our training
es, we do not necessarily improve our
ization error:

E (. ) ((f(2),9))

22



Generalization Error

* [t Is easy to construct discriminative features:

- Using a Gaussian RBF, it suffices to let 0% =0 .
- The estimator converges to the nearest neighbor classifier:

* While |

examp
oenera

t may be easy to correctly classity our training
es, we do not necessarily improve our
ization error:

A

- The larger the embedding dimension, the higher Is the risk of
overfitting.
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* [t Is easy to construct c

Generalization Error

Iscriminative features:

- Using a Gaussian RBF, it suffices to let 0% =0 .
- The estimator converges to the nearest neighbor classifier:

* While |

examp
oenera

t may be easy to correctly ¢
es, we do not necessarily im
ization error:

A

assify our training

DIrOve Our

- The larger the embedding dimension, the higher Is the risk of
overfitting.

* Underlying question: how to compare signals in high-dim?
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* In a finite-dimensional, bounded space, all metrics are
equivalent:

for each x € (), exists constants ¢, C' such that

Vo' €, cdz,2)) <d(z,z') < Cd(z,z') .
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Curse of Dimensionality

* In a finite-dimensional, bounded space, all metrics are
equivalent:

for each x € (), exists constants ¢, C' such that

Vo' €, cdz,2)) <d(z,z') < Cd(z,z') .

* But as the dimension increases, metrics start to “diverge’.

- In particular, the Euclidean distance in high-dimensional spaces s
typically a poor measure of similarity for practical purposes.
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Curse of Dimensionality

* In a finite-dimensional, bounded space, all metrics are
equivalent:

for each x € (), exists constants ¢, C' such that

Vo' €, cdz,2)) <d(z,z') < Cd(z,z') .

* But as the dimension increases, metrics start to “diverge”.

- In particular, the Euclidean distance in high-dimensional spaces Is typically
a poor measure of similarity for practical purposes.

* Local decisions around training do not extend to the whole
space.

* 50, we need a guiding principle that plays well with our data
(Images, sounds, etc.)
27
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* We want to obtain a representation ®(x) such that

f(x) = sign(a” ®(x) + b)

s a good approximation of f(x).
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Linearization
* We want to obtain a representation ®(x) such that

f(x) = sign(a” ®(x) + b)

s a good approximation of f(x). Thus f(x) Is approximately
linearized by ®(x):

f(x) ~ sign(a’ ®(z) + b)
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Linearization
* We want to obtain a representation ®(z) such that

f(x) = sign(a” ®(x) + b)

s a good approximation of f(x). Thus f(x) Is approximately
linearized by ®(x) :

f(x) ~ sign(a’ ®(z) + b)
* In particular, we should have

a’ (o(x) - @(2) =0 = f(x)=f(2').
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L iInearization

* We want to obtain a representation ®(z) such that
f(x) = sign(a” ®(x) + b)

s a good approximation of f(x). Thus f(x) Is approximately
linearized by ®(x) :

f(x) ~ sign(a’ ®(z) + b)

* In particular, we should have
o ((z) —2(2") =0 = f(z)=f(2').

Thus the level sets of { should be mapped to parallel
hyperplanes by ®
32
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In order to beat the curse of dimensionality, we need features
that linearize intra-class variability and preserve inter-class
variability.
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* A global symmetry is an operator ¢ € Aut(2) that leaves
f Invariant:

veel, fle(r) = flz).
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Invariance and Symmetry

* A global symmetry is an operator ¢ € Aut(2) that leaves
f Invariant:

VeeQ, fle(x)) = flz).
* [hey can be absorbed by & to varying degrees:

Invariants: ®(p(xz)) = ®(x) for each =x.

Covariants: ®(p(z)) = A, P(z) for each z,
where A, is “simpler” than ¢
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Invariance and Symmetry

* A global symmetry is an operator ¢ € Aut(2) that leaves
f Invariant:

VeeQ, fle(x)) = flz).
* [hey can be absorbed by & to varying degrees:

Invariants: ®(p(xz)) = ®(x) for each =x.

Covariants: ®(p(z)) = A, P(z) for each z,
where A, is “simpler” than ¢

* What are those symmetries! How to impose them on @
without breaking discriminability?
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* Which transformations leave this square unchanged!
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* Which transformations leave this square unchanged?

EEEEDEHNZ
RO R1 R2 R3 M1 M2 D1 D2
* They form a group

(from http://www.cs.umb.edu/~eb/)
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http://www.cs.umb.edu/~eb/

* Which transformations leave this square unchanged?
RO R1 R2 R3 M1 D1 D2

* [he set of all symmetries forms a group G
- group operation: V g1,92 € G, ¢g1:-g2 € G .

M2

- identity element: de € G s.t. g-re=e-g=¢qg Vge G .

- Inverse: VgeG3Ig leGst.g-gt=e.

(from http://www.cs.umb.edu/~eb/)
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* Which transformations leave this square unchanged?

| RO R1 R2 R3 M1 M2 | D1 D2 |
* Discrete groups are completely characterized by their
multiplication table:

RO Rl R2 R3I M1 M2 D1 D2

(from http://www.cs.umb.edu/~eb/)



http://www.cs.umb.edu/~eb/

* Which symmetries are we likely to find in image
recognition problems!?



* Which symmetries are we likely to find in image
recognition problems?
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* Which symmetries are we likely to find in image
recognition problems?

Dilations: {p,;s € R}, with og(z)(u) = s~ tx(s™1u).
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* Which symmetries are we likely to find in image
recognition problems?
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* Which symmetries are we likely to find in image
recognition problems?

Mirror symmetry: {e, M}, with Mx(ui,us) = x(—u1, us).
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* We can combine all these transformations into a single
group, the Affine Group Aff(R?).

* [t has 6 degrees of freedom; In the representation

(o) (o) (o) ()

g = (01702,a1,a2,a3,@4)
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Rigid transformation symmetries

* We can combine all these transformations into a single
group, the Affine Group Aff(R?).

* [t has 6 degrees of freedom; In the representation

U (V) a a U
U2 U2 az a4 (0%
g — (Ula v2,01, 02, a3, &4)

* Note that this Is In general a non-commutative group.

* For some groups, we might only observe partial
invariance (e.g. rotation and dilation).
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Rigid transformation symmetries

* We can combine all these transformations into a single
oroup, the Affine Group Aff(R?).

* [t has 6 degrees of freedom; In the representation

U (V) a a U
U9 V9 a3z a4 U2
g — (Ula v2,01, 02, a3, &4)

* Note that this Is In general a non-commutative group.

* For some groups, we might only observe partial invariance
(e.g. rotation and dilation).

* In speech, the underlying group modeling time-frequency
shifts Is the Heisenberg group.

48



~_Invariant Representations

* Given a transformation group G and an input x, the action
of G onto x Is called an orbit:

G-x={p4(x),9 € G}

49



» Given a transformation group G and an input x, the action of
G onto x Is called an orbit:

G-x={{p4(x),9 € G}

* Impact on the learning task?

* Since our estimator is linear in®(x), (G - x)should be “flat”.
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G-z = {909(5’7)79 c G}

* Problem!?

51



G-x:{gog(:v),gé G}

’roblem? A 6-dimensional curvy space looks flat in a
nigh-dimensional space.
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G-x:{gog(x),gé G}

* Problem? A 6-dimensional curvy space looks flat in a
nigh-dimensional space.

» Group symmetries are not sufficient to beat the curse of
dimensionalrty.
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* Symmetry is a very strict criteria. Can we relax it
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* Symmetry is a very strict criteria. Can we relax it

* Although Image and audio recognition does not have
high-dimensional symmetry groups, It Is stable to local
deformations.

rc L*(R™), 7:R™ — R™ diffeomorphism

vr = r(2) 5 Tr(u) = 2(u—7(u))

- is a change of variables: (think of x, as adding
noise to the pixel locations rather than to the pixel values)
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* Informally, if ||7]| measures the amount of deformation,
many recognition tasks satisfy

vV, , [f(z) = flz:)] S lI7]]
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* Informally, if ||7]| measures the amount of deformation,
many recognition tasks satisty

vV, , [f(z) = flz:)] S lI7]]

* |[f our representation Is stable, then

Va7, |®(z) = (x,)|| < Cll7| = |f(x) — flar)] < Ci7|
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symmetry group: low dimension

deformations fill the space

58



* Can model 3D viewpoint changes, changes in pitch/
timbre In speech recognition.
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» Can model 3D viewpoint changes, changes In prtch/timbre
In speech recognition.

* Deformable parts model [Feltzenszwalb et al, [ 0]

- State-of-the-art on obect detechon pre-CNN.
60



* Can model 3D viewpoint changes, changes in pitch/
timbre In speech recognition.

» Deformable templates [Grenader, Younes, Trouve, Amit et
al.|

- Equip deformable templates with differentiable structure
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* Can model 3D viewpoint changes, changes in pitch/
timbre In speech recognition.

» Deformable templates [Grenader, Younes, Trouve, Amit et
al.|

- Equip deformable templates with differentiable structure

e Data augmentation in Object classification

— Mostly rigid transformations (random shifts, flips).
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* We Introduced the stability condition
Vo, , [[0() = (x| S Il -
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* We Introduced the stability condition
Voo, , [[@(x) = (x| S Il -

* |f we fix the ‘template’ x and consider the mapping
F 17— ®x;)
the previous condition becomes

|F () = FO)[| < Clirl

thus F 1s Lipschitz with respect to the deformation metric
|71l uniformly on & .
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* Two clips. Goal: distinguish which 1s which.

clip| clip? clip ¢
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* Same experiment. Goal: distinguish which i1s which.

clip3 clip4 clip ¢
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* Same experiment. Goal: distinguish which i1s which.

clip3 clip4 clip ¢

* Typically, the latter 1s harder. Reasons!

“Summary Statistics in auditory perception”,é/\;chermott & Simoncelli, Nature Neurosc.’| 3



* Same experiment. Goal: distinguish which i1s which.

clip3 clip4 clip ¢

* Typically, the latter 1s harder. Reasons!

* Desprte having more information, the discrimination Is
worse because we construct temporal averages In
presence of stationary inputs.

“Summary Statistics in auditory perception”, McDermott & Simoncelli, Nature Neurosc.”| 3
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x(u): realizations of a stationary process X (u) (not Gaussian)

‘-
\
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(u) (not Gaussian)

Discriminability: need to capture high-order moments
Stability: E(||®(X) — ®(X)||?) small

70




* Which class of processes satisty the following?

VZ,—Z]‘; n) — E(fi(X)) (N — o)
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* Which class of processes satisty the following?

Zfz n) = E(f;(X)) (N — o)

* [ hese are called ergodic processes.

- In statistical physics, a process with an Integral Scale i1s ergodic.

- In statistics, linear processes are ergodic (provided the moments are
finite).
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* Besides deformations and stationary variability, object
recognition I1s exposed to much more complex variability:

]

* class-specific diversity
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