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Objectives

• Classification, Kernels and metrics
• Representations for recognition

- curse of dimensionality
- invariance/covariance
- discriminability

• Variability models
- transformation groups and symmetries
- deformations
- stationarity
- clutter and class-specific 

• Examples
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• Input data    lives in a high-dimensional space:    

High-dimensional Recognition Setup
x

x 2 ⌦, ⌦ ⇢ Rd
finite-dimensional (but large d!)

infinite dimensional

x 2 L

2(Rm), m = 1, 2, 3 .
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• Input data    lives in a high-dimensional space:    

• We observe 

High-dimensional Recognition Setup
x

x 2 ⌦, ⌦ ⇢ Rd
finite-dimensional (but large d!)

infinite dimensional

x 2 L

2(Rm), m = 1, 2, 3 .

(xi, yi) , i = 1 . . . n , where

yi 2 R
yi 2 {1,K} .

(regression)

(classification)
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• Input data    lives in a high-dimensional space:    

• We observe 

• We can reduce the former to “interpolating” a function 

High-dimensional Recognition Setup
x

x 2 ⌦, ⌦ ⇢ Rd
finite-dimensional (but large d!)

infinite dimensional

x 2 L

2(Rm), m = 1, 2, 3 .

(xi, yi) , i = 1 . . . n , where

yi 2 R
yi 2 {1,K} .

(regression)

(classification)

(f(x) = p(y | x) in the classification case)f : ⌦ ! RK
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How to “interpolate” in high-dimensions?
• Let’s start with a (very) simple low-dimensional setting:

xi

f(xi) = 1

f(xi) = �1
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How to “interpolate” in high-dimensions?
• Let’s start with a (very) simple low-dimensional setting:

xi

f(xi) = 1

f(xi) = �1

f̂(x) = sign(aTx+ b)
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• We have found (linear) features                  such that  

How to interpolate in high dimensions?

xi

f(xi) = 1

f(xi) = �1

f̂(x) = sign(aTx+ b)

�(x) = a

T
x

|f(x)� f(x0)|  Ck�(x)� �(x0)k
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• The previous example corresponds to a binary 
classification problem that is linearly separable: there 
exists a hyperplane that separates the classes.
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• The previous example corresponds to a binary 
classification problem that is linearly separable: there 
exists a hyperplane that separates the classes.

• By projecting                  we transform the high-
dimensional problem into a simple low-dimensional 
interpolation problem:

�(x) = a

T
x

f(x)

�(x) = a

T
x
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Support Vector Machines
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Support Vector Machines

• The previous example is formalized by Support Vector 
Machines [Vapnik et al, ’90s]: given a binary classification 
problem with data          , we consider an estimator for 
f(x) of the form

(xi, yi)

f̂(x) = sign
�
a

T
x+ b

�
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Support Vector Machines

• The previous example is formalized by Support Vector 
Machines [Vapnik et al, ’90s]: given a binary classification 
problem with data          , we consider an estimator for 
f(x) of the form

• Empirical Risk Minimization:  

(xi, yi)

f̂(x) = sign
�
a

T
x+ b

�

min
a,b

1

n

nX

i=1

`(yi, f̂(xi)) + �kak2 ,

`(y, ŷ) = max(0, 1� y · ŷ) : hinge loss .

enforces large marginenforces training examples
to fall in the right side of the hyperplane
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SVMs and Kernels

• Not all problems are linearly separable:

xi

f(xi) = 1

f(xi) = �1

xi

the “XOR” problem
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• By using the Lagrangian dual of the previous program, we 
can rewrite our previous solution as

f̂(x) = sign

 
X

i

↵iyiK(xi, x)

!
,

where K(xi, x) = hxi, xi is the Euclidean dot product.
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• By using the Lagrangian dual of the previous program, we 
can rewrite our previous solution as 

• We can replace the linear kernel by a non-linear one, eg
-  

-  

f̂(x) = sign

 
X

i

↵iyiK(xi, x)

!
,

where K(xi, x) = hxi, xi is the Euclidean dot product.

polynomial: K(x, y) = hx, yid.

Gaussian radial basis function: K(x, y) = exp(�kx� yk2/�2
).
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The Kernel “trick”
• For a wide class of psd kernels (Mercer Kernels), we have 

a representation in terms of an inner product:
8 x, x

0 2 ⌦ , K(x, x0) = h�(x),�(x0)i , � : ⌦ ! ⌦0
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The Kernel “trick”
• For a wide class of psd kernels (Mercer Kernels), we have 

a representation in terms of an inner product:

• It results that our estimate is linear in the features        :  

8 x, x

0 2 ⌦ , K(x, x0) = h�(x),�(x0)i , � : ⌦ ! ⌦0

f̂(x) = sign(hw,�(x)i+ b) , w =
X

i

↵iyi�(xi).

�(x)
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The Kernel “trick”
• For a wide class of psd kernels (Mercer Kernels), we have 

a representation in terms of an inner product:

• It results that our estimate is linear in the features  

• Features need to be discriminative:

8 x, x

0 2 ⌦ , K(x, x0) = h�(x),�(x0)i , � : ⌦ ! ⌦0

f̂(x) = sign(hw,�(x)i+ b) , w =
X

i

↵iyi�(xi).

|f(x)� f(x0)|  Ck�(x)� �(x0)k

�(x)
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The Kernel “trick”
• For a wide class of psd kernels (Mercer Kernels), we have 

a representation in terms of an inner product:

• It results that our estimate is linear in the features       : 

• Features need to be discriminative:

• Is this enough to characterize good features/kernels?

8 x, x

0 2 ⌦ , K(x, x0) = h�(x),�(x0)i , � : ⌦ ! ⌦0

f̂(x) = sign(hw,�(x)i+ b) , w =
X

i

↵iyi�(xi).

|f(x)� f(x0)|  Ck�(x)� �(x0)k

�(x)
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• It is easy to construct discriminative features:
- Using a Gaussian RBF, it suffices to let               .
- The estimator converges to the nearest neighbor classifier :

Generalization Error

�2 ! 0

f̂(x) = f(x
i(x)) , i(x) = argmin

i

kx� x

i

k
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• It is easy to construct discriminative features:
- Using a Gaussian RBF, it suffices to let               .
- The estimator converges to the nearest neighbor classifier :

• While it may be easy to correctly classify our training 
examples, we do not necessarily improve our 
generalization error: 

�2 ! 0

f̂(x) = f(x
i(x)) , i(x) = argmin

i

kx� x

i

k

E(x,y)(`(f̂(x), y))

Generalization Error
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• It is easy to construct discriminative features:
- Using a Gaussian RBF, it suffices to let               .
- The estimator converges to the nearest neighbor classifier :

• While it may be easy to correctly classify our training 
examples, we do not necessarily improve our 
generalization error: 

- The larger the embedding dimension, the higher is the risk of 
overfitting.

�2 ! 0

f̂(x) = f(x
i(x)) , i(x) = argmin

i

kx� x

i

k

E(x,y)(`(f̂(x), y))

Generalization Error
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• It is easy to construct discriminative features:
- Using a Gaussian RBF, it suffices to let               .
- The estimator converges to the nearest neighbor classifier :

• While it may be easy to correctly classify our training 
examples, we do not necessarily improve our 
generalization error: 

- The larger the embedding dimension, the higher is the risk of 
overfitting.

• Underlying question: how to compare signals in high-dim?

�2 ! 0

f̂(x) = f(x
i(x)) , i(x) = argmin

i

kx� x

i

k

E(x,y)(`(f̂(x), y))

Generalization Error
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Curse of Dimensionality

• In a finite-dimensional, bounded space, all metrics are 
equivalent: 

for each x 2 ⌦, exists constants c, C such that

8 x

0 2 ⌦ , cd(x, x

0
)  ˜

d(x, x

0
)  Cd(x, x

0
) .
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Curse of Dimensionality

• In a finite-dimensional, bounded space, all metrics are 
equivalent: 

• But as the dimension increases, metrics start to “diverge”.
- In particular, the Euclidean distance in high-dimensional spaces is 

typically a poor measure of similarity for practical purposes.

for each x 2 ⌦, exists constants c, C such that

8 x

0 2 ⌦ , cd(x, x

0
)  ˜

d(x, x

0
)  Cd(x, x

0
) .
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Curse of Dimensionality
• In a finite-dimensional, bounded space, all metrics are 

equivalent: 

• But as the dimension increases, metrics start to “diverge”.
- In particular, the Euclidean distance in high-dimensional spaces is typically 

a poor measure of similarity for practical purposes.

• Local decisions around training do not extend to the whole 
space.

• So, we need a guiding principle that plays well with our data 
(images, sounds, etc.)

for each x 2 ⌦, exists constants c, C such that

8 x

0 2 ⌦ , cd(x, x

0
)  ˜

d(x, x

0
)  Cd(x, x

0
) .
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from A. Karpathy

2-dimensional 
embedding of 

CIFAR-10 using 
Euclidean similarity
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• We want to obtain a representation        such that  

   
is a good approximation of f(x). 

Linearization

�(x)

f̂(x) = sign(aT�(x) + b)
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• We want to obtain a representation        such that  

   
is a good approximation of f(x).  Thus f(x) is approximately 
linearized by        : 

Linearization

�(x)

f̂(x) = sign(aT�(x) + b)

�(x)

f(x) ⇡ sign(aT�(x) + b)
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• We want to obtain a representation        such that  

   
is a good approximation of f(x).  Thus f(x) is approximately 
linearized by        : 

• In particular, we should have 

Linearization

�(x)

f̂(x) = sign(aT�(x) + b)

�(x)

f(x) ⇡ sign(aT�(x) + b)

a

T (�(x)� �(x0) = 0 =) f(x) = f(x0) .
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• We want to obtain a representation        such that  

   
is a good approximation of f(x).  Thus f(x) is approximately 
linearized by        : 

• In particular, we should have 

Linearization

�(x)

f̂(x) = sign(aT�(x) + b)

�(x)

f(x) ⇡ sign(aT�(x) + b)

a

T (�(x)� �(x0) = 0 =) f(x) = f(x0) .

Thus the level sets of f should be mapped to parallel 
hyperplanes by �
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Linearization

class 1
class 2
class 3

high-dimensional space

�

In order to beat the curse of dimensionality, we need features 
that linearize intra-class variability and preserve inter-class 

variability.
33



• A global symmetry is an operator                  that leaves 
f invariant: 

Invariance and Symmetry
' 2 Aut(⌦)

8 x 2 ⌦ , f('(x)) = f(x) .
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• A global symmetry is an operator                  that leaves 
f invariant: 

• They can be absorbed by     to varying degrees:

Invariance and Symmetry
' 2 Aut(⌦)

8 x 2 ⌦ , f('(x)) = f(x) .

�

Covariants: �('(x)) = A'�(x) for each x,

where A' is “simpler” than '

Invariants: �('(x)) = �(x) for each x.
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• A global symmetry is an operator                  that leaves 
f invariant: 

• They can be absorbed by     to varying degrees:

• What are those symmetries? How to impose them on    
without breaking discriminability?

Invariance and Symmetry
' 2 Aut(⌦)

8 x 2 ⌦ , f('(x)) = f(x) .

�

Covariants: �('(x)) = A'�(x) for each x,

where A' is “simpler” than '

Invariants: �('(x)) = �(x) for each x.

�
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Discrete symmetries

• Which transformations leave this square unchanged?
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Discrete symmetries

• Which transformations leave this square unchanged?

• They form a group

(from http://www.cs.umb.edu/~eb/)
38
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Discrete symmetries

• Which transformations leave this square unchanged?

• The set of all symmetries forms a group     :
- group operation:  

- identity element:

- inverse:

(from http://www.cs.umb.edu/~eb/)

G

8 g1, g2 2 G, g1 · g2 2 G .

9e 2 G s.t. g · e = e · g = g 8 g 2 G .

8 g 2 G 9 g�1 2 G s.t. g · g�1 = e .

39

http://www.cs.umb.edu/~eb/


• Which transformations leave this square unchanged?

• Discrete groups are completely characterized by their 
multiplication table:

Discrete symmetries

(from http://www.cs.umb.edu/~eb/)
40
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Rigid transformation symmetries

• Which symmetries are we likely to find in image 
recognition problems?
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Rigid transformation symmetries

• Which symmetries are we likely to find in image 
recognition problems?

Translations: {'v ; v 2 R2}, with 'v(x)(u) = x(u� v).

v1 v2
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Rigid transformation symmetries

• Which symmetries are we likely to find in image 
recognition problems?

Dilations: {'s ; s 2 R+}, with 's(x)(u) = s

�1
x(s

�1
u).
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Rigid transformation symmetries

• Which symmetries are we likely to find in image 
recognition problems?

Rotations: {'✓ ; ✓ 2 [0, 2⇡)}, with '✓(x)(u) = x(R✓u).
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Rigid transformation symmetries

• Which symmetries are we likely to find in image 
recognition problems?

Mirror symmetry: {e ,M}, with Mx(u1, u2) = x(�u1, u2).
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Rigid transformation symmetries

• We can combine all these transformations into a single 
group, the Affine Group           .

• It has 6 degrees of freedom; in the representation

A↵(R2)

✓
u1

u2

◆
7!

✓
v1
v2

◆
+

✓
a1 a2
a3 a4

◆✓
u1

u2

◆

g = (v1, v2, a1, a2, a3, a4)
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Rigid transformation symmetries

• We can combine all these transformations into a single 
group, the Affine Group           .

• It has 6 degrees of freedom; in the representation

• Note that this is in general a non-commutative group.
• For some groups, we might only observe partial 

invariance (e.g. rotation and dilation). 

A↵(R2)

✓
u1

u2

◆
7!

✓
v1
v2

◆
+

✓
a1 a2
a3 a4

◆✓
u1

u2

◆

g = (v1, v2, a1, a2, a3, a4)
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Rigid transformation symmetries
• We can combine all these transformations into a single 

group, the Affine Group           .

• It has 6 degrees of freedom; in the representation

• Note that this is in general a non-commutative group.
• For some groups, we might only observe partial invariance 

(e.g. rotation and dilation). 
• In speech, the underlying group modeling time-frequency 

shifts is the Heisenberg group.

A↵(R2)

✓
u1

u2

◆
7!

✓
v1
v2

◆
+

✓
a1 a2
a3 a4

◆✓
u1

u2

◆

g = (v1, v2, a1, a2, a3, a4)
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Invariant Representations

• Given a transformation group G and an input x, the action 
of G onto x is called an orbit:

G · x = {'g(x) , g 2 G}

x

'g(x)
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Invariant Representations

• Given a transformation group G and an input x, the action of 
G onto x is called an orbit:

• Impact on the learning task? 
• Since our estimator is linear in       ,             should be “flat”.

G · x = {'g(x) , g 2 G}

x

'g(x)

�(x) �(G · x)
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Invariant Representations

• Problem?

G · x = {'g(x) , g 2 G}

x

'g(x)
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Invariant Representations

• Problem? A 6-dimensional curvy space looks flat in a 
high-dimensional space.

G · x = {'g(x) , g 2 G}

x

'g(x)
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Invariant Representations

• Problem? A 6-dimensional curvy space looks flat in a 
high-dimensional space.

• Group symmetries are not sufficient to beat the curse of 
dimensionality.

G · x = {'g(x) , g 2 G}

x

'g(x)
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From Invariance to Stability

• Symmetry is a very strict criteria. Can we relax it?
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From Invariance to Stability

• Symmetry is a very strict criteria. Can we relax it?

• Although image and audio recognition does not have 
high-dimensional symmetry groups, it is stable to local 
deformations.

x⌧ = '⌧ (x) , x⌧ (u) = x(u� ⌧(u))

x 2 L

2
(Rm

) , ⌧ : Rm ! Rm
di↵eomorphism

'⌧ is a change of variables: (think of x⌧ as adding

noise to the pixel locations rather than to the pixel values)
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• Informally, if       measures the amount of deformation, 
many recognition tasks satisfy 

From Invariance to Stability

k⌧k

8 x, ⌧, |f(x)� f(x⌧ )| . k⌧k
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• Informally, if       measures the amount of deformation, 
many recognition tasks satisfy  

• If our representation is stable, then

From Invariance to Stability

k⌧k

8 x, ⌧, k�(x)� �(x⌧ )k  Ck⌧k =) |f̂(x)� f̂(x⌧ )|  C̃k⌧k

8 x, ⌧, |f(x)� f(x⌧ )| . k⌧k
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Filling the space with deformations

symmetry group: low dimension

x

x

deformations fill the space
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Deformations in Image/Audio Recognition

• Can model 3D viewpoint changes, changes in pitch/
timbre in speech recognition.
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Deformations in Image/Audio Recognition
• Can model 3D viewpoint changes, changes in pitch/timbre 

in speech recognition.
• Deformable parts model [Feltzenszwalb et al, ’10] 

- State-of-the-art on object detection pre-CNN.
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Deformations in Image/Audio Recognition

• Can model 3D viewpoint changes, changes in pitch/
timbre in speech recognition.

• Deformable templates [Grenader, Younes, Trouvé, Amit et 
al.]
- Equip deformable templates with differentiable structure
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Deformations in Image/Audio Recognition

• Can model 3D viewpoint changes, changes in pitch/
timbre in speech recognition.

• Deformable templates [Grenader, Younes, Trouvé, Amit et 
al.]
- Equip deformable templates with differentiable structure

• Data augmentation in Object classification
– Mostly rigid transformations (random shifts, flips).
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• We introduced the stability condition

Stability Condition

8 x, ⌧, k�(x)� �(x⌧ )k . k⌧k .
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Stability Condition

• We introduced the stability condition 

• If we fix the ‘template’ x and consider the mapping

the previous condition becomes 

thus F is Lipschitz with respect to the deformation metric
       uniformly on     .

8 x, ⌧, k�(x)� �(x⌧ )k . k⌧k .

F : ⌧ 7! �(x⌧ )

kF (⌧)� F (0)k  Ck⌧k ,

k⌧k
x
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Stationarity Prior

• Two clips. Goal: distinguish which is which.

clip1 clip2 clip ?
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Stationarity Prior

• Same experiment. Goal: distinguish which is which.

clip3 clip4 clip ?
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Stationarity Prior

• Same experiment. Goal: distinguish which is which.

• Typically, the latter is harder. Reasons?

clip3 clip4 clip ?

“Summary Statistics in auditory perception”, McDermott & Simoncelli, Nature Neurosc.’13
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Stationarity Prior

• Same experiment. Goal: distinguish which is which.

• Typically, the latter is harder. Reasons?
• Despite having more information, the discrimination is 

worse because we construct temporal averages in 
presence of stationary inputs.

clip3 clip4 clip ?

“Summary Statistics in auditory perception”, McDermott & Simoncelli, Nature Neurosc.’13

68



Representation of Stationary Processes 
x(u): realizations of a stationary process X(u) (not Gaussian)
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Representation of Stationary Processes
x(u): realizations of a stationary process X(u) (not Gaussian)

Discriminability: need to capture high-order moments

�(X) = {E(fi(X))}i

Stability: E(kb�(X)� �(X)k2) small

b�(X) =

(
1

N

X

n

fi(x)(n)

)

i

Estimation from samples x(n):
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Ergodicity

• Which class of processes satisfy the following?

8 i ,

1

N

X

n

fi(x)(n) ! E(fi(X)) (N ! 1)
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Ergodicity

• Which class of processes satisfy the following?

• These are called ergodic processes. 
- In statistical physics, a process with an Integral Scale is ergodic.
- In statistics, linear processes are ergodic (provided the moments are 

finite).

8 i ,

1

N

X

n

fi(x)(n) ! E(fi(X)) (N ! 1)
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Class-specific variability

• Besides deformations and stationary variability, object 
recognition is exposed to much more complex variability:

• clutter
• class-specific diversity
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