Stat 21 2b: Topics In Deep Learning
Lecture |9

Joan Bruna
UC Berkeley

IIIIIIIIIIIIIIIIIIIIII

Planning of remaining lectures

* Lecture |9
— Optimization, Estimation and Approximation
— Stochastic optimization

—First order methods, Nesterov Momentum

* Lecture 20: Guest Speaker: Soumith Chintala (FAIR)

* Lecture 2|

—Fighting Overfitting: Dropout

—Fighting Covariance Shift: Batch Normalization
* Lecture 22

— Tensor Methods, SDPs and Optimization.,
— Statistical Physics

* Lecture 23: Guest Speaker: Yann Dauphin (FAIR)

* Lectures 24-25: Oral Presentations/ Open Problems.

- From unsupervised to self-supervised learning

From unsupervised to self-supervised learning

* S0 far, we have seen models that attempt to estimate a
density of the input domain x € R"

p(z) = / p(R)p(zlh)dh , p(alh) = exp((n, B(z)) — A(61))

p(z) = po(®(z)) - |det VE(z)|~

From unsupervised to self-supervised learning

* S0 far, we have seen models that attempt to estimate a
density of the input domain z € R"

p(z) = / p(R)p(zlh)dh , p(alh) = exp((n, B(z)) — A(61))

p(z) = po(®(z)) - |det VE(z)|~

» Chained Bayes Rule: for any ordering (Zo(1); - - - s To(n)) of
the coordinates we have

p(x) = Hp(wa(i)\fa(l) . -fa(i—1)>

1<n

From unsupervised to self-supervised learning

* S0 far, we have seen models that attempt to estimate a
density of the input domain z € R"

p(z) = / p(R)p(zlh)dh , p(alh) = exp((n, B(z)) — A(61))
p(x) = po(®(x)) - | det V()| !

» Chained Bayes Rule: for any ordering (Zo(1); - - - s To(n)) of
the coordinates we have

p(z) = Hp(ﬂfa(i)|$a(1) E fl?a(z'—l))

1<n

e Q:In which situations is it better to use the factorized?

- From unsupervised to self-supervised learning

* l[emporally ordered data

— Speech, Music
—Video

—lLanguage

— Other time series (Weather, Finance, ...)

* Spatially ordered data, Multi-Resolution data

—lmages

* Learning Is thus reduced to the problem of conditional

prediction.
p(x) = 1p(Ts|TN()) i

* Unsupervised learning “success story'.

w1 Wo Wi

* Unsupervised learning “success story'.

w1 Wo Wi

* Language creates a notion of similarity between words:

words wy, wy are similar if they are “exchangeable”

i.e., they appear often within the same context.

* Unsupervised learning

w1 Wo Wi

* Language creates a no

‘success story'.

lon of similarrty between words:

words wy, wy are simi.
i.e., they appear often

ar if they are “exchangeable”

within the same context.

* Goal: find a word representation & (w;) € R%that
expresses this similarity as a dot product

sim(w;, wj) ~ (@(w;), ®(w;)) -

10

* Main idea: Skip-gram with negative sampling.

» Construct a “training set”

e positive pairs D = { (wg, ¢k) }x of (words, contexts) appearing in
a huge language corpus.

* negative pairs D' = {(wy/, ¢)} of (words, contexts) not
appearing in the corpus.

* Main idea: Skip-gram with negative sampling.

» Construct a “training set”

e positive pairs D = { (wg, ¢k) }x of (words, contexts) appearing in
a huge language corpus.

* negative pairs D" = {(wy, ¢) b of (words, contexts) not
appearing in the corpus.

* Model the probabillity of a pair (w, c) being positive as
p(D = 1lc, w) = 0({(Vy,ve)) , V,ve € R 1

7(r) = 1+e*

Word2vec [Mikolov et al.' | 3],

* Main idea: Skip-gram with negative sampling.

» Construct a “training set”

e positive pairs D = { (wg, ¢k) }x of (words, contexts) appearing in
a huge language corpus.

» negative pairs D" = {(wy, cxr)} of (words, contexts) not
appearing in the corpus.
* Model the probability of a pair (w, c) being positive as
p(D = 1lc, w) = 0({(Vy,ve)) , V,ve € R 1

o(x) = g
+ Training with Maximum Likelihood: o

arg max H p(D = 1|c,w, 0) H p(D = 0lc, w, 0)
(w,c)~D (w,c)~D’
arg max i log 0 ((Vy, Ve)) + i: log o (—(Ve, Ve))

0
 (w,e)~D / (w,c)~D’
D : positive contexts D’ : negative contexts

* Can be seen as an implicit matrix factorization using a
mutual information criteria [Yoav & Goldberg, [4].

* Huge impact on Google’s business bottom-line.

Country and Capital Vectors Projected by PCA
2 I 1 I |

l China:
Beijing
15+ Russia
Japan
1} "Moscow
Turkey Ankara *Tokyo
05 F
Poland:
0F Germany:
France Warsaw
« Berlin
0.5 | Italy: Paris
w - HAthens
Greece
1} Spain Rome
-15 F Poﬂdgal Lisbcxadrid

1 [google]

* Rather than modeling the density of natural images
p(z), v € R?

we may be also Interested iIn modeling the conditiona
distributions P(Zt+1]Z1, ..., 2t) where (Z¢)t is temporal
ordered data.

15

Video Prediction

* Rather than modeling the density of natural images
p(z), v € R?

we may be also Interested iIn modeling the conditiona
distributions P(Zt+1]Z1, ..., 2t) where (Zt)t is temporally
ordered data.

* Similarly, can we find a signal representation ®(z;) that Is
consistent with the “video language” metric! 1.e.

(@(x1), ®(x5)) =~ h(|t — s])

* This Is the objective of Slow Feature Analysis [Sejnowski et al'02,
Cadieu& Olshausen’| 0 and many others].

Mathi

nieu, Couprie, LeCun,

dred|

ction usmg CNNS anc

Adversarial result

 Conditional video

17

N adversarial cost:

Adversarial+GDL result

Adversarial+GDL result

» Generalize the i1dea of positive, negative pairs to a multi-

class classification problem about spatial configurations.

Unlabeled training image

!!!!!!

LA AL
: .. .D
- ® 9 .

ooooooo -

e, Wt
. . . .
- - ™ .
LR “aaw

''''''

N

CNN

Train Deep Net to recover relative position

18

Unlabeled training image

& L
Train Deep Net to recover relative position '%_é =

* Premise: A patch representation ®(x) that does well In
this task indirectly builds object priors.

* [he criterion Is not generative, but It retains enough
information to generalize to other tasks.

19

e Retrieval tasks:

Input Random Initialization

ImageNet AlexNet

Vv;"qli
L [_ .x@,

o
lllnlll

reis

RS \ . A\LL

t
)

LERER

= [
—_— —_— _— —_— —_— —_— _— —_— —_— _— —_— _— —_— _— —_— —_—
. -

* [he representation captures visual similarity, leveraged
object detection, retrieval, etc.

20

~ Pixel Recurrent Networks

* Prediction tasks of the form z,41 = F(x1,...,2¢) require
a loss or an associated likelihood
e.g. [|Te41 — $t+1H2 & p(@ilrr, .. ox) = N(F (21, 2), 1)

21

~ Pixel Recurrent Networks

* Prediction tasks of the form z,41 = F(x1,...,2¢) require
a loss or an associated likelihood
e.g. [|Te41 — $t+1H2 & p(@ilrr, .. ox) = N(F (21, 2), 1)

* [n discrete domains we simply use a multinomial loss, In
continuous domains there I1s no principled choice.

* How about images!

22

Pixel Recurrent Networks

* Prediction tasks of the form z,41 = F(x1,...,2¢) require
a loss or an associated likelihood
e.g. [|Te41 — $t+1|‘2 & p(@ilrr, .. ox) = N(F (21, 2), 1)

* In discrete domains we simply use a multinomial loss, In
continuous domains there Is no principled choice.

* How about images!

* We can treat them as discrete two-dimensional grids

r(u) € {0,255}

* Model each pixel from 1ts “past’” context:
p(z(u)|lz(v);v € Qu)) = softmax (P(x, Q(u)))

23

* Contexts are modeled using “diagonal BILSTMS".

I

HEEEEER EEEE
VIV Haiudl &
Haludl &

EENE

LM

* Multi-Scale architecture conditions generations upon low-
resolution samples (similarly as in LAPGANS).

* Very deep Recurrent Networks (> |0 layers).

* State-of- the art image generation and modeling.

llbﬂlﬁﬁhl

| Plxe\ Recurrent I\Ietvvorks [vd Qord et a\ \6] B

occluded completlons orlgmal
& # g e

occluded completions original

C LA AN AL
RS I R
A W

mh b el @

* MNIST and Cifar- 10 log-likelihoods:

Model NLL Test
DBM 2hl [1]: ~ 84.62
DBN 2hl [2]: ~ 84.55
NADE [3]: 88.33
EoNADE 2hl (128 orderings) [3]: 85.10
EoNADE-5 2hl (128 orderings) [4]: 84.68
DLGM [5]: ~ 86.60
DLGM 8 leapfrog steps [6]: ~ 85.51
DARN 1hl [7]: ~ 84.13
MADE 2hl (32 masks) [8]: 86.64
DRAW [9]: < 80.97
Diagonal BiLSTM (1 layer, h = 32): 80.75
Diagonal BiLSTM (7 layers, h = 16): 79.20

Table 4. Test set performance of different models on MNIST
in nats (negative log-likelihood). Prior results taken from [1]
(Salakhutdinov & Hinton, 2009), [2] (Murray & Salakhutdinov,
2009), [3] (Uriaet al., 2014), [4] (Raiko et al., 2014), [5] (Rezende
et al., 2014), [6] (Salimans et al., 2015), [7] (Gregor et al., 2014),
[8] (Germain et al., 2015), [9] (Gregor et al., 2015).

Model NLL Test (Train)
Uniform Distribution: 8.00
Multivariate Gaussian: 4.70

NICE [1]: 4.48

Deep Diffusion [2]: 4.20

Deep GMMs [3]: 4.00

RIDE [4]: 3.47
PixelCNN: 3.14 (3.08)
Row LSTM: 3.07 (3.00)
Diagonal BiLSTM: 3.00 (2.93)

Table 5. Test set performance of different models on CIFAR-10 in
bits/dim. For our models we give training performance in brack-
ets. [1] (Dinh et al., 2014), [2] (Sohl-Dickstein et al., 2015), [3]
(van den Oord & Schrauwen, 2014a), [4] personal communication
(Theis & Bethge, 2015).

27

* [wo views on the same underlying problem: How to
measure errors In our models!

— Self-supervision finds useful proxies that ensure enough
discriminative information is kept.

—Unconditional probabllistic models define a similarity kernel via the
Fisher kernel.

* Depending on the application/ dataset, the indirect route
might be more effective than the direct one.

28

Optimization in Deep Learning

* Our general problem Is of the form

min E, . f(z;®) := F(P) .

P
Supervised Learning: Unsupervised Learning:
z = (x,y) 2=
f(z,y; ®) = log p(y|a; ©) = {(y, (x)) f(z; ®) = log ()
7 : joint data/labels distribution 7 : data distribution

30

m(gn Comn f(2;@) = F(®) .

* Challenges:

— Statistical: The function I'to be optimized is unknown: only access to
an estimator

Zf 2i, ®) , {zi}i<n : training set.

31

m(gn Comn f(2;@) = F(®) .

* Challenges:

— Statistical: The function I'to be optimized is unknown: only access to
an estimator

Zf 2i, ®) , {zi}i<n : training set.

— Analytical: In practice, we search within a parametric functional class

F={®=0(-;0); 0 c X}

32

m(gn Comn f(2;@) = F(®) .

* Challenges:

— Statistical: The function I'to be optimized is unknown: only access to
an estimator

Zf 2i, ®) , {zi}i<n : training set.

z<n
— Analytical: In practice, we search within a parametric functional class

F={®=0(-;0); 0 c X}

— Numerical: Algorithms to optimize Fn
—What can we say when Fn IS NoN-convex!
—What Is the convergence rate of iterative solutions to stationary

points? H@(k) — O*|| = O(h(k)) .

33

~ Decomposition of Error

Define

" = arg m(gn F(®) , optimal model ,

b7 = arg CII>n€1.I71-" F(®) , optimal achievable model in F ,

O r ., = arg glig Fn(é[)) , optimal empirical model in F
c

d 7 n = solution of our optimization of gli?__ £, (®)
s

_ Decomposition of trror

e Define

" = arg mqin F(®) , optimal model ,

b7 = arg qryel?__ F(®) , optimal achievable model in F ,

O r ., = arg glig Fn(CID) , optimal empirical model in F
c

d 7 n = solution of our optimization of gli?__ £, (®)
s

* Remark: we can also modify empirical risk minimization
with a regularizer (structured risk minimization):

F,(0) = = 37 f(2,9(6)) + AR(6)

1<n

Decomposition of Error

Bottou, Bousquet "08]
* Define

" = arg mqin F(®) , optimal model ,

P77 = arg cI13f1€1§1__ F(®) , optimal achievable model in F ,

O r ., = arg glig Fn(q)) , optimal empirical model in F
c

d 7 n = solution of our optimization of gli?__ £, (®)
s

* Regret Is decomposed as

F(E)]:m) — F((I)*) F((I);__) _ F((I)*) (approximation error)

F(®r,) — F(®%) (estimation error)
F(CAI/)]:,n) — F(®x) . (optimization error)

36

Constramed Approxmaﬂon Estlma’uon and Opt|m|zat|on
o ~ [Bottou, Bousquet '08]
* Our goal Is thus to minimize regret with respect to

model F, optimization tolerance p, number of examples n

subject to n < Nypar, compute time 1' < 1}, 0z

37

Constrained Approximation, Estimation and Optimization

‘Bottou, Bousquet "08]
* Our goal I1s thus to minimize regret with respect to

model F, optimization tolerance p, number of examples n

subject to n < Nypar, compute time 1' < 1}, 0z

» Constrained optimization trade-offs:

Approximation error decreases as JF gets larger

Eistimation error decreases as n gets larger.
Estimation error increases as JF gets larger.

Optimization error increases as p gets larger.

38

[Bottou, Bousquet "08

* Small-scale learning problems: the active constraint Is the
number of examples: n = Nz -

* Large-scale learning problems: the active constraint Is the
maximum computation time: T' = Taz -

39

Iwo learning regimes

Bottou, Bousquet '08]

* Small-scale learning problems: the active constraint is the
number of examples: 7 = npaz -

* Large-scale learning problems: the active constraint Is the
maximum computation time: 7 =71

* Statistical Learning Theory is mostly concerned with small-

scale learning
* \Whereas sma

Drob

l-sca

ems.
e learning problems can neglect the

role of the optimization, large-scale problems cannot:
oenerally It 1s not a good choice to fully optimize the
empirical objective function.

40

ow to control the estimation error?

41

e Q: How to control the estimation error?

consider first a bounded loss #(x,y) < b.

For a given ® € JF, we consider

F((I)) _Fn(q)) —

L(fe(Z)) — % ZfCD(Zi)

42

e Q: How to control the estimation error?

consider first a bounded loss #(x,y) < b.

For a given ® € JF, we consider

F(®) - F(®) =E(fa(2)) = 3 fa(Z)

A first idea is to use Hoeflding’s inequality:

P(L(f(Z)) — %Zf(ZZ) >e) §Qexp< 225) , for f(Z) €]0,b] .

1<n

It results that for any ® and 0 > 0, with probability at least 1 — 0,

F(®) < F, (D) + b\/log;b/(s .

43

e Q: How to control the estimation error?

consider first a bounded loss #(x,y) < b.

For a given ® € JF, we consider

F(®) - F(®) =E(fa(2)) = 3 fa(Z)

A first idea is to use Hoeflding’s inequality:

P(L(f(Z)) — %Zf(ZZ) >e) §Qexp< 225) , for f(Z) €]0,b] .

1<n

It results that for any ® and 0 > 0, with probability at least 1 — 0,
log2/0
F(®) < F, (D) + b\/ 82/

2n
Is this useful?

44

 WWe need to control the uniform dewviations:

sup |[F(®) — F, ()
dec F

45

Empirical Risk Minimization

. \/\/e need to control the uniform deV|at|ons

sup |[F(®) — F, ()
dec F

Suppose first that F is finite: F = {®4,..., Py }.

For each member 7 of the family, Hoeftding says that the bad samples
Ci ={zi;i <n; |F(P;) — Fr(P,)| > €} .

have low probability: P(C;) < 4§ for all j.

46

 WWe need to control the uniform dewviations:

sup |[F(®) — F, ()
dec F

Suppose first that F is finite: F = {®,..., Py}

For each member 7 of the family, Hoeftding says that the bad samples
Ci ={zi;i <n; |F(P;) — Fr(P,)| > €} .

have low probability: P(C;) < ¢ for all j.

Union bound: P(U;j<nyC;) < ZP(C’j) < N§ .

J

47

Empirical Risk Minimization

 WWe need to control the uniform dewviations:

sup |[F(®) — F, ()
dec F

Suppose first that F is finite: F = {®,..., Py}

For each member 7 of the family, Hoeftding says that the bad samples
Ci ={zi;i <n; |F(P;) — Fr(P,)| > €} .

have low probability: P(C;) < ¢ for all j.

Union bound: P(U;j<nyC;) < ZP(C’j) < N§ .

J
It results that for all 0 > 0 whp 1 — 0

log N — log o
2n |

VoeF |F(®)— F,(P)] g\/

48

* Q:What If the family is infinite/ uncountable?

* Q:What If the family is infinite/ uncountable?

* A:Vapnik-Chervonekis Theory projects an uncountable
function class into the finite sample.

* We recover the previous bound via the so-called VC-
dimension of the class. In the binary classification setting:

The VC dimension of a class J is the size of the largest set
{z1,...,2,} such that F can generate any classification result.

50

* Q:What If the family is infinite/ uncountable?

* A:Vapni

<-Chervonekis |

heory p

function class into the finite sam

rojects an uncountable

dle,

* We recover the previous bound via the so-called VC-
dimension of the class. In the binary classification setting:

The VC dimension of a class J is the size of the largest set
{z1,...,2,} such that F can generate any classification result.

* For example, half-spaces In d dimensions have VC
dimension d+ /.

51

Empirical Risk Minimization

* Q:What If the family is infinite/ uncountable?

* A:Vapnik-Chervonekis Theory projects an uncountable
function class Into the finite sample.

* We recover the previous bound via the so-called VC-
dimension of the class. In the binary classification setting:

The VC dimension of a class J is the size of the largest set
{z1,...,2,} such that F can generate any classification result.

If 7 has VC-dim d, with probability 1 — o

dl
sup | F(®) — F, ()] < \/ en
dc F n

52

* Using the previous bound we thus have
F(®rn) = F(F) = (F(®rn) = Fo(®rn)) + (Fu(®rn) = Fu(®F)) + (Fu(®F) — F(PF))

< 2 sup |[F(®) — Fo(®)
b F

<\/E
~Vn

53

* Using the previous bound we thus have

F(Or,) = F(®F) = (F(®rn) = Fo(®rn)) + (Fu(Prn) — Fu(PF)) + (Fu(®F) — F(2F))
< 2 sup |[F(®) = Fn (D)

dcF
<\Ve

(1

* This bound Is pessimistic.
— Faster rates are available ¢.o. O ((% log %)a) for a € [1/2,1].

54

Back to Estimation Error

* Using the previous bound we thus have

(Prn) = Fu(®rn)) + (Fn(®rn) — Fu(®F)) + (Fn(PF) — F(PF))

= (F
< 2sup |[F(®) — F (D)
PeF

d

(1

* This bound Is pessimistic.
—Faster rates are available ¢.g. O ((% log %)a) for a € [1/2,1].

F(q)}",n)_F()

A

* Joint Estimation and Optimization error:

d n\
gest+gopt20<<ﬁlogg> >_|_IO

P ' d “
so In practice we should choose p~ 0 ((ﬁ log %))

55

O
dp

Influence of the Approximation Class

~ large datasets, we may want to use larger, richer

broximation classes (e.g. huge Convnets).

— Complexity bounds are intrinsically pessimistic, not realistic.

e O

* Regularization (structured risk minimization) entangles
further the optimization and capacity of the signal class.

For a fixed signal class, how to make a principled

choice of optimization algorithm?

56

* [Bottou & Bousquet '08] study four main rterative
algorithms In the large-scale learning regime:

— Gradient Descent

—Second Order Gradient Descent (1.e. Newton method)
— Stochastic Gradient Descent (SGD)

—Second Order Gradient Descent.

* Assumptions:
— Signal class F is fixed,

—linearly parametrized by w € R%: ®,,(z) = (®(z), w).
loss functions w +— £(®,,(x),y) convex and twice differentiable.

57

e Let H and G be respectively the Hessian and gradient covariance
matrices at the empirical optimum w,, = arg min,, F}, (P,):

aan 1 32€ (I)w Li)s Ys
o= P,) = Ly OHPalr).u)

Ow? n
6oLy (aacbw@(gi), w)) (az@wa(ii), y»)T |

1

58

e Let H and G be respectively the Hessian and gradient covariance
matrices at the empirical optimum w,, = arg min,, F}, (P,):

7 0°F, (@,) = 1 Z O°U(Doy (4), i)

Ow? n 4 Ow?
1

6oLy (aacbw@(j), yo) (az«bw@(ii), y»)T |

1

* Suppose that
AH) C Mmins Amaz] 5 With Apmin > 0

tr(GH) <v.

* Condition number: k£ = A\ a0/ Amin.

59

e When step size n = A}
to reach accuracy p (linear convergence).

Wi, = W — NV Frn (P,) -

max’

O(rlog(p™1)) iterations

Cost per [terations Time to reach Time to reach
iteration | to reach p accuracy p F(®,) - F(®% <e
GD | O(nd) | O(klogp™) | O(ndrlogp™?) | O (d*ke=*log”(e™1))

60

Wiy = Wy — H_lvan(CI)wt) , H ™! known in advance.

Cost per Iterations Time to reach Time to reach
iteration to reach p accuracy p F(®,) — F(d% < e
GD O(nd) O(klogp™1) O(ndrlogp™1) O (d*ke~1/*log?(e™1))
2GD | O((n+d)d) | O(loglogp™") | O((n+ d)dloglogp™") | O (d*¢~'/“loglog(e~"!)log(e™!))

» Optimization s
* [he problem c

beed Is much faster

61

oes not depend on condition number.

Stochastic Gradient Descent (SGD)

e At each t, we draw random z; from training set.

W41 = Wy — ngf(q)w(zt)) :

e With n = A1 . we have ||[w; — wn|| = O(1//1).

man’

Cost per Iterations Time to reach Time to reach
iteration to reach p accuracy p F(®,) — F(®%) < ¢
GD O(nd) O(klogp™1) O(ndrlogp™1) O (d*ke~1/*log?(e™1))
2GD | O((n+d)d) | O(loglogp™) | O((n+d)dloglogp™!) | O (d*¢1/*loglog(e~1)log(e™1))
SGD | O(d) | ve’p~" +o(p™") O(%4) O(#)

* Optimization speed Is much worse than GD.

* However, learning speed Is better.

62

Second Order Stochastic Gradient Descent (25GD)

e At each ¢, we draw random z; from training set.

H~ 1
W1 = W — ——Vau [(Pulzt)) -
Cost per Iterations Time to reach Time to reach
iteration to reach p accuracy p F(®,) — F(®%) <e
GD O(nd) O(klogp™1) O(ndrlog p~1) O (ke 1/ *log?(e™1))

2GD | O((n+d)d) | O(loglogp™) | O((n+d)dloglogp™) | O (d*¢~1/“loglog(e~1)log(e™1))
SCD | O(d) [wvw?p " +olp) O(*2) O(#2)
2SGD O(d?) vp~t +o(pt) O(L2) O(Lx)

* [teration Is more expensive, but less Iterations.

 Constants are affected.

63

* Gradient descent has rate |/T after | steps. Lower bound
s |/T72 amongst first order methods.

* Q: How to improve using a first order method?

64

Accelerated Gradient Descent

* Gradient descent has rate |/T after | steps. Lower bound
s |/T72 amongst first order methods.

* Q: How to improve using a first order method!?
* Use a momentum term (Nesterov,83):

1+\/1+4A§_1 1— A,

)\QZO,)\t: 9 v Yt —

At41

Yt+1 = Tt — %Vf(l't) :

Lt+1 = (1 — %)ytﬂ + VYt -

65

