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Planning of remaining lectures
• Lecture 19 

– Optimization, Estimation and Approximation
– Stochastic optimization
– First order methods, Nesterov Momentum

• Lecture 20: Guest Speaker: Soumith Chintala (FAIR)
• Lecture 21

– Fighting Overfitting: Dropout
– Fighting Covariance Shift: Batch Normalization

• Lecture 22
– Tensor Methods, SDPs and Optimization.
– Statistical Physics

• Lecture 23: Guest Speaker: Yann Dauphin (FAIR)
• Lectures 24-25: Oral Presentations/ Open Problems.
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From unsupervised to self-supervised learning
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From unsupervised to self-supervised learning

• So far, we have seen models that attempt to estimate a 
density of the input domain 
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From unsupervised to self-supervised learning

• So far, we have seen models that attempt to estimate a 
density of the input domain 

• Chained Bayes Rule: for any ordering                        of 
the coordinates we have
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From unsupervised to self-supervised learning

• So far, we have seen models that attempt to estimate a 
density of the input domain 

• Chained Bayes Rule: for any ordering                        of 
the coordinates we have

• Q: In which situations is it better to use the factorized?
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• Temporally ordered data
– Speech, Music
– Video
– Language
– Other time series (Weather, Finance, …)

• Spatially ordered data, Multi-Resolution data
– Images

• Learning is thus reduced to the problem of conditional 
prediction.
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Word2vec [Mikolov et al.’13].

• Unsupervised learning “success story”.
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Word2vec [Mikolov et al.’13].

• Unsupervised learning “success story”.

• Language creates a notion of similarity between words:
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Word2vec [Mikolov et al.’13].

• Unsupervised learning “success story”.

• Language creates a notion of similarity between words:

• Goal: find a word representation                  that 
expresses this similarity as a dot product 
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words w1, w2 are similar if they are “exchangeable”

i.e., they appear often within the same context.
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Word2vec [Mikolov et al.’13].
• Main idea: Skip-gram with negative sampling. 
• Construct a “training set” 

• positive pairs                          of (words, contexts) appearing in 
a huge language corpus.

• negative pairs                               of (words, contexts) not 
appearing in the corpus.

D = {(wk, ck)}k

D0 = {(wk0 , ck0)}k0
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• Main idea: Skip-gram with negative sampling. 
• Construct a “training set” 

• positive pairs                          of (words, contexts) appearing in 
a huge language corpus.

• negative pairs                               of (words, contexts) not 
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Word2vec [Mikolov et al.’13].
• Main idea: Skip-gram with negative sampling. 
• Construct a “training set” 

• positive pairs                          of (words, contexts) appearing in 
a huge language corpus.

• negative pairs                               of (words, contexts) not 
appearing in the corpus.

• Model the probability of a pair         being positive as  

• Training with Maximum Likelihood:
argmax
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• Can be seen as an implicit matrix factorization using a 
mutual information criteria [Yoav & Goldberg,’14].

• Huge impact on Google’s business bottom-line. 
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Word2vec [Mikolov et al.’13].
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Video Prediction

• Rather than modeling the density of natural images 

• we may be also interested in modeling the conditional 
distributions                          where        is temporally 
ordered data. 
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Video Prediction

• Rather than modeling the density of natural images 

• we may be also interested in modeling the conditional 
distributions                          where        is temporally 
ordered data. 

• Similarly, can we find a signal representation         that is 
consistent with the “video language” metric? i.e.  

• This is the objective of Slow Feature Analysis [Sejnowski et al’02, 
Cadieu& Olshausen’10 and many others]. 
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Video Prediction

• [Mathieu, Couprie, LeCun,’16]:  Conditional video 
prediction using CNNs and an adversarial cost: 
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Published as a conference paper at ICLR 2016

Figure 4: Results on 3 video clips from Sport1m. Training: 4 inputs, 1 output. Second output
computed recursively.

Input frames Ground truth `2 result

`1 result GDL `1 result Adversarial result Adversarial+GDL result

Input frames Ground truth `2 result

`1 result GDL `1 result Adversarial result Adversarial+GDL result

Input frames Ground truth `2 result

`1 result GDL `1 result Adversarial result Adversarial+GDL result

We note that the results of Ranzato et al. appear slightly lighter than our results because of a nor-
malization that does not take place in the original images, therefore the errors given here are not
reflecting the full capacity of their approach. We tried to apply the blind deconvolution method of
Krishnan et al. (2011) to improve Ranzato et al. and our different results. As expected, the obtained
sharpness scores are higher, but the image similarity measures are deteriorated because often the
contours of the predictions do not match exactly the targets. More importantly, Ranzato et al. results
appear to be more static in moving areas. Visually, the optical flow result appears similar to the
target, but a closer look at thin details reveals that lines, heads of people are bent or squeezed.

4 CONCLUSION

We provided a benchmark of several strategies for next frame prediction, by evaluating the quality
of the prediction in terms of Peak Signal to Noise Ratio, Structural Similarity Index Measure and
image sharpness. We display our results on small UCF video clips at http://cs.nyu.edu/
˜

mathieu/iclr2016.html. The presented architectures and losses may be used as building
blocks for more sophisticated prediction models, involving memory and recurrence. Unlike most
optical flow algorithms, the model is fully differentiable, so it can be fine-tuned for another task if
necessary. Future work will deal with the evaluation of the classification performances of the learned
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Patch Relative Configuration [Doerch et al.’15]

• Generalize the idea of positive, negative pairs to a multi-
class classification problem about spatial configurations.
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• Premise: A patch representation        that does well in 
this task indirectly builds object priors.

• The criterion is not generative, but it retains enough 
information to generalize to other tasks.
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• Retrieval tasks:

• The representation captures visual similarity, leveraged in 
object detection, retrieval, etc.

20

Patch Relative Configuration [Doerch et al.’15]

Input Random Initialization ImageNet AlexNet Ours 

Figure 4. Examples of patch clusters obtained by nearest neighbors. The query patch is shown on the far left. Matches are for three different
features: fc6 features from a random initialization of our architecture, AlexNet fc7 after training on labeled ImageNet, and the fc6 features
learned from our method. Queries were chosen from 1000 randomly-sampled patches. The top group is examples where our algorithm
performs well; for the middle AlexNet outperforms our approach; and for the bottom all three features work well.

ply by detecting the separation between green and magenta
(red + blue). Once the network learns the absolute location
on the lens, solving the relative location task becomes triv-
ial. To deal with this problem, we experimented with two
types of pre-processing. One is to shift green and magenta
toward gray (‘projection’). Specifically, let a = [�1, 2,�1]
(the ’green-magenta color axis’ in RGB space). We then
define B = I � a

T
a/(aaT ), which is a matrix that sub-

tracts the projection of a color onto the green-magenta color
axis. We multiply every pixel value by B. An alternative ap-
proach is to randomly drop 2 of the 3 color channels from
each patch (‘color dropping’), replacing the dropped colors
with Gaussian noise (standard deviation ⇠ 1/100 the stan-
dard deviation of the remaining channel). For qualitative
results, we show the ‘color-dropping’ approach, but found
both performed similarly; for the object detection results,

we show both results.
Implementation Details: We use Caffe [27], and train on
the ImageNet [10] 2012 training set ( 1.3M images), using
only the images and discarding the labels. First, we resize
each image to between 150K and 450K total pixels, preserv-
ing the aspect-ratio. From these images, we sample patches
at resolution 96-by-96. For computational efficiency, we
only sample the patches from a grid like pattern, such that
each sampled patch can participate in as many as 8 separate
pairings. We allow a gap of 48 pixels between the sampled
patches in the grid, but also jitter the location of each patch
in the grid by �7 to 7 pixels in each direction. We prepro-
cess patches by (1) mean subtraction (2) projecting or drop-
ping colors (see above), and (3) randomly downsampling
some patches to as little as 100 total pixels, and then upsam-
pling it, to build robustness to pixelation. When applying
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Pixel Recurrent Networks

• Prediction tasks of the form                              require 
a loss or an associated likelihood 
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Pixel Recurrent Networks

• Prediction tasks of the form                              require 
a loss or an associated likelihood 

• In discrete domains we simply use a multinomial loss, in 
continuous domains there is no principled choice. 

• How about images?
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Pixel Recurrent Networks

• Prediction tasks of the form                              require 
a loss or an associated likelihood 

• In discrete domains we simply use a multinomial loss, in 
continuous domains there is no principled choice. 

• How about images?
• We can treat them as discrete two-dimensional grids 

• Model each pixel from its “past” context:
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x(u) 2 {0, 255}
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Pixel Recurrent Networks [v.d.Oord et al’16]

• Contexts are modeled using “diagonal BiLSTMS”. 

• Multi-Scale architecture conditions generations upon low-
resolution samples (similarly as in LAPGANS).

• Very deep Recurrent Networks (> 10 layers). 
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Pixel Recurrent Neural Networks
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Figure 2. Left: To generate pixel xi one conditions on all the pre-
viously generated pixels left and above of xi. Center: Illustration
of a Row LSTM with a kernel of size 3. The dependency field of
the Row LSTM does not reach pixels further away on the sides
of the image. Right: Illustration of the two directions of the Di-
agonal BiLSTM. The dependency field of the Diagonal BiLSTM
covers the entire available context in the image.

Figure 3. In the Diagonal BiLSTM, to allow for parallelization
along the diagonals, the input map is skewed by offseting each
row by one position with respect to the previous row. When the
spatial layer is computed left to right and column by column, the
output map is shifted back into the original size. The convolution
uses a kernel of size 2⇥ 1.

(2015); Uria et al. (2014)). By contrast we model p(x) as
a discrete distribution, with every conditional distribution
in Equation 2 being a multinomial that is modeled with a
softmax layer. Each channel variable xi,⇤ simply takes one
of 256 distinct values. The discrete distribution is represen-
tationally simple and has the advantage of being arbitrarily
multimodal without prior on the shape. Experimentally we
also find the discrete distribution to be easy to learn and
to produce better performance compared to a continuous
distribution (Section 5).

3. Pixel Recurrent Neural Networks

In this section we describe the architectural components
that compose the PixelRNN. In Sections 3.1 and 3.2, we
describe the two types of LSTM layers that use convolu-
tions to compute at once the states along one of the spatial
dimensions. In Section 3.3 we describe how to incorporate
residual connections to improve the training of a PixelRNN
with many LSTM layers. In Section 3.4 we describe the
softmax layer that computes the discrete joint distribution
of the colors and the masking technique that ensures the
proper conditioning scheme. In Section 3.5 we describe the
PixelCNN architecture. Finally in Section 3.6 we describe
the multi-scale architecture.

3.1. Row LSTM

The Row LSTM is a unidirectional layer that processes
the image row by row from top to bottom computing fea-
tures for a whole row at once; the computation is per-
formed with a one-dimensional convolution. For a pixel
xi the layer captures a roughly triangular context above the
pixel as shown in Figure 2 (center). The kernel of the one-
dimensional convolution has size k ⇥ 1 where k � 3; the
larger the value of k the broader the context that is captured.
The weight sharing in the convolution ensures translation
invariance of the computed features along each row.

The computation proceeds as follows. An LSTM layer has
an input-to-state component and a recurrent state-to-state
component that together determine the four gates inside the
LSTM core. To enhance parallelization in the Row LSTM
the input-to-state component is first computed for the entire
two-dimensional input map; for this a k ⇥ 1 convolution is
used to follow the row-wise orientation of the LSTM itself.
The convolution is masked to include only the valid context
(see Section 3.4) and produces a tensor of size 4h⇥ n⇥ n,
representing the four gate vectors for each position in the
input map, where h is the number of features in the LSTM
layer.

To compute one step of the state-to-state component of
the LSTM layer, one is given the previous hidden and cell
states hi�1 and ci�1, each of size h ⇥ n ⇥ 1. The new
hidden and cell states hi, ci are obtained as follows:

[oi, fi, ii,gi] = �(Kss ~ hi�1 + K

is ~ xi)

ci = fi � ci�1 + ii � gi

hi = oi � tanh(ci)

(3)

where xi of size h ⇥ n ⇥ 1 is row i of the input map, and
~ represents the convolution operation and � the element-
wise multiplication. The weights K

ss and K

is are the
kernel weights for the state-to-state and the input-to-state
components, where the latter is precomputed as described
above. In the case of the output, forget and input gates
oi, fi and ii, the activation � is the logistic sigmoid func-
tion, whereas for the content gate gi, � is the tanh func-
tion. Each step computes at once the new state for an en-
tire row of the input map. Since the Row LSTM layer is
unidirectional, it is relatively fast, but it has a considerable
drawback. Due to its roughly triangular shape, the recep-
tive field induced by the layer misses a large portion of the
previously generated context corresponding to the areas on
either side of the current pixel. For example, for a value
of k = 3 for the state-to-state convolution, which we find
gives the best performance in the experiments, the recep-
tive field for the pixels near the center of the image misses
roughly half of the generated context (Figure 2).



• State-of-the-art image generation and modeling. 
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Pixel Recurrent Neural Networks

Figure 6. Samples from models trained on CIFAR-10 (left) and ImageNet 32x32 (right) images. In general we can see that the models
capture local spatial dependencies relatively well. The ImageNet model seems to be better at capturing more global structures than the
CIFAR-10 model. The ImageNet model was larger and trained on much more data, which explains the qualitative difference in samples.

No skip Skip

No residual: 3.22 3.09
Residual: 3.07 3.06

Table 2. Effect of residual and skip connections in the Row LSTM
network evaluated on the Cifar-10 validation set in bits/dim.

with increased depth. This holds for up to the 12 LSTM
layers that we tried.

# layers: 1 2 3 6 9 12

NLL: 3.30 3.20 3.17 3.09 3.08 3.06

Table 3. Effect of the number of layers on the negative log likeli-
hood evaluated on the CIFAR-10 validation set and measured in
bits/dim.

5.5. MNIST

Although the goal of our work was to model natural images
on a large scale, we also tried our model on the binary ver-
sion (Salakhutdinov & Murray, 2008) of MNIST (LeCun
et al., 1998) as it is a good sanity check and there is a lot
of previous art on this dataset to compare with. In Table 4
we report the performance of the Diagonal BiLSTM model
and that of previous published results. To our knowledge
this is the best reported result on MNIST so far.

Model NLL Test

DBM 2hl [1]: ⇡ 84.62
DBN 2hl [2]: ⇡ 84.55
NADE [3]: 88.33
EoNADE 2hl (128 orderings) [3]: 85.10
EoNADE-5 2hl (128 orderings) [4]: 84.68
DLGM [5]: ⇡ 86.60
DLGM 8 leapfrog steps [6]: ⇡ 85.51
DARN 1hl [7]: ⇡ 84.13
MADE 2hl (32 masks) [8]: 86.64
DRAW [9]:  80.97

Diagonal BiLSTM (1 layer, h = 32): 80.75
Diagonal BiLSTM (7 layers, h = 16): 79.20

Table 4. Test set performance of different models on MNIST
in nats (negative log-likelihood). Prior results taken from [1]
(Salakhutdinov & Hinton, 2009), [2] (Murray & Salakhutdinov,
2009), [3] (Uria et al., 2014), [4] (Raiko et al., 2014), [5] (Rezende
et al., 2014), [6] (Salimans et al., 2015), [7] (Gregor et al., 2014),
[8] (Germain et al., 2015), [9] (Gregor et al., 2015).

5.6. CIFAR-10

Next we test our models on the CIFAR-10 dataset
(Krizhevsky, 2009). Table 5 lists the results of our mod-
els and that of previously published approaches. For the
proposed networks, the Diagonal BiLSTM has the best
performance, followed by the Row LSTM and the Pixel-
CNN. This coincides with the size of the respective recep-
tive fields: the Diagonal BiLSTM has a global view, the
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occluded completions original occluded completions original

Figure 8. Image completions sampled from a model that was trained on 32x32 ImageNet images. Note that diversity of the completions
is high, which can be attributed to the log-likelihood loss function used in this generative model, as it encourages models with high
entropy. As these are sampled from the model, we can easily generate millions of different completions. It is also interesting to see that
textures such as water, wood and shrubbery are also inputed relative well (see Figure 1).

trained to model the raw RGB pixel values of images. We
treated the pixel values as discrete random variables by us-
ing a softmax layer in the conditional distributions. We em-
ployed masked convolutions to allow PixelRNNs to model
full dependencies between the color channels. We pro-
posed and evaluated architectural improvements in these
models resulting in PixelRNNs with up to 12 LSTM lay-
ers.

We have shown that the PixelRNNs significantly improve
the state of the art on the Binary MNIST and CIFAR-10
datasets. We also provide new benchmarks for generative
image modeling on the ImageNet dataset. Based on the
samples and completions drawn from the models we can
conclude that the PixelRNNs are able to model both spa-
tially local and long-range correlations and are able to pro-
duce images that are sharp and coherent. Given that these
models improve as we make them larger and that there is
practically unlimited data available to train on, more com-
putation and larger models are likely to further improve the
results.
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• MNIST and Cifar-10 log-likelihoods:
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Pixel Recurrent Neural Networks

Figure 7. Samples from models trained on ImageNet 64x64 images. Left: normal model, right: multi-scale model. We can see that the
single-scale model trained 64x64 images is less able to capture global structure than the 32x32 model. The multi-scale model seems to
resolve this problem. Although these models get similar performance in log-likelihood, the samples on the right do seem globally more
coherent.

Model NLL Test (Train)

Uniform Distribution: 8.00
Multivariate Gaussian: 4.70
NICE [1]: 4.48
Deep Diffusion [2]: 4.20
Deep GMMs [3]: 4.00
RIDE [4]: 3.47

PixelCNN: 3.14 (3.08)
Row LSTM: 3.07 (3.00)
Diagonal BiLSTM: 3.00 (2.93)

Table 5. Test set performance of different models on CIFAR-10 in
bits/dim. For our models we give training performance in brack-
ets. [1] (Dinh et al., 2014), [2] (Sohl-Dickstein et al., 2015), [3]
(van den Oord & Schrauwen, 2014a), [4] personal communication
(Theis & Bethge, 2015).

Row LSTM has a partially occluded view and the Pixel-
CNN sees the fewest pixels in the context. This suggests
that effectively capturing a large receptive field is impor-
tant. Figure 6 (left) shows CIFAR-10 samples generated
from the Diagonal BiLSTM.

5.7. ImageNet

Although to our knowledge the are no published results on
the ILSVRC ImageNet dataset (Russakovsky et al., 2015)
that we can compare our models with, we give our Ima-
geNet log-likelihood performance in Table 6. On ImageNet
the current PixelRNNs do not appear to overfit, as we saw
that their validation performance improved with size and

Image size NLL Validation (Train)

32x32: 3.86 (3.83)
64x64: 3.63 (3.57)

Table 6. Negative log-likelihood performance on 32⇥32 and 64⇥
64 ImageNet in bits/dim.

depth. The main constraint on model size are currently
computation time and GPU memory.

Note that the ImageNet models are in general less com-
pressible than the CIFAR-10 images. ImageNet has greater
variety of images, and the images were most likely resized
with a different algorithm than the one we used for images.
The ImageNet images are less blurry, which means neigh-
boring pixels are less correlated to each other and thus less
predictable. Because the downsampling method can in-
fluence the compression performance, we will release the
used downsampled images.

Figure 6 (right) shows 32 ⇥ 32 samples drawn from our
model trained on ImageNet. Figure 7 shows 64 ⇥ 64 sam-
ples from the same model with and without multi-scale
conditioning. Finally, we also show image completions
sampled from the model in Figure 8.

6. Conclusion

In this paper we significantly improve and build upon deep
recurrent neural networks as generative models for natural
images. We have described novel two-dimensional LSTM
layers: the Row LSTM and the Diagonal BiLSTM, that
scale more easily to larger datasets. The models were

Pixel Recurrent Neural Networks

Figure 6. Samples from models trained on CIFAR-10 (left) and ImageNet 32x32 (right) images. In general we can see that the models
capture local spatial dependencies relatively well. The ImageNet model seems to be better at capturing more global structures than the
CIFAR-10 model. The ImageNet model was larger and trained on much more data, which explains the qualitative difference in samples.

No skip Skip

No residual: 3.22 3.09
Residual: 3.07 3.06

Table 2. Effect of residual and skip connections in the Row LSTM
network evaluated on the Cifar-10 validation set in bits/dim.

with increased depth. This holds for up to the 12 LSTM
layers that we tried.

# layers: 1 2 3 6 9 12

NLL: 3.30 3.20 3.17 3.09 3.08 3.06

Table 3. Effect of the number of layers on the negative log likeli-
hood evaluated on the CIFAR-10 validation set and measured in
bits/dim.

5.5. MNIST

Although the goal of our work was to model natural images
on a large scale, we also tried our model on the binary ver-
sion (Salakhutdinov & Murray, 2008) of MNIST (LeCun
et al., 1998) as it is a good sanity check and there is a lot
of previous art on this dataset to compare with. In Table 4
we report the performance of the Diagonal BiLSTM model
and that of previous published results. To our knowledge
this is the best reported result on MNIST so far.

Model NLL Test

DBM 2hl [1]: ⇡ 84.62
DBN 2hl [2]: ⇡ 84.55
NADE [3]: 88.33
EoNADE 2hl (128 orderings) [3]: 85.10
EoNADE-5 2hl (128 orderings) [4]: 84.68
DLGM [5]: ⇡ 86.60
DLGM 8 leapfrog steps [6]: ⇡ 85.51
DARN 1hl [7]: ⇡ 84.13
MADE 2hl (32 masks) [8]: 86.64
DRAW [9]:  80.97

Diagonal BiLSTM (1 layer, h = 32): 80.75
Diagonal BiLSTM (7 layers, h = 16): 79.20

Table 4. Test set performance of different models on MNIST
in nats (negative log-likelihood). Prior results taken from [1]
(Salakhutdinov & Hinton, 2009), [2] (Murray & Salakhutdinov,
2009), [3] (Uria et al., 2014), [4] (Raiko et al., 2014), [5] (Rezende
et al., 2014), [6] (Salimans et al., 2015), [7] (Gregor et al., 2014),
[8] (Germain et al., 2015), [9] (Gregor et al., 2015).

5.6. CIFAR-10

Next we test our models on the CIFAR-10 dataset
(Krizhevsky, 2009). Table 5 lists the results of our mod-
els and that of previously published approaches. For the
proposed networks, the Diagonal BiLSTM has the best
performance, followed by the Row LSTM and the Pixel-
CNN. This coincides with the size of the respective recep-
tive fields: the Diagonal BiLSTM has a global view, the



Self-supervised vs Unsupervised

• Two views on the same underlying problem: How to 
measure errors in our models?
– Self-supervision finds useful proxies that ensure enough 

discriminative information is kept. 
– Unconditional probabilistic models define a similarity kernel via the 

Fisher kernel. 

• Depending on the application/ dataset, the indirect route 
might be more effective than the direct one. 
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Optimization in Deep Learning
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Optimization Set-up 

• Our general problem is of the form

30

Unsupervised Learning:Supervised Learning:

min
�

Ez⇠⇡f(z;�) := F (�) .

z = (x, y)

f(x, y;�) = log p(y|x;�) = `(y,�(x))

⇡ : joint data/labels distribution

z = x

f(x;�) = log�(x)

⇡ : data distribution



Optimization Set-up 

• Challenges:
– Statistical: The function    to be optimized is unknown: only access to 

an estimator

31

F

min
�

Ez⇠⇡f(z;�) := F (�) .

F̂n(�) =
1

n

X

in

f(zi,�) , {zi}in : training set.



Optimization Set-up 

• Challenges:
– Statistical: The function    to be optimized is unknown: only access to 

an estimator

– Analytical: In practice, we search within a parametric functional class

32

F

min
�

Ez⇠⇡f(z;�) := F (�) .

F̂n(�) =
1

n

X

in

f(zi,�) , {zi}in : training set.

F = {� = �( · ;⇥) ; ⇥ 2 X}



Optimization Set-up 

• Challenges:
– Statistical: The function    to be optimized is unknown: only access to 

an estimator

– Analytical: In practice, we search within a parametric functional class 

– Numerical: Algorithms to optimize      . 
–What can we say when      is non-convex? 
–What is the convergence rate of iterative solutions to stationary 
points? 

33

F

min
�

Ez⇠⇡f(z;�) := F (�) .

F̂n(�) =
1

n

X

in

f(zi,�) , {zi}in : training set.

F = {� = �( · ;⇥) ; ⇥ 2 X}

F̂n

F̂n

k⇥(k) �⇥⇤k = O(h(k)) .



Decomposition of Error

• Define
�

⇤
= argmin

�
F (�) , optimal model ,

�

⇤
F = arg min

�2F
F (�) , optimal achievable model in F ,

�F,n = arg min

�2F
ˆFn(�) , optimal empirical model in F ,

e
�F,n = solution of our optimization of min

�2F
ˆFn(�) ,

[Bottou, Bousquet ’08]



Decomposition of Error

• Define

• Remark: we can also modify empirical risk minimization 
with a regularizer (structured risk minimization):

�

⇤
= argmin

�
F (�) , optimal model ,

�

⇤
F = arg min

�2F
F (�) , optimal achievable model in F ,

�F,n = arg min

�2F
ˆFn(�) , optimal empirical model in F ,

e
�F,n = solution of our optimization of min

�2F
ˆFn(�) ,

[Bottou, Bousquet ’08]

F̂n(⇥) =
1

n

X

in

f(zi,�(⇥)) + �R(⇥) ,



Decomposition of Error

• Define 

• Regret is decomposed as 

36

�

⇤
= argmin

�
F (�) , optimal model ,

�

⇤
F = arg min

�2F
F (�) , optimal achievable model in F ,

�F,n = arg min

�2F
ˆFn(�) , optimal empirical model in F ,

e
�F,n = solution of our optimization of min

�2F
ˆFn(�) ,

F (e�F,n)� F (�⇤) = F (�⇤
F )� F (�⇤)

+ F (�F,n)� F (�⇤
F )

+ F (e�F,n)� F (�F,n) .

(approximation error)

(estimation error)

(optimization error)

[Bottou, Bousquet ’08]



Constrained Approximation, Estimation and Optimization

• Our goal is thus to minimize regret with respect to  
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model F , optimization tolerance ⇢, number of examples n

subject to n  n
max

, compute time T  T
max

[Bottou, Bousquet ’08]



Constrained Approximation, Estimation and Optimization

• Our goal is thus to minimize regret with respect to  

• Constrained optimization trade-offs:

38

model F , optimization tolerance ⇢, number of examples n

subject to n  n
max

, compute time T  T
max

Approximation error decreases as F gets larger

Estimation error decreases as n gets larger.

Estimation error increases as F gets larger.

Optimization error increases as ⇢ gets larger.

[Bottou, Bousquet ’08]



Two learning regimes

• Small-scale learning problems: the active constraint is the 
number of examples: 

• Large-scale learning problems: the active constraint is the 
maximum computation time:  

39

[Bottou, Bousquet ’08]

n = n
max

.

T = T
max

.



Two learning regimes

• Small-scale learning problems: the active constraint is the 
number of examples: 

• Large-scale learning problems: the active constraint is the 
maximum computation time:  

• Statistical Learning Theory is mostly concerned with small-
scale learning problems. 

• Whereas small-scale learning problems can neglect the 
role of the optimization, large-scale problems cannot: 
generally it is not a good choice to fully optimize the 
empirical objective function. 
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[Bottou, Bousquet ’08]

n = n
max

.

T = T
max

.



• Q: How to control the estimation error?
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Empirical Risk Minimization



• Q: How to control the estimation error?
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Empirical Risk Minimization

For a given � 2 F , we consider

F (�)� Fn(�) = E(f�(Z))� 1

n

X

i

f�(Zi)

consider first a bounded loss `(x, y)  b.



• Q: How to control the estimation error?
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Empirical Risk Minimization

For a given � 2 F , we consider

F (�)� Fn(�) = E(f�(Z))� 1

n

X

i

f�(Zi)

A first idea is to use Hoe↵ding’s inequality:

P

0

@

������
E(f(Z))� 1

n

X

in

f(Zi)

������
> ✏

1

A  2 exp

✓
�2n✏2

b2

◆
, for f(Z) 2 [0, b] .

consider first a bounded loss `(x, y)  b.

It results that for any � and � > 0, with probability at least 1� �,

F (�)  Fn(�) + b

r
log 2/�

2n
.



• Q: How to control the estimation error?
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Empirical Risk Minimization

For a given � 2 F , we consider

F (�)� Fn(�) = E(f�(Z))� 1

n

X

i

f�(Zi)

A first idea is to use Hoe↵ding’s inequality:

P

0

@

������
E(f(Z))� 1

n

X

in

f(Zi)

������
> ✏

1

A  2 exp

✓
�2n✏2

b2

◆
, for f(Z) 2 [0, b] .

consider first a bounded loss `(x, y)  b.

It results that for any � and � > 0, with probability at least 1� �,

F (�)  Fn(�) + b

r
log 2/�

2n
.

Is this useful?



Empirical Risk Minimization
• We need to control the uniform deviations: 
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sup
�2F

|F (�)� Fn(�)|



Empirical Risk Minimization
• We need to control the uniform deviations: 
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sup
�2F

|F (�)� Fn(�)|

Suppose first that F is finite: F = {�1, . . . ,�N}.
For each member j of the family, Hoe↵ding says that the bad samples

Cj = {zi; i  n; |F (�j)� Fn(�j)| � ✏} .

have low probability: P (Cj)  � for all j.



Empirical Risk Minimization
• We need to control the uniform deviations: 
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sup
�2F

|F (�)� Fn(�)|

Suppose first that F is finite: F = {�1, . . . ,�N}.
For each member j of the family, Hoe↵ding says that the bad samples

Cj = {zi; i  n; |F (�j)� Fn(�j)| � ✏} .

have low probability: P (Cj)  � for all j.

Union bound: P ([jNCj) 
X

j

P (Cj)  N� .



Empirical Risk Minimization
• We need to control the uniform deviations: 
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sup
�2F

|F (�)� Fn(�)|

Suppose first that F is finite: F = {�1, . . . ,�N}.
For each member j of the family, Hoe↵ding says that the bad samples

Cj = {zi; i  n; |F (�j)� Fn(�j)| � ✏} .

have low probability: P (Cj)  � for all j.

Union bound: P ([jNCj) 
X

j

P (Cj)  N� .

It results that for all � > 0 whp 1� �

8 � 2 F , |F (�)� Fn(�)| 
r

logN � log �

2n
.



Empirical Risk Minimization

• Q: What if the family is infinite/ uncountable? 
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Empirical Risk Minimization

• Q: What if the family is infinite/ uncountable? 
• A: Vapnik-Chervonekis Theory projects an uncountable 

function class into the finite sample. 
• We recover the previous bound via the so-called VC-

dimension of the class. In the binary classification setting:

50

The VC dimension of a class F is the size of the largest set

{z1, . . . , zn} such that F can generate any classification result.



Empirical Risk Minimization

• Q: What if the family is infinite/ uncountable? 
• A: Vapnik-Chervonekis Theory projects an uncountable 

function class into the finite sample. 
• We recover the previous bound via the so-called VC-

dimension of the class. In the binary classification setting:

• For example, half-spaces in d dimensions have VC 
dimension d+1. 

51

The VC dimension of a class F is the size of the largest set

{z1, . . . , zn} such that F can generate any classification result.



Empirical Risk Minimization

• Q: What if the family is infinite/ uncountable? 
• A: Vapnik-Chervonekis Theory projects an uncountable 

function class into the finite sample. 
• We recover the previous bound via the so-called VC-

dimension of the class. In the binary classification setting:

52

The VC dimension of a class F is the size of the largest set

{z1, . . . , zn} such that F can generate any classification result.

If F has VC-dim d, with probability 1� �

sup

�2F
|F (�)� Fn(�)| .

r
d log n

n
.



Back to Estimation Error

• Using the previous bound we thus have
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F (�F,n)� F (�⇤
F ) = (F (�F,n)� Fn(�F,n)) + (Fn(�F,n)� Fn(�

⇤
F )) + (Fn(�

⇤
F )� F (�⇤

F ))

 2 sup
�2F

|F (�)� Fn(�)|

.
r

d

n
.



Back to Estimation Error

• Using the previous bound we thus have

• This bound is pessimistic. 
– Faster rates are available
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F (�F,n)� F (�⇤
F ) = (F (�F,n)� Fn(�F,n)) + (Fn(�F,n)� Fn(�

⇤
F )) + (Fn(�

⇤
F )� F (�⇤

F ))

 2 sup
�2F

|F (�)� Fn(�)|

.
r

d

n
.

e.g. O
⇣�

d
n log

n
d

�↵⌘
for ↵ 2 [1/2, 1].



Back to Estimation Error

• Using the previous bound we thus have

• This bound is pessimistic. 
– Faster rates are available 

• Joint Estimation and Optimization error: 

– so in practice we should choose  
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F (�F,n)� F (�⇤
F ) = (F (�F,n)� Fn(�F,n)) + (Fn(�F,n)� Fn(�

⇤
F )) + (Fn(�

⇤
F )� F (�⇤

F ))

 2 sup
�2F

|F (�)� Fn(�)|

.
r

d

n
.

e.g. O
⇣�

d
n log

n
d

�↵⌘
for ↵ 2 [1/2, 1].

E
est

+ E
opt

' O

✓✓
d

n
log

n

d

◆↵◆
+ ⇢ .

⇢ ' O

✓✓
d

n
log

n

d

◆↵◆



Influence of the Approximation Class

• For large datasets, we may want to use larger, richer 
approximation classes (e.g. huge Convnets). 
– Complexity bounds are intrinsically pessimistic, not realistic. 

• Regularization (structured risk minimization) entangles 
further the optimization and capacity of the signal class.

• Q: For a fixed signal class, how to make a principled 
choice of optimization algorithm?
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Iterative Optimization Algorithms

• [Bottou & Bousquet ’08] study four main iterative 
algorithms in the large-scale learning regime:
– Gradient Descent
– Second Order Gradient Descent (i.e. Newton method)
– Stochastic Gradient Descent (SGD)
– Second Order Gradient Descent. 

• Assumptions:
–  
–  

57

Signal class F is fixed,

loss functions w 7! `(�w(x), y) convex and twice di↵erentiable.

linearly parametrized by w 2 Rd: �w(x) = h�(x), wi.



Iterative Optimization

•  

58

Let H and G be respectively the Hessian and gradient covariance
matrices at the empirical optimum wn = argminw Fn(�w):

H =
@2Fn

@w2
(�wn) =

1

n

X

i

@2`(�w(xi), yi)

@w2

G =
1

n

X

i

✓
@`(�w(xi), yi)

@w

◆✓
@`(�w(xi), yi)

@w

◆T

.



Iterative Optimization

•  

• Suppose that 

•  
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Let H and G be respectively the Hessian and gradient covariance
matrices at the empirical optimum wn = argminw Fn(�w):

H =
@2Fn

@w2
(�wn) =

1

n

X

i

@2`(�w(xi), yi)

@w2

G =
1

n

X

i

✓
@`(�w(xi), yi)

@w

◆✓
@`(�w(xi), yi)

@w

◆T

.

�(H) ⇢ [�
min

,�
max

] , with �
min

> 0

tr(GH�1)  ⌫ .

Condition number:  = �
max

/�
min

.



Gradient Descent (GD)

•     
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wt+1 = wt � ⌘rwFn(�wt) .

When step size ⌘ = ��1
max

, O( log(⇢�1
)) iterations

to reach accuracy ⇢ (linear convergence).

Cost per Iterations Time to reach Time to reach

iteration to reach ⇢ accuracy ⇢ F (

˜

�n)� F (�

⇤
F < ✏

GD O(nd) O( log ⇢�1
) O(nd log ⇢�1

) O
�
d2✏�1/↵

log

2
(✏�1

)

�



Second Order Gradient Descent

• Optimization speed is much faster
• The problem does not depend on condition number.
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Cost per Iterations Time to reach Time to reach

iteration to reach ⇢ accuracy ⇢ F (

˜

�n)� F (�

⇤
F < ✏

GD O(nd) O( log ⇢�1
) O(nd log ⇢�1

) O
�
d2✏�1/↵

log

2
(✏�1

)

�

2GD O((n+ d)d) O(log log ⇢�1
) O((n+ d)d log log ⇢�1

) O
�
d2✏�1/↵

log log(✏�1
) log(✏�1

)

�

wt+1 = wt �H�1rwFn(�wt) , H�1
known in advance.



Stochastic Gradient Descent (SGD)

•   

•  

• Optimization speed is much worse than GD.
• However, learning speed is better.
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At each t, we draw random zt from training set.

wt+1 = wt �
⌘

t
rwf(�w(zt)) .

With ⌘ = ��1
min, we have kwt � wnk = O(1/

p
t).

Cost per Iterations Time to reach Time to reach

iteration to reach ⇢ accuracy ⇢ F (

˜

�n)� F (�

⇤
F ) < ✏

GD O(nd) O( log ⇢�1
) O(nd log ⇢�1

) O
�
d2✏�1/↵

log

2
(✏�1

)

�

2GD O((n+ d)d) O(log log ⇢�1
) O((n+ d)d log log ⇢�1

) O
�
d2✏�1/↵

log log(✏�1
) log(✏�1

)

�

SGD O(d) ⌫2⇢�1
+ o(⇢�1

) O(

d⌫2

⇢ ) O(

d⌫2

✏ )



Second Order Stochastic Gradient Descent (2SGD)

•   

• Iteration is more expensive, but less iterations.
• Constants are affected.
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At each t, we draw random zt from training set.

wt+1 = wt �
H�1

t
rwf(�w(zt)) .

Cost per Iterations Time to reach Time to reach

iteration to reach ⇢ accuracy ⇢ F (

˜

�n)� F (�

⇤
F ) < ✏

GD O(nd) O( log ⇢�1
) O(nd log ⇢�1

) O
�
d2✏�1/↵

log

2
(✏�1

)

�

2GD O((n+ d)d) O(log log ⇢�1
) O((n+ d)d log log ⇢�1

) O
�
d2✏�1/↵

log log(✏�1
) log(✏�1

)

�

SGD O(d) ⌫2⇢�1
+ o(⇢�1

) O(

d⌫2

⇢ ) O(

d⌫2

✏ )

2SGD O(d2) ⌫⇢�1
+ o(⇢�1

) O(

d2⌫
⇢ ) O(

d2⌫
✏ )



Accelerated Gradient Descent

• Gradient descent has rate 1/T after T steps. Lower bound 
is 1/T^2 amongst first order methods. 

• Q: How to improve using a first order method?
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Accelerated Gradient Descent

• Gradient descent has rate 1/T after T steps. Lower bound 
is 1/T^2 amongst first order methods. 

• Q: How to improve using a first order method?
• Use a momentum term (Nesterov,’83):
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�0 = 0 , �t =
1 +

q
1 + 4�2

t�1

2
, �t =

1� �t

�t+1
.

yt+1 = xt �
1

�

rf(xt) ,

xt+1 = (1� �t)yt+1 + �tyt .



Geometric Interpretation
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Geometric Interpretation
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