
Stat 212b: Topics in Deep Learning
Lecture 18

Joan Bruna
UC Berkeley

1

• Flows or Transports of Measure

Review: Generative Models of Complex data

GAN
NormFlow

…

x

h

high-dimensional space

latent space

h ⇠ p(h)
�

p(x) defined implicitly withZ
f(x)p(x)dx =

Z
f(�(h))p(h)dh , 8 f measurable

Review: Normalizing Flows

•

• One can parametrize invertible flows and use them
within the variational inference to improve the variational
approximation. [Rezende et al.’15]

• Also considered in [“NICE”, Dinh et al’15].

3

The density qK(z) obtained by transporting a base measure q0
through a cascade of K di↵eomorphisms �1, . . . ,�K is

zK = �K � . . .�1(z0) , with z0 ⇠ q0(z)

log qK(z) = log q0(z0)�
X

kK

log |detrzk�k| .

4

Review: Diffusion and Non-equilibrium Thermodynamics
[Sohl-Dickstein et al.’15]

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

(a) (b) (c)

Figure 5. Inpainting. (a) A bark image from (Lazebnik et al., 2005). (b) The same image with the central 100⇥100 pixel region replaced
with isotropic Gaussian noise. This is the initialization p̃

⇣
x

(T)
⌘

for the reverse trajectory. (c) The central 100⇥100 region has been
inpainted using a diffusion probabilistic model trained on images of bark, by sampling from the posterior distribution over the missing
region conditioned on the rest of the image. Note the long-range spatial structure, for instance in the crack entering on the left side of the
inpainted region. The sample from the posterior was generated as described in Section 2.5, where r

⇣
x

(0)
⌘

was set to a delta function
for known data, and a constant for missing data.

Dataset K K � L
null

Swiss Roll 2.35 bits 6.45 bits
Binary Heartbeat -2.414 bits/seq. 12.024 bits/seq.
Bark -0.55 bits/pixel 1.5 bits/pixel
Dead Leaves 1.489 bits/pixel 3.536 bits/pixel
CIFAR-103

5.4± 0.2 bits/pixel 11.5± 0.2 bits/pixel
MNIST See table 2

Table 1. The lower bound K on the log likelihood, computed on a
holdout set, for each of the trained models. See Equation 12. The
right column is the improvement relative to an isotropic Gaussian
or independent binomial distribution. Lnull is the log likelihood
of ⇡

⇣
x

(0)
⌘

. All datasets except for Binary Heartbeat were scaled
by a constant to give them variance 1 before computing log like-
lihood.

open source implementation of the algorithm, and RM-
Sprop for optimization. The lower bound on the log like-
lihood provided by our model is reported for all datasets
in Table 1. A reference implementation of the algorithm
utilizing Blocks (van Merriënboer et al., 2015) is avail-
able at https://github.com/Sohl-Dickstein/
Diffusion-Probabilistic-Models.

3.1. Toy Problems

3.1.1. SWISS ROLL

A diffusion probabilistic model was built of a two dimen-
sional swiss roll distribution, using a radial basis function
network to generate f

µ

�
x

(t), t
�

and f

⌃

�
x

(t), t
�
. As illus-

trated in Figure 1, the swiss roll distribution was success-
fully learned. See Appendix Section D.1.1 for more details.

Model Log Likelihood

Dead Leaves
MCGSM 1.244 bits/pixel
Diffusion 1.489 bits/pixel

MNIST
Stacked CAE 174± 2.3 bits
DBN 199± 2.9 bits
Deep GSN 309± 1.6 bits
Diffusion 317± 2.7 bits

Adversarial net 325± 2.9 bits
Perfect model 349± 3.3 bits

Table 2. Log likelihood comparisons to other algorithms. Dead
leaves images were evaluated using identical training and test data
as in (Theis et al., 2012). MNIST log likelihoods were estimated
using the Parzen-window code from (Goodfellow et al., 2014),
with values given in bits, and show that our performance is com-
parable to other recent techniques. The perfect model entry was
computed by applying the Parzen code to samples from the train-
ing data.

3.1.2. BINARY HEARTBEAT DISTRIBUTION

A diffusion probabilistic model was trained on simple bi-
nary sequences of length 20, where a 1 occurs every 5th
time bin, and the remainder of the bins are 0, using a multi-
layer perceptron to generate the Bernoulli rates f

b

�
x

(t), t
�

of the reverse trajectory. The log likelihood under the true
distribution is log

2

�
1

5

�
= �2.322 bits per sequence. As

can be seen in Figure 2 and Table 1 learning was nearly
perfect. See Appendix Section D.1.2 for more details.

3.2. Images

We trained Gaussian diffusion probabilistic models on sev-
eral image datasets. The multi-scale convolutional archi-

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

t = 0 t = T

2

t = T

p
�
x

(0···T)

�

Figure 2. Binary sequence learning via binomial diffusion. A binomial diffusion model was trained on binary ‘heartbeat’ data, where a
pulse occurs every 5th bin. Generated samples (left) are identical to the training data. The sampling procedure consists of initialization
at independent binomial noise (right), which is then transformed into the data distribution by a binomial diffusion process, with trained
bit flip probabilities. Each row contains an independent sample. For ease of visualization, all samples have been shifted so that a pulse
occurs in the first column. In the raw sequence data, the first pulse is uniformly distributed over the first five bins.

(a) (b)

(c) (d)

Figure 3. The proposed framework trained on the CIFAR-10 (Krizhevsky & Hinton, 2009) dataset. (a) Example holdout data (similar
to training data). (b) Holdout data corrupted with Gaussian noise of variance 1 (SNR = 1). (c) Denoised images, generated by sampling
from the posterior distribution over denoised images conditioned on the images in (b). (d) Samples generated by the diffusion model.

The forward trajectory, corresponding to starting at the data
distribution and performing T steps of diffusion, is thus

q
⇣
x

(0···T)

⌘
= q

⇣
x

(0)

⌘ TY

t=1

q
⇣
x

(t)|x(t�1)

⌘
(3)

For the experiments shown below, q
�
x

(t)|x(t�1)

�
corre-

sponds to either Gaussian diffusion into a Gaussian distri-
bution with identity-covariance, or binomial diffusion into
an independent binomial distribution. Table App.1 gives
the diffusion kernels for both Gaussian and binomial distri-
butions.

samples
from the model

trained on
CIFAR-10

inpainting
experiments

Review: Generative Adversarial Networks

• Suppose we have a trainable black box generator:

• Given observed data , how to force our
generator to produce samples from ?

• The generator should make the classification task as hard
as possible for any discriminator.

5

{Xi}i ; Xi ⇠ p(x)

p(x)

trainable
X ⇠ p�(x)

�

trainable
�

{Xi}i ; Xi ⇠ p(x)

{Xj}j ; Xj ⇠ p�(x)

training
data Discriminative

classifier
✓

[Goodfellow et al., ’14]

Review: LAPGAN
• Training procedure:

• Sampling procedure:

6

Gauthier [9] both explore this model with experiments on MNIST and faces, using l as a class
indicator. In our approach, l will be another image, generated from another CGAN model.

2.2 Laplacian Pyramid

The Laplacian pyramid [1] is a linear invertible image representation consisting of a set of band-pass
images, spaced an octave apart, plus a low-frequency residual. Formally, let d(.) be a downsampling
operation which blurs and decimates a j⇥ j image I , so that d(I) is a new image of size j/2⇥ j/2.
Also, let u(.) be an upsampling operator which smooths and expands I to be twice the size, so u(I)
is a new image of size 2j ⇥ 2j. We first build a Gaussian pyramid G(I) = [I0, I1, . . . , IK], where
I0 = I and I

k

is k repeated applications⇤ of d(.) to I . K is the number of levels in the pyramid,
selected so that the final level has very small spatial extent (8⇥ 8 pixels).

The coefficients h
k

at each level k of the Laplacian pyramid L(I) are constructed by taking the
difference between adjacent levels in the Gaussian pyramid, upsampling the smaller one with u(.)
so that the sizes are compatible:

h
k

= L
k

(I) = G
k

(I)� u(G
k+1(I)) = I

k

� u(I
k+1) (3)

Intuitively, each level captures image structure present at a particular scale. The final level of the
Laplacian pyramid h

K

is not a difference image, but a low-frequency residual equal to the final
Gaussian pyramid level, i.e. h

K

= I
K

. Reconstruction from a Laplacian pyramid coefficients
[h1, . . . , hK

] is performed using the backward recurrence:
I
k

= u(I
k+1) + h

k

(4)
which is started with I

K

= h
K

and the reconstructed image being I = I
o

. In other words, starting
at the coarsest level, we repeatedly upsample and add the difference image h at the next finer level
until we get back to the full resolution image.

2.3 Laplacian Generative Adversarial Networks (LAPGAN)

Our proposed approach combines the conditional GAN model with a Laplacian pyramid represen-
tation. The model is best explained by first considering the sampling procedure. Following training
(explained below), we have a set of generative convnet models {G0, . . . , GK

}, each of which cap-
tures the distribution of coefficients h

k

for natural images at a different level of the Laplacian pyra-
mid. Sampling an image is akin to the reconstruction procedure in Eqn. 4, except that the generative
models are used to produce the h

k

’s:

˜I
k

= u(˜I
k+1) +

˜h
k

= u(˜I
k+1) +G

k

(z
k

, u(˜I
k+1)) (5)

The recurrence starts by setting ˜I
K+1 = 0 and using the model at the final level G

K

to generate a
residual image ˜I

K

using noise vector z
K

: ˜I
K

= G
K

(z
K

). Note that models at all levels except the
final are conditional generative models that take an upsampled version of the current image ˜I

k+1 as
a conditioning variable, in addition to the noise vector z

k

. Fig. 1 shows this procedure in action for
a pyramid with K = 3 using 4 generative models to sample a 64⇥ 64 image.

The generative models {G0, . . . , GK

} are trained using the CGAN approach at each level of the
pyramid. Specifically, we construct a Laplacian pyramid from each training image I . At each level

⇤i.e. I2 = d(d(I)).

G2

~ I3

G3

z2

~ h2

z3

G1

z1
G0

z0

~ I2 l2

~ I0

h0
~

I1
~

~ h1

l1

l0

Figure 1: The sampling procedure for our LAPGAN model. We start with a noise sample z3 (right side) and
use a generative model G3 to generate Ĩ3. This is upsampled (green arrow) and then used as the conditioning
variable (orange arrow) l2 for the generative model at the next level, G2. Together with another noise sample
z2, G2 generates a difference image h̃2 which is added to l2 to create Ĩ2. This process repeats across two
subsequent levels to yield a final full resolution sample I0.

3

G0

l2

~ I3

G3

D0

z0

D1

D2

h2
~ h2 z3

D3

I3
I2 I2 I3

Real/Generated?

Real/
Generated?

G1

z1

G2

z2

Real/Generated?

Real/
Generated?

l0

I = I0

h0

I1 I1

l1

~ h1 h1

h0
~

Figure 2: The training procedure for our LAPGAN model. Starting with a 64x64 input image I from our
training set (top left): (i) we take I0 = I and blur and downsample it by a factor of two (red arrow) to produce
I1; (ii) we upsample I1 by a factor of two (green arrow), giving a low-pass version l0 of I0; (iii) with equal
probability we use l0 to create either a real or a generated example for the discriminative model D0. In the real
case (blue arrows), we compute high-pass h0 = I0 � l0 which is input to D0 that computes the probability of
it being real vs generated. In the generated case (magenta arrows), the generative network G0 receives as input
a random noise vector z0 and l0. It outputs a generated high-pass image h̃0 = G0(z0, l0), which is input to
D0. In both the real/generated cases, D0 also receives l0 (orange arrow). Optimizing Eqn. 2, G0 thus learns
to generate realistic high-frequency structure h̃0 consistent with the low-pass image l0. The same procedure is
repeated at scales 1 and 2, using I1 and I2. Note that the models at each level are trained independently. At
level 3, I3 is an 8⇥8 image, simple enough to be modeled directly with a standard GANs G3 & D3.

we make a stochastic choice (with equal probability) to either (i) construct the coefficients h
k

either
using the standard procedure from Eqn. 3, or (ii) generate them using G

k

:

˜h
k

= G
k

(z
k

, u(I
k+1)) (6)

Note that G
k

is a convnet which uses a coarse scale version of the image l
k

= u(I
k+1) as an input,

as well as noise vector z
k

. D
k

takes as input h
k

or ˜h
k

, along with the low-pass image l
k

(which is
explicitly added to h

k

or ˜h
k

before the first convolution layer), and predicts if the image was real or
generated. At the final scale of the pyramid, the low frequency residual is sufficiently small that it
can be directly modeled with a standard GAN: ˜h

K

= G
K

(z
K

) and D
K

only has h
K

or ˜h
K

as input.
The framework is illustrated in Fig. 2.

Breaking the generation into successive refinements is the key idea in this work. Note that we give
up any “global” notion of fidelity; we never make any attempt to train a network to discriminate
between the output of a cascade and a real image and instead focus on making each step plausible.
Furthermore, the independent training of each pyramid level has the advantage that it is far more
difficult for the model to memorize training examples – a hazard when high capacity deep networks
are used.

As described, our model is trained in an unsupervised manner. However, we also explore variants
that utilize class labels. This is done by add a 1-hot vector c, indicating class identity, as another
conditioning variable for G

k

and D
k

.

3 Model Architecture & Training
We apply our approach to three datasets: (i) CIFAR10 – 32⇥32 pixel color images of 10 different
classes, 100k training samples with tight crops of objects; (ii) STL – 96⇥96 pixel color images of
10 different classes, 100k training samples (we use the unlabeled portion of data); and (iii) LSUN
[30] – ⇠10M images of 10 different natural scene types, downsampled to 64⇥64 pixels.

For each dataset, we explored a variety of architectures for {G
k

, D
k

}. We now detail the best
performing models, selected using a combination of log-likelihood and visual appearance of the
samples. Complete Torch specification files for all models are provided in supplementary material
[4]. For all models, the noise vector z

k

is drawn from a uniform [-1,1] distribution.

4

Generative Adversarial Networks

• Some open research directions:
1. Optimization:

1. How to ensure a correct algorithm?
2. Existence of a Lyapunov function?

2. Statistics:
1. How to determine the discriminator power (eg VC-dimension) to

obtain consistent estimators?
2. Control of overfitting to the training distribution?

3. Applications:
– Language Modeling
– Reinforcement Learning
– Algorithmic Tasks
– Importance Sampling

7

Objectives

• Maximum Entropy Distributions and Energy-Based
Models
– MCMC
– Examples

• Self-Supervised Learning
– Word2Vec
– Slow Feature Analysis
– Prediction

8

Limits of Transportation Models

• Direct learning by Optimizing the flow requires back
propagation through a term of the form

– Very expensive for generic transformations
– Highly specific flows affect the flexibility of the model.

• Indirect learning by the Discriminative Adversarial Training
is implicit
– No cheap way to evaluate the density
– Also, no cheap way to do inference, e.g.

• How to regularize the density estimation?
9

f(⇥) = log detr�(xi;⇥)

�

p(x)

p(z|x)

Gibbs Models

• Motivation: Given a collection of discriminative
measurements , how can we build a
generative model?

10

�(x) = {�j(x)}j

Gibbs Models

• Motivation: Given a collection of discriminative
measurements , how can we build a
generative model?

• Supervised Learning Setup:

11

µ

k

= E(x,y)⇠p̂

(�(x)|y = k)

�(x) = {�j(x)}j

p̂ : {(xi, yi)}Empirical training distribution yi 2 {1,K}

Empirical class-conditional moments:

k = 1 . . .K

Gibbs Models

• Motivation: Given a collection of discriminative
measurements , how can we build a
generative model?

• Supervised Learning Setup:

• Necessary condition:

12

µ

k

= E(x,y)⇠p̂

(�(x)|y = k)

�(x) = {�j(x)}j

p̂ : {(xi, yi)}Empirical training distribution yi 2 {1,K}

Empirical class-conditional moments:

k = 1 . . .K

Class-conditional models pk(x) satisfy

8 k , E
x⇠pk�(x) = µ

k

Q: Does this completely specify pk?

Gibbs Models

• Motivation: Given a collection of discriminative
measurements , how can we build a
generative model?

• Supervised Learning Setup:

• Necessary condition:

13

µ

k

= E(x,y)⇠p̂

(�(x)|y = k)

�(x) = {�j(x)}j

p̂ : {(xi, yi)}Empirical training distribution yi 2 {1,K}

Empirical class-conditional moments:

k = 1 . . .K

Class-conditional models pk(x) satisfy

8 k , E
x⇠pk�(x) = µ

k

Q: Does this completely specify pk?
Clearly not

Gibbs Models

• Thus, we need a regularization principle.

14

Gibbs Models

• Thus, we need a regularization principle.
• A “good” norm for probability distributions is the entropy

15

H(p) = �E[log p] = �
Z

p(x) log p(x)dx

Gibbs Models

• Thus, we need a regularization principle.
• A “good” norm for probability distributions is the entropy

• It captures a form of smoothness for probability
distributions
– On compact domains, the maximum entropy distribution is the

uniform measure (maximally smooth)
– On non-compact domains, the max-entropy distribution might not

exist.

16

H(p) = �E[log p] = �
Z

p(x) log p(x)dx

Gibbs Models
• Thus, we need a regularization principle.
• A “good” norm for probability distributions is the entropy

• It captures a form of smoothness for probability
distributions
– On compact domains, the maximum entropy distribution is the uniform

measure (maximally smooth)
– On non-compact domains, the max-entropy distribution might not

exist.
• In our problem, we can use it to select, under the

constraints , those with maximum
uncertainty (maximum smoothness).

17

H(p) = �E[log p] = �
Z

p(x) log p(x)dx

8 k , E
x⇠pk�(x) = µ

k

Gibbs Models and Maximum Entropy

• We are thus interested in the problem

18

max

p

H(p)

s.t. E
x⇠p

�(x) = µ .2 Rd

Gibbs Models and Maximum Entropy

• We are thus interested in the problem

• Constrained optimization that we approach using calculus
of variations

• Lagrangian of the problem is

19

max

p

H(p)

s.t. E
x⇠p

�(x) = µ .2 Rd

L(p,�1, . . . ,�d

) = H(p) +
X

j

�
j

(E
x⇠p

�
j

(x)� µ
j

) .

= �
Z

p(x) log(p(x))dx+

X

j

�j

✓Z
�j(x)p(x)dx� µj

◆

Gibbs Models and Maximum Entropy

• Thus we have

20

@L

@p(x)

= � log p(x)� 1 +

X

j

�j�j(x) = 0

) log p(x) = �0 +

X

j

�j�j(x)

) p(x) =

exp

⇣P
j �j�j(x)

⌘

Z

where

�

j

are Lagrange multipliers guaranteeing that E
x⇠p

�
j

(x) = µ

j

.
Z is a Lagrange multiplier guaranteeing that p(x) = 1

Examples of Maximum Entropy

• Maximum entropy given known energy

• Maximum entropy given known mean

21

Gibbs Model

• Thus, given features , maximum entropy distributions
are in the exponential family given by

22

�(x)

p(x) = exp (h�,�(x)i �A(�))

Gibbs Model

• Thus, given features , maximum entropy distributions
are in the exponential family given by

• In a discriminative setting, the final model is a mixture in
this exponential family:

• This model has many names:
– Gibbs, Boltzmann, “Energy-based” Model, MaxEnt, …

23

�(x)

p(x) = exp (h�,�(x)i �A(�))

k ⇠ cat{1,K}

x ⇠ pk(x) = exp(h�k,�(x)i �A(�k)) , E
x⇠pk�(x) = µ

k

.

Gibbs Model, Method of Moments and MLE

• In a parametric model , two main estimation
techniques:
– Method of Moments: Match empirical moments with parametric

moments:

– Maximum Likelihood Estimate (MLE)

• How different are these estimators in our setting?
24

p(x|✓)

Given F1, . . . , FL,

empirical moments:

ˆ

Fi =
1
N

P
jN Fi(xj)

parametric moments:

¯

F

i

(✓) = E
x⇠p(x|✓)Fi

(x)

ˆ

✓MLE = argmax

✓

1

N

X

iN

log p(xi|✓)

F̂ = F̄ (✓̂MM)

Maximum Entropy vs MLE

• The Maximum Entropy model matches the moments
defined by the sufficient statistics :

• The maximum likelihood attempts to maximize data log-
likelihood:

25

�(x)

E
x⇠p(x|✓)�(x) = µ̂ .

max

✓

1

N

X

jN

log p(xj |✓) =
1

N

X

j

h✓,�(xj)i �A(✓)

= max

✓
h✓, 1

N

X

j

�(xj)i �A(✓)

= max

✓
h✓, µ̂i �A(✓)

Maximum Entropy vs MLE

• Recall the conjugate duality:

•

• Thus, the maximum entropy and the maximum likelihood
estimators are the same under our exponential family.

26

A⇤(µ) = sup
✓
(h✓, µi �A(✓))

A

⇤
(µ) is the entropy of the distribution with E(�(x)) = µ.

Gibbs Model and Fisher Kernels

• Given a generative model , recall the associated
Fisher Kernel:

27

p(x|✓)

I : Fisher Information = E{U
x

UT

x

} .

U

x

: Fisher Vector = r
✓

log p(x|✓) .

K(x, x0) = hU
x

, I

�1
U

x

0i ,

Gibbs Model and Fisher Kernels

• Given a generative model , recall the associated
Fisher Kernel:

• When , the Fisher vector is

28

p(x|✓)

I : Fisher Information = E{U
x

UT

x

} .

U

x

: Fisher Vector = r
✓

log p(x|✓) .

K(x, x0) = hU
x

, I

�1
U

x

0i ,

p(x|✓) = exp (h✓,�(x)i �A(✓))

U

x

= �(x)

K(x, x0) = h�̃(x), �̃(x0)i , (�̃ : whitened features) .

Gibbs Model and Fisher Kernels

• Given a generative model , recall the associated
Fisher Kernel:

• When , the Fisher vector is

• Thus the maximum entropy model is the “canonical”
generative model associated with linearization features

29

p(x|✓)

I : Fisher Information = E{U
x

UT

x

} .

U

x

: Fisher Vector = r
✓

log p(x|✓) .

K(x, x0) = hU
x

, I

�1
U

x

0i ,

p(x|✓) = exp (h✓,�(x)i �A(✓))

U

x

= �(x)

K(x, x0) = h�̃(x), �̃(x0)i , (�̃ : whitened features) .

�

Unsupervised Gibbs Models

• We have derived a fully probabilistic model in a
supervised setting:

30

y ⇠ cat{1,K}

�

x

y

(observed)

(observed)

p(x|y) = exp (h✓y,�(x)i �A(✓y))

) p(y|x) = softmax({h✓y,�(x)i}y) .

Unsupervised Gibbs Models

• How about when no labels are observed?

31

�

x

y

(observed)

p(x|y) = exp (h✓y,�(x)i �A(✓y))

(hidden)

y ⇠ mult(⇡)

p(x) =
X

y

p(y)p(x|y)

Gibbs Learning

• Q: How to train this model?
– When adjusting expected values (Method of Moments), find

Lagrange multipliers.

– Equivalently, maximize log-likelihood.

– Also learn the sufficient statistics?

32

Gibbs Learning

• The log-likelihood is
• The gradient with respect to is

33

log p(x|✓) = h✓,�(x)i �A(✓)

r✓ log p(x|✓) = �(x)�r✓A(✓)

✓

Gibbs Learning

• The log-likelihood is
• The gradient with respect to is

• We have

• Thus

34

log p(x|✓) = h✓,�(x)i �A(✓)

r✓ log p(x|✓) = �(x)�r✓A(✓)

✓

r
✓

A(✓) = r
✓

log

Z
exp(h✓,�(x)i)dx

=

R
r

✓

exp(h✓,�(x)i)dxR
exp(h✓,�(x)i)dx

=

R
�(x) exp(h✓,�(x)i)dxR

exp(h✓,�(x)i)dx
= E

x⇠p(x|✓)�(x)

r✓ log p(xi|✓) = �(xi)� E(�(x))

Markov Chain Monte-Carlo

• We estimate the expectation with a finite sample.
• Training is thus reduced to being able to efficiently

sample from distributions of the form

• Markov-Chain Monte-Carlo (MCMC) is a broad family of
algorithms doing precisely so.

35

p(x) = exp(h✓,�(x)i �A(✓))

Markov Chain Monte-Carlo
• Basic principle: construct a Markov chain whose

equilibrium distribution is precisely and such that the
transition distributions are easy to sample from:

• Two very important algorithms (there are many more)
– Metropolis-Hastings: very generic
– Gibbs Sampler : for models with small factors.

36

p(x)

x0 ⇠ q0(x) xt ⇠ q(x|xt�1)

x0 ! x1 ! x2 ! . . .

Markov Chain Monte-Carlo

• Metropolis-Hastings [1953]: assumes one can easily
compute a function proportional to .

• Let be a proposal transition kernel that is
irreducible, i.e., it can move to any point in the state space.

•

37

f(x) p(x)

q(x|y)

Given X

(t) = x

(t)

generate Yt ⇠ q(y|x(t)). and define

X

(t+1)
=

⇢
Yt with probability ⇢(x

(t)
, Yt) ,

x

(t)
with probability 1� ⇢(x

(t)
, Yt) ,

with ⇢(x, y) = min

✓
1,

f(y)q(x|y)
f(x)q(y|x)

◆

Markov Chain Monte-Carlo

38

Proposition [M-H,’53]: If q(y|x) is irreducible (q(y|x) > 0 for all x, y),

the chain converges to the stationary distribution p(x).

Markov Chain Monte-Carlo

• This result does not inform about how fast we reach this
stationary distribution (mixing time).

• Proposal distribution too wide: we might reject too often
• Proposal distribution too narrow: long mixing time.

39

Proposition [M-H,’53]: If q(y|x) is irreducible (q(y|x) > 0 for all x, y),

the chain converges to the stationary distribution p(x).

Markov Chain Monte-Carlo

• This result does not inform about how fast we reach this
stationary distribution (mixing time).

• Proposal distribution too wide: we might reject too often
• Proposal distribution too narrow: long mixing time.
• Several extensions

– Langevin Dynamics: attempt to climb in the direction of ,
eg

40

Proposition [M-H,’53]: If q(y|x) is irreducible (q(y|x) > 0 for all x, y),

the chain converges to the stationary distribution p(x).

r log p(x)

Yn+1|xn ⇠ N (xn + �r log p(x), �⌃)

Gibbs sampler [Geman & Geman,’84]

• A special case of M-H algorithm when it is easy to
sample from the conditional distributions

41

p(x(k)|x(1), . . . , x(k�1), x(k+1), . . . , x(n))

Gibbs sampler [Geman & Geman,’84]

• A special case of M-H algorithm when it is easy to
sample from the conditional distributions

• In that case, the proposal distributions are of the form

• It refines a reversible Markov chain with stationary
distribution

• Used extensively in Markov Random Fields models.

42

p(x(k)|x(1), . . . , x(k�1), x(k+1), . . . , x(n))

q(x|y) = p(x(k)|y(1), . . . , y(k�1), y(k+1), . . . , y(n))

p(x)

MCMC Pros and Cons

• Generic, provably correct sampling methods.
• Can scale to high-dimensional density models.

43

MCMC Pros and Cons

• Generic, provably correct sampling methods.
• Can scale to high-dimensional density models.
• Computationally expensive: in order to have good

estimators of the gradient we require many iterations
(samples are not statistically independent in general)

• The method does not inform about how to optimally
select the proposal distributions.

44

MCMC Pros and Cons
• Generic, provably correct sampling methods.
• Can scale to high-dimensional density models.
• Computationally expensive: in order to have good

estimators of the gradient we require many iterations
(samples are not statistically independent in general)

• The method does not inform about how to optimally select
the proposal distributions.

• Alternative/Extensions:
• Annealed Importance Sampling [Neal’98]
• Hybrid Monte-Carlo (e.g. Langevin)
• Variational Inference

45

From unsupervised to self-supervised learning

46

From unsupervised to self-supervised learning

• So far, we have seen models that attempt to estimate a
density of the input domain

47

p(x) =

Z
p(h)p(x|h)dh , p(x|h) = exp(h✓h,�(x)i �A(✓h))

p(x) = p0(�(x)) · | detr�(x)|�1

x 2 Rn

From unsupervised to self-supervised learning

• So far, we have seen models that attempt to estimate a
density of the input domain

• Chained Bayes Rule: for any ordering of
the coordinates we have

48

p(x) =

Z
p(h)p(x|h)dh , p(x|h) = exp(h✓h,�(x)i �A(✓h))

p(x) = p0(�(x)) · | detr�(x)|�1

x 2 Rn

(x�(1), . . . , x�(n))

p(x) =
Y

in

p(x�(i)|x�(1) . . . x�(i�1))

From unsupervised to self-supervised learning

• So far, we have seen models that attempt to estimate a
density of the input domain

• Chained Bayes Rule: for any ordering of
the coordinates we have

• Q: In which situations is it better to use the factorized?
49

p(x) =

Z
p(h)p(x|h)dh , p(x|h) = exp(h✓h,�(x)i �A(✓h))

p(x) = p0(�(x)) · | detr�(x)|�1

x 2 Rn

(x�(1), . . . , x�(n))

p(x) =
Y

in

p(x�(i)|x�(1) . . . x�(i�1))

• Temporally ordered data
– Speech, Music
– Video
– Language
– Other time series (Weather, Finance, …)

• Spatially ordered data, Multi-Resolution data
– Images

• Learning is thus reduced to the problem of conditional
prediction.

50

From unsupervised to self-supervised learning

p(x) ! {p(xi|xN(i))}i

Word2vec [Mikolov et al.’13].

• Unsupervised learning “success story”.

51

w1 w2 wk

Word2vec [Mikolov et al.’13].

• Unsupervised learning “success story”.

• Language creates a notion of similarity between words:

52

w1 w2 wk

words w1, w2 are similar if they are “exchangeable”

i.e., they appear often within the same context.

Word2vec [Mikolov et al.’13].

• Unsupervised learning “success story”.

• Language creates a notion of similarity between words:

• Goal: find a word representation that
expresses this similarity as a dot product

53

w1 w2 wk

�(wi) 2 Rd

words w1, w2 are similar if they are “exchangeable”

i.e., they appear often within the same context.

sim(wi, wj) ⇡ h�(wi),�(wj)i .

Word2vec [Mikolov et al.’13].
• Main idea: Skip-gram with negative sampling.
• Construct a “training set”

• positive pairs of (words, contexts) appearing in
a huge language corpus.

• negative pairs of (words, contexts) not
appearing in the corpus.

D = {(wk, ck)}k

D0 = {(wk0 , ck0)}k0

Word2vec [Mikolov et al.’13].
• Main idea: Skip-gram with negative sampling.
• Construct a “training set”

• positive pairs of (words, contexts) appearing in
a huge language corpus.

• negative pairs of (words, contexts) not
appearing in the corpus.

• Model the probability of a pair being positive as
�(x) =

1

1 + e

�x

D = {(wk, ck)}k

D0 = {(wk0 , ck0)}k0

(w, c)
p(D = 1|c, w) = �(hvw, vci) , vw, vc 2 Rd .

Word2vec [Mikolov et al.’13].
• Main idea: Skip-gram with negative sampling.
• Construct a “training set”

• positive pairs of (words, contexts) appearing in
a huge language corpus.

• negative pairs of (words, contexts) not
appearing in the corpus.

• Model the probability of a pair being positive as

• Training with Maximum Likelihood:
argmax

✓

Y

(w,c)⇠D

p(D = 1|c, w, ✓)
Y

(w,c)⇠D0

p(D = 0|c, w, ✓)

�(x) =
1

1 + e

�x

argmax

✓

X

(w,c)⇠D

log �(hvw, vci) +
X

(w,c)⇠D0

log �(�hvw, vci)

D : positive contexts D0
: negative contexts

D = {(wk, ck)}k

D0 = {(wk0 , ck0)}k0

(w, c)
p(D = 1|c, w) = �(hvw, vci) , vw, vc 2 Rd .

• Can be seen as an implicit matrix factorization using a
mutual information criteria [Yoav & Goldberg,’14].

• Huge impact on Google’s business bottom-line.

57

Word2vec [Mikolov et al.’13].

[google]

Video Prediction

• Rather than modeling the density of natural images

• we may be also interested in modeling the conditional
distributions where is temporally
ordered data.

58

p(x) , x 2 Rd

p(xt+1|x1, . . . , xt) (xt)t

Video Prediction

• Rather than modeling the density of natural images

• we may be also interested in modeling the conditional
distributions where is temporally
ordered data.

• Similarly, can we find a signal representation that is
consistent with the “video language” metric? i.e.

• This is the objective of Slow Feature Analysis [Sejnowski et al’02,
Cadieu& Olshausen’10 and many others].

59

p(x) , x 2 Rd

p(xt+1|x1, . . . , xt) (xt)t

�(xt)

h�(xt),�(xs)i ⇡ h(|t� s|)

Video Prediction

• [Mathieu, Couprie, LeCun,’16]: Conditional video
prediction using CNNs and an adversarial cost

60

Published as a conference paper at ICLR 2016

Figure 4: Results on 3 video clips from Sport1m. Training: 4 inputs, 1 output. Second output
computed recursively.

Input frames Ground truth `2 result

`1 result GDL `1 result Adversarial result Adversarial+GDL result

Input frames Ground truth `2 result

`1 result GDL `1 result Adversarial result Adversarial+GDL result

Input frames Ground truth `2 result

`1 result GDL `1 result Adversarial result Adversarial+GDL result

We note that the results of Ranzato et al. appear slightly lighter than our results because of a nor-
malization that does not take place in the original images, therefore the errors given here are not
reflecting the full capacity of their approach. We tried to apply the blind deconvolution method of
Krishnan et al. (2011) to improve Ranzato et al. and our different results. As expected, the obtained
sharpness scores are higher, but the image similarity measures are deteriorated because often the
contours of the predictions do not match exactly the targets. More importantly, Ranzato et al. results
appear to be more static in moving areas. Visually, the optical flow result appears similar to the
target, but a closer look at thin details reveals that lines, heads of people are bent or squeezed.

4 CONCLUSION

We provided a benchmark of several strategies for next frame prediction, by evaluating the quality
of the prediction in terms of Peak Signal to Noise Ratio, Structural Similarity Index Measure and
image sharpness. We display our results on small UCF video clips at http://cs.nyu.edu/
˜

mathieu/iclr2016.html. The presented architectures and losses may be used as building
blocks for more sophisticated prediction models, involving memory and recurrence. Unlike most
optical flow algorithms, the model is fully differentiable, so it can be fine-tuned for another task if
necessary. Future work will deal with the evaluation of the classification performances of the learned

8

Patch Relative Configuration [Doerch et al.’15]

• Generalize the idea of positive, negative pairs to a multi-
class classification problem about spatial configurations.

61

• Premise: A patch representation that does well in
this task indirectly builds object priors.

• The criterion is not generative, but it retains enough
information to generalize to other tasks

62

Patch Relative Configuration [Doerch et al.’15]

�(x)

• Retrieval tasks:

• The representation captures visual similarity, leveraged in
object detection, retrieval, etc.

63

Patch Relative Configuration [Doerch et al.’15]

Input Random Initialization ImageNet AlexNet Ours

Figure 4. Examples of patch clusters obtained by nearest neighbors. The query patch is shown on the far left. Matches are for three different
features: fc6 features from a random initialization of our architecture, AlexNet fc7 after training on labeled ImageNet, and the fc6 features
learned from our method. Queries were chosen from 1000 randomly-sampled patches. The top group is examples where our algorithm
performs well; for the middle AlexNet outperforms our approach; and for the bottom all three features work well.

ply by detecting the separation between green and magenta
(red + blue). Once the network learns the absolute location
on the lens, solving the relative location task becomes triv-
ial. To deal with this problem, we experimented with two
types of pre-processing. One is to shift green and magenta
toward gray (‘projection’). Specifically, let a = [�1, 2,�1]
(the ’green-magenta color axis’ in RGB space). We then
define B = I � a

T
a/(aaT), which is a matrix that sub-

tracts the projection of a color onto the green-magenta color
axis. We multiply every pixel value by B. An alternative ap-
proach is to randomly drop 2 of the 3 color channels from
each patch (‘color dropping’), replacing the dropped colors
with Gaussian noise (standard deviation ⇠ 1/100 the stan-
dard deviation of the remaining channel). For qualitative
results, we show the ‘color-dropping’ approach, but found
both performed similarly; for the object detection results,

we show both results.
Implementation Details: We use Caffe [27], and train on
the ImageNet [10] 2012 training set (1.3M images), using
only the images and discarding the labels. First, we resize
each image to between 150K and 450K total pixels, preserv-
ing the aspect-ratio. From these images, we sample patches
at resolution 96-by-96. For computational efficiency, we
only sample the patches from a grid like pattern, such that
each sampled patch can participate in as many as 8 separate
pairings. We allow a gap of 48 pixels between the sampled
patches in the grid, but also jitter the location of each patch
in the grid by �7 to 7 pixels in each direction. We prepro-
cess patches by (1) mean subtraction (2) projecting or drop-
ping colors (see above), and (3) randomly downsampling
some patches to as little as 100 total pixels, and then upsam-
pling it, to build robustness to pixelation. When applying

4

Pixel Recurrent Networks

• Prediction tasks of the form require
a loss or an associated likelihood

• In discrete domains we simply use a multinomial loss, in
continuous domains there is no principled choice.

• How about images?

64

ˆxt+1 = F (x1, . . . , xt)

e.g. kx̂t+1 � xt+1k2 , p(xt+1|x1, . . . , xt) = N (F (x1, . . . , xt), I)

Pixel Recurrent Networks

• Prediction tasks of the form require
a loss or an associated likelihood

• In discrete domains we simply use a multinomial loss, in
continuous domains there is no principled choice.

• How about images?
• We can treat them as discrete two-dimensional grids

• Model each pixel from its “past” context:

65

ˆxt+1 = F (x1, . . . , xt)

e.g. kx̂t+1 � xt+1k2 , p(xt+1|x1, . . . , xt) = N (F (x1, . . . , xt), I)

x(u) 2 {0, 255}

p(x(u)|x(v); v 2 ⌦(u)) = softmax (�(x,⌦(u)))

Pixel Recurrent Networks [v.d.Oord et al’16]

• Contexts are modeled using “diagonal BiLSTMS”.

• Multi-Scale architecture conditions generations upon low-
resolution samples (similarly as in LAPGANS).

• Very deep Recurrent Networks (> 10 layers).

66

Pixel Recurrent Neural Networks

x1

xi

xn

xn2

Figure 2. Left: To generate pixel xi one conditions on all the pre-
viously generated pixels left and above of xi. Center: Illustration
of a Row LSTM with a kernel of size 3. The dependency field of
the Row LSTM does not reach pixels further away on the sides
of the image. Right: Illustration of the two directions of the Di-
agonal BiLSTM. The dependency field of the Diagonal BiLSTM
covers the entire available context in the image.

Figure 3. In the Diagonal BiLSTM, to allow for parallelization
along the diagonals, the input map is skewed by offseting each
row by one position with respect to the previous row. When the
spatial layer is computed left to right and column by column, the
output map is shifted back into the original size. The convolution
uses a kernel of size 2⇥ 1.

(2015); Uria et al. (2014)). By contrast we model p(x) as
a discrete distribution, with every conditional distribution
in Equation 2 being a multinomial that is modeled with a
softmax layer. Each channel variable xi,⇤ simply takes one
of 256 distinct values. The discrete distribution is represen-
tationally simple and has the advantage of being arbitrarily
multimodal without prior on the shape. Experimentally we
also find the discrete distribution to be easy to learn and
to produce better performance compared to a continuous
distribution (Section 5).

3. Pixel Recurrent Neural Networks

In this section we describe the architectural components
that compose the PixelRNN. In Sections 3.1 and 3.2, we
describe the two types of LSTM layers that use convolu-
tions to compute at once the states along one of the spatial
dimensions. In Section 3.3 we describe how to incorporate
residual connections to improve the training of a PixelRNN
with many LSTM layers. In Section 3.4 we describe the
softmax layer that computes the discrete joint distribution
of the colors and the masking technique that ensures the
proper conditioning scheme. In Section 3.5 we describe the
PixelCNN architecture. Finally in Section 3.6 we describe
the multi-scale architecture.

3.1. Row LSTM

The Row LSTM is a unidirectional layer that processes
the image row by row from top to bottom computing fea-
tures for a whole row at once; the computation is per-
formed with a one-dimensional convolution. For a pixel
xi the layer captures a roughly triangular context above the
pixel as shown in Figure 2 (center). The kernel of the one-
dimensional convolution has size k ⇥ 1 where k � 3; the
larger the value of k the broader the context that is captured.
The weight sharing in the convolution ensures translation
invariance of the computed features along each row.

The computation proceeds as follows. An LSTM layer has
an input-to-state component and a recurrent state-to-state
component that together determine the four gates inside the
LSTM core. To enhance parallelization in the Row LSTM
the input-to-state component is first computed for the entire
two-dimensional input map; for this a k ⇥ 1 convolution is
used to follow the row-wise orientation of the LSTM itself.
The convolution is masked to include only the valid context
(see Section 3.4) and produces a tensor of size 4h⇥ n⇥ n,
representing the four gate vectors for each position in the
input map, where h is the number of features in the LSTM
layer.

To compute one step of the state-to-state component of
the LSTM layer, one is given the previous hidden and cell
states hi�1 and ci�1, each of size h ⇥ n ⇥ 1. The new
hidden and cell states hi, ci are obtained as follows:

[oi, fi, ii,gi] = �(Kss ~ hi�1 + K

is ~ xi)

ci = fi � ci�1 + ii � gi

hi = oi � tanh(ci)

(3)

where xi of size h ⇥ n ⇥ 1 is row i of the input map, and
~ represents the convolution operation and � the element-
wise multiplication. The weights K

ss and K

is are the
kernel weights for the state-to-state and the input-to-state
components, where the latter is precomputed as described
above. In the case of the output, forget and input gates
oi, fi and ii, the activation � is the logistic sigmoid func-
tion, whereas for the content gate gi, � is the tanh func-
tion. Each step computes at once the new state for an en-
tire row of the input map. Since the Row LSTM layer is
unidirectional, it is relatively fast, but it has a considerable
drawback. Due to its roughly triangular shape, the recep-
tive field induced by the layer misses a large portion of the
previously generated context corresponding to the areas on
either side of the current pixel. For example, for a value
of k = 3 for the state-to-state convolution, which we find
gives the best performance in the experiments, the recep-
tive field for the pixels near the center of the image misses
roughly half of the generated context (Figure 2).

• state-of-the-art image generation and modeling.

67

Pixel Recurrent Networks [v.d.Oord et al’16]
Pixel Recurrent Neural Networks

Figure 6. Samples from models trained on CIFAR-10 (left) and ImageNet 32x32 (right) images. In general we can see that the models
capture local spatial dependencies relatively well. The ImageNet model seems to be better at capturing more global structures than the
CIFAR-10 model. The ImageNet model was larger and trained on much more data, which explains the qualitative difference in samples.

No skip Skip

No residual: 3.22 3.09
Residual: 3.07 3.06

Table 2. Effect of residual and skip connections in the Row LSTM
network evaluated on the Cifar-10 validation set in bits/dim.

with increased depth. This holds for up to the 12 LSTM
layers that we tried.

layers: 1 2 3 6 9 12

NLL: 3.30 3.20 3.17 3.09 3.08 3.06

Table 3. Effect of the number of layers on the negative log likeli-
hood evaluated on the CIFAR-10 validation set and measured in
bits/dim.

5.5. MNIST

Although the goal of our work was to model natural images
on a large scale, we also tried our model on the binary ver-
sion (Salakhutdinov & Murray, 2008) of MNIST (LeCun
et al., 1998) as it is a good sanity check and there is a lot
of previous art on this dataset to compare with. In Table 4
we report the performance of the Diagonal BiLSTM model
and that of previous published results. To our knowledge
this is the best reported result on MNIST so far.

Model NLL Test

DBM 2hl [1]: ⇡ 84.62
DBN 2hl [2]: ⇡ 84.55
NADE [3]: 88.33
EoNADE 2hl (128 orderings) [3]: 85.10
EoNADE-5 2hl (128 orderings) [4]: 84.68
DLGM [5]: ⇡ 86.60
DLGM 8 leapfrog steps [6]: ⇡ 85.51
DARN 1hl [7]: ⇡ 84.13
MADE 2hl (32 masks) [8]: 86.64
DRAW [9]: 80.97

Diagonal BiLSTM (1 layer, h = 32): 80.75
Diagonal BiLSTM (7 layers, h = 16): 79.20

Table 4. Test set performance of different models on MNIST
in nats (negative log-likelihood). Prior results taken from [1]
(Salakhutdinov & Hinton, 2009), [2] (Murray & Salakhutdinov,
2009), [3] (Uria et al., 2014), [4] (Raiko et al., 2014), [5] (Rezende
et al., 2014), [6] (Salimans et al., 2015), [7] (Gregor et al., 2014),
[8] (Germain et al., 2015), [9] (Gregor et al., 2015).

5.6. CIFAR-10

Next we test our models on the CIFAR-10 dataset
(Krizhevsky, 2009). Table 5 lists the results of our mod-
els and that of previously published approaches. For the
proposed networks, the Diagonal BiLSTM has the best
performance, followed by the Row LSTM and the Pixel-
CNN. This coincides with the size of the respective recep-
tive fields: the Diagonal BiLSTM has a global view, the

68

Pixel Recurrent Networks [v.d.Oord et al’16]
Pixel Recurrent Neural Networks

occluded completions original occluded completions original

Figure 8. Image completions sampled from a model that was trained on 32x32 ImageNet images. Note that diversity of the completions
is high, which can be attributed to the log-likelihood loss function used in this generative model, as it encourages models with high
entropy. As these are sampled from the model, we can easily generate millions of different completions. It is also interesting to see that
textures such as water, wood and shrubbery are also inputed relative well (see Figure 1).

trained to model the raw RGB pixel values of images. We
treated the pixel values as discrete random variables by us-
ing a softmax layer in the conditional distributions. We em-
ployed masked convolutions to allow PixelRNNs to model
full dependencies between the color channels. We pro-
posed and evaluated architectural improvements in these
models resulting in PixelRNNs with up to 12 LSTM lay-
ers.

We have shown that the PixelRNNs significantly improve
the state of the art on the Binary MNIST and CIFAR-10
datasets. We also provide new benchmarks for generative
image modeling on the ImageNet dataset. Based on the
samples and completions drawn from the models we can
conclude that the PixelRNNs are able to model both spa-
tially local and long-range correlations and are able to pro-
duce images that are sharp and coherent. Given that these
models improve as we make them larger and that there is
practically unlimited data available to train on, more com-
putation and larger models are likely to further improve the
results.

Acknowledgements

The authors would like to thank Shakir Mohamed and Guil-
laume Desjardins for helpful input on this paper and Lu-
cas Theis, Alex Graves, Karen Simonyan, Lasse Espeholt,
Danilo Rezende, Karol Gregor and Ivo Danihelka for in-
sightful discussions.

References
Dinh, Laurent, Krueger, David, and Bengio, Yoshua.

NICE: Non-linear independent components estimation.
arXiv preprint arXiv:1410.8516, 2014.

Germain, Mathieu, Gregor, Karol, Murray, Iain, and
Larochelle, Hugo. MADE: Masked autoencoder for dis-
tribution estimation. arXiv preprint arXiv:1502.03509,
2015.

Graves, Alex. Generating sequences with recurrent neural

networks. arXiv preprint arXiv:1308.0850, 2013.

Graves, Alex and Schmidhuber, Jürgen. Offline handwrit-
ing recognition with multidimensional recurrent neural
networks. In Advances in Neural Information Process-

ing Systems, 2009.

Gregor, Karol, Danihelka, Ivo, Mnih, Andriy, Blundell,
Charles, and Wierstra, Daan. Deep autoregressive net-
works. In Proceedings of the 31st International Confer-

ence on Machine Learning, 2014.

Gregor, Karol, Danihelka, Ivo, Graves, Alex, and Wierstra,
Daan. DRAW: A recurrent neural network for image
generation. Proceedings of the 32nd International Con-

ference on Machine Learning, 2015.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Deep residual learning for image recognition. arXiv

preprint arXiv:1512.03385, 2015.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-
term memory. Neural computation, 1997.

Kalchbrenner, Nal and Blunsom, Phil. Recurrent continu-
ous translation models. In Proceedings of the 2013 Con-

ference on Empirical Methods in Natural Language Pro-

cessing, 2013.

Kalchbrenner, Nal, Danihelka, Ivo, and Graves, Alex.
Grid long short-term memory. arXiv preprint

arXiv:1507.01526, 2015.

Kingma, Diederik P and Welling, Max. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Krizhevsky, Alex. Learning multiple layers of features
from tiny images. 2009.

Larochelle, Hugo and Murray, Iain. The neural autore-
gressive distribution estimator. The Journal of Machine

Learning Research, 2011.

Pixel Recurrent Neural Networks

occluded completions original occluded completions original

Figure 8. Image completions sampled from a model that was trained on 32x32 ImageNet images. Note that diversity of the completions
is high, which can be attributed to the log-likelihood loss function used in this generative model, as it encourages models with high
entropy. As these are sampled from the model, we can easily generate millions of different completions. It is also interesting to see that
textures such as water, wood and shrubbery are also inputed relative well (see Figure 1).

trained to model the raw RGB pixel values of images. We
treated the pixel values as discrete random variables by us-
ing a softmax layer in the conditional distributions. We em-
ployed masked convolutions to allow PixelRNNs to model
full dependencies between the color channels. We pro-
posed and evaluated architectural improvements in these
models resulting in PixelRNNs with up to 12 LSTM lay-
ers.

We have shown that the PixelRNNs significantly improve
the state of the art on the Binary MNIST and CIFAR-10
datasets. We also provide new benchmarks for generative
image modeling on the ImageNet dataset. Based on the
samples and completions drawn from the models we can
conclude that the PixelRNNs are able to model both spa-
tially local and long-range correlations and are able to pro-
duce images that are sharp and coherent. Given that these
models improve as we make them larger and that there is
practically unlimited data available to train on, more com-
putation and larger models are likely to further improve the
results.

Acknowledgements

The authors would like to thank Shakir Mohamed and Guil-
laume Desjardins for helpful input on this paper and Lu-
cas Theis, Alex Graves, Karen Simonyan, Lasse Espeholt,
Danilo Rezende, Karol Gregor and Ivo Danihelka for in-
sightful discussions.

References
Dinh, Laurent, Krueger, David, and Bengio, Yoshua.

NICE: Non-linear independent components estimation.
arXiv preprint arXiv:1410.8516, 2014.

Germain, Mathieu, Gregor, Karol, Murray, Iain, and
Larochelle, Hugo. MADE: Masked autoencoder for dis-
tribution estimation. arXiv preprint arXiv:1502.03509,
2015.

Graves, Alex. Generating sequences with recurrent neural

networks. arXiv preprint arXiv:1308.0850, 2013.

Graves, Alex and Schmidhuber, Jürgen. Offline handwrit-
ing recognition with multidimensional recurrent neural
networks. In Advances in Neural Information Process-

ing Systems, 2009.

Gregor, Karol, Danihelka, Ivo, Mnih, Andriy, Blundell,
Charles, and Wierstra, Daan. Deep autoregressive net-
works. In Proceedings of the 31st International Confer-

ence on Machine Learning, 2014.

Gregor, Karol, Danihelka, Ivo, Graves, Alex, and Wierstra,
Daan. DRAW: A recurrent neural network for image
generation. Proceedings of the 32nd International Con-

ference on Machine Learning, 2015.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Deep residual learning for image recognition. arXiv

preprint arXiv:1512.03385, 2015.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-
term memory. Neural computation, 1997.

Kalchbrenner, Nal and Blunsom, Phil. Recurrent continu-
ous translation models. In Proceedings of the 2013 Con-

ference on Empirical Methods in Natural Language Pro-

cessing, 2013.

Kalchbrenner, Nal, Danihelka, Ivo, and Graves, Alex.
Grid long short-term memory. arXiv preprint

arXiv:1507.01526, 2015.

Kingma, Diederik P and Welling, Max. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Krizhevsky, Alex. Learning multiple layers of features
from tiny images. 2009.

Larochelle, Hugo and Murray, Iain. The neural autore-
gressive distribution estimator. The Journal of Machine

Learning Research, 2011.

• MNIST and Cifar-10 log-likelihoods

69

Pixel Recurrent Networks [v.d.Oord et al’16]

Pixel Recurrent Neural Networks

Figure 7. Samples from models trained on ImageNet 64x64 images. Left: normal model, right: multi-scale model. We can see that the
single-scale model trained 64x64 images is less able to capture global structure than the 32x32 model. The multi-scale model seems to
resolve this problem. Although these models get similar performance in log-likelihood, the samples on the right do seem globally more
coherent.

Model NLL Test (Train)

Uniform Distribution: 8.00
Multivariate Gaussian: 4.70
NICE [1]: 4.48
Deep Diffusion [2]: 4.20
Deep GMMs [3]: 4.00
RIDE [4]: 3.47

PixelCNN: 3.14 (3.08)
Row LSTM: 3.07 (3.00)
Diagonal BiLSTM: 3.00 (2.93)

Table 5. Test set performance of different models on CIFAR-10 in
bits/dim. For our models we give training performance in brack-
ets. [1] (Dinh et al., 2014), [2] (Sohl-Dickstein et al., 2015), [3]
(van den Oord & Schrauwen, 2014a), [4] personal communication
(Theis & Bethge, 2015).

Row LSTM has a partially occluded view and the Pixel-
CNN sees the fewest pixels in the context. This suggests
that effectively capturing a large receptive field is impor-
tant. Figure 6 (left) shows CIFAR-10 samples generated
from the Diagonal BiLSTM.

5.7. ImageNet

Although to our knowledge the are no published results on
the ILSVRC ImageNet dataset (Russakovsky et al., 2015)
that we can compare our models with, we give our Ima-
geNet log-likelihood performance in Table 6. On ImageNet
the current PixelRNNs do not appear to overfit, as we saw
that their validation performance improved with size and

Image size NLL Validation (Train)

32x32: 3.86 (3.83)
64x64: 3.63 (3.57)

Table 6. Negative log-likelihood performance on 32⇥32 and 64⇥
64 ImageNet in bits/dim.

depth. The main constraint on model size are currently
computation time and GPU memory.

Note that the ImageNet models are in general less com-
pressible than the CIFAR-10 images. ImageNet has greater
variety of images, and the images were most likely resized
with a different algorithm than the one we used for images.
The ImageNet images are less blurry, which means neigh-
boring pixels are less correlated to each other and thus less
predictable. Because the downsampling method can in-
fluence the compression performance, we will release the
used downsampled images.

Figure 6 (right) shows 32 ⇥ 32 samples drawn from our
model trained on ImageNet. Figure 7 shows 64 ⇥ 64 sam-
ples from the same model with and without multi-scale
conditioning. Finally, we also show image completions
sampled from the model in Figure 8.

6. Conclusion

In this paper we significantly improve and build upon deep
recurrent neural networks as generative models for natural
images. We have described novel two-dimensional LSTM
layers: the Row LSTM and the Diagonal BiLSTM, that
scale more easily to larger datasets. The models were

Pixel Recurrent Neural Networks

Figure 6. Samples from models trained on CIFAR-10 (left) and ImageNet 32x32 (right) images. In general we can see that the models
capture local spatial dependencies relatively well. The ImageNet model seems to be better at capturing more global structures than the
CIFAR-10 model. The ImageNet model was larger and trained on much more data, which explains the qualitative difference in samples.

No skip Skip

No residual: 3.22 3.09
Residual: 3.07 3.06

Table 2. Effect of residual and skip connections in the Row LSTM
network evaluated on the Cifar-10 validation set in bits/dim.

with increased depth. This holds for up to the 12 LSTM
layers that we tried.

layers: 1 2 3 6 9 12

NLL: 3.30 3.20 3.17 3.09 3.08 3.06

Table 3. Effect of the number of layers on the negative log likeli-
hood evaluated on the CIFAR-10 validation set and measured in
bits/dim.

5.5. MNIST

Although the goal of our work was to model natural images
on a large scale, we also tried our model on the binary ver-
sion (Salakhutdinov & Murray, 2008) of MNIST (LeCun
et al., 1998) as it is a good sanity check and there is a lot
of previous art on this dataset to compare with. In Table 4
we report the performance of the Diagonal BiLSTM model
and that of previous published results. To our knowledge
this is the best reported result on MNIST so far.

Model NLL Test

DBM 2hl [1]: ⇡ 84.62
DBN 2hl [2]: ⇡ 84.55
NADE [3]: 88.33
EoNADE 2hl (128 orderings) [3]: 85.10
EoNADE-5 2hl (128 orderings) [4]: 84.68
DLGM [5]: ⇡ 86.60
DLGM 8 leapfrog steps [6]: ⇡ 85.51
DARN 1hl [7]: ⇡ 84.13
MADE 2hl (32 masks) [8]: 86.64
DRAW [9]: 80.97

Diagonal BiLSTM (1 layer, h = 32): 80.75
Diagonal BiLSTM (7 layers, h = 16): 79.20

Table 4. Test set performance of different models on MNIST
in nats (negative log-likelihood). Prior results taken from [1]
(Salakhutdinov & Hinton, 2009), [2] (Murray & Salakhutdinov,
2009), [3] (Uria et al., 2014), [4] (Raiko et al., 2014), [5] (Rezende
et al., 2014), [6] (Salimans et al., 2015), [7] (Gregor et al., 2014),
[8] (Germain et al., 2015), [9] (Gregor et al., 2015).

5.6. CIFAR-10

Next we test our models on the CIFAR-10 dataset
(Krizhevsky, 2009). Table 5 lists the results of our mod-
els and that of previously published approaches. For the
proposed networks, the Diagonal BiLSTM has the best
performance, followed by the Row LSTM and the Pixel-
CNN. This coincides with the size of the respective recep-
tive fields: the Diagonal BiLSTM has a global view, the

