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* Flows or Transports of Measure

high-dimensional space @

) defined 1mp11(:1t1y with

latent space
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NormfFlow
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Review: Normalizing Flows

*The density gx(z) obtained by transporting a base measure ¢
through a cascade of K diffeomorphisms ®;,..., ®Px is

2 =P o...P1(29) , with z9 ~ qo(2)

log qi (2) = log qo(20) Z log |det V,, ®pr| -
k<K

* One can parametrize invertible flows and use them

within the variational inference to improve the variational
approximation. [Rezende et al. | 5]

* Also considered in ["NICE"”, Dinh et al' 5].




Review: Diffusion and Non-equ I|br|um Thermodynamms

samples
from the model

trained on
CIFAR-10




Review: Generative Adversarial Networks

| [Goodfellow et al,, ' 4]
* Suppose we have a trainable black box generator:

trai%able » X ~ pg(z)

e Given observed data {X:}i; Xi ~ p(x), how to force our
generator to produce samples from p(z)?
training ’{Xz'}z' X, ~ p(x) »

data Discriminative
classifier

trai%able -{X;}i: X~ psl) 0

* [he generator should make the classification task as hard
as possible for any discriminator.
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* [raining procedure:




Generative Adversarial Networks

* Some open research directions:
. Optimization:

|. How to ensure a correct algorithm?
2. Existence of a Lyapunov function!?

2. Statistics:

|. How to determine the discriminator power (eg VC-dimension) to
obtain consistent estimators!

2. Control of overfitting to the training distribution?

3. Applications:
—lLanguage Modeling
—Reinforcement Learning
— Algorithmic Tasks
—Importance Sampling



Objectives

* Maximum Entropy Distributions and Energy-Basead
Vodels

- MCMC
— Examples

* Self-Supervised Learning
—Word2Vec
— Slow Feature Analysis
—Prediction



Limits of Transportation Models

* Direct learning by Optimizing the flow requires back
bropagation through a term of the form

f(©) =logdet V&(x;; 0)

—Very expensive for generic transformations @
— Highly specific flows affect the flexibility of the model.

* Indirect learning by the Discriminative Adversarial Training
s implicit
—No cheap way to evaluate the density p(z)
— Also, no cheap way to do inference, e.g. p(z|x)

* How to regularize the density estimation?
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Motivation: Given a collection of discriminative
measurements ®(z) = {®;(z)},; , how can we build a
oenerative model?
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* Motivation: Given a collection of discriminative
measurements ®(x) = {®;(z)},;, how can we build a
oenerative model?

* Supervised Learning Setup:

A

Empirical training distribution p: {(z;,v:)} vy; € {1, K}

Empirical class-conditional moments:
e = E@py~p(@@)ly=k) k=1...K
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* Motivation: Given a collection of discriminative
measurements ®(x) = {®;(z)},;, how can we build a
oenerative model?

* Supervised Learning Setup:

A

Empirical training distribution p: {(z;,v:)} vy; € {1, K}

Empirical class-conditional moments:
e = E@py~p(@@)ly=k) k=1...K

* Necessary condition:
Class-conditional models pg(x) satisfy
Vk, Exop, ®(x) = pk
(Q: Does this completely specity pg?
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Gibbs Models

* Motivation: Given a collection of discriminative
measurements ®(x) = {®;(z)},;, how can we build a
oenerative model?

* Supervised Learning Setup:

A

Empirical training distribution p: {(z;,v:)} vy; € {1, K}

Empirical class-conditional moments:
e = E@py~p(@@)ly=k) k=1...K

* Necessary condition:
Class-conditional models pg(x) satisfy

Vk, Exop, ®(x) = pk
(Q: Does this completely specity pg 7 Clearly not
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* [hus, we need a regularization principle.



* [hus, we need a regularization principle.

* A"good’ norm for probabllity distributions is the entropy

H(p) = —Eflogp] = — / p(z) log p(z)da



* [hus, we need a regula
* AYgood’ norm for pro

Dabl

rizatl

on principle.
ity distributions is the entropy

H(p) = —Eflogp] = — / p(z) log p(z)da

* [t captures a form of smoothness for probabillity

distributions

— On compact domains, the maximum entropy distribution Is the
uniform measure (maximally smooth)

— On non-compact domains, the max-entropy distribution might not

ex|st.
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Gibbs Models

* [ hus, we need a regularization principle.

* A"good” norm for probabllity distributions Is the entropy

H(p)

—Ellog p] = — / p(x)log p(z)dx

* [t captures a form of smoothness for probabillity

distr]

butions

—On compact domains, the maximum entropy distribution is the uniform
measure (maximally smooth)

—On non-compact domains, the max-entropy distribution might not
exist.

e [n ou
CcCoNs

raintsVv k

unce

r problem, we can use It to select, under the

oo () = g, those with maximum

rtainty (maximum smoothness).
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* We are thus Interested In the problem

max H (p)
p

s.t. Epp®(z) = p € R




* We are thus Interested In the problem

max H (p)
p

s.t. Epp®(z) = p € R

» Constrained optimization that we approach using calculus
of variations

* Lagrangian of the problem Is

L(p, )\1, Cee >\d) = H(p) + Z)\J( ﬂxwpq)j(x) — ,uj) :

- [ rosttonie = o [ oot




e [hus we have

OL
() = —logp(x) — 1+ ;)\J(I)J(ZE) =0
= logp(z) = Ao + Z Ai®,(x)
exp (2_; AjP;(z)
= plz) = ( 7 )
where

A\; are Lagrange multipliers guaranteeing that E,,®;(z) = u,.
Z is a Lagrange multiplier guaranteeing that p(x) =1
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* Maximum entropy given known energy

* Maximum entropy given known mean
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* Thus, given features ®(x), maximum entropy distributions
are In the exponential family given by

p(z) = exp ({A, ®(z)) — A(A))



* Thus, given features ®(x), maximum entropy distributions
are In the exponential family given by

p(z) = exp ({A, ®(z)) — A(A))

* In a discriminative setting, the final model Is a mixture In
this exponential family:

k ~ cat{l, K}
v~ pr(r) = exp((Ar, (7)) = AAR)) 5 Eonp, P(2) = pi -

* [his model has many names:
— Gibbs, Boltzmann, “Energy-based” Model, MaxEnt, ...
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Gibbs Model, Method of Moments and MLE

* [n a parametric model p(x|0), two main estimation

NNIGUES:

ethod of Moments: Match empirical moments with parametric

moments: Given Fi, ..., Fp,

empirical moments: F; = % Zj<N Ei(x;)

parametric moments: F;(0) = E,.p(0)Fi(2)

A

E=F(Onum)

—Maximum Likelihood Estimate (MLE)

A 1
OrMLE = arg L2 N ;Vlogp(m@)

* How different are these estimators in our setting!
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* [he Maximum Entropy model matches the moments
defined by the sufficient statistics ®(xz):

aazwp(:ﬂ@)q)(a?) — I[’\L '

* [he maximum likelihood attempts to maximize data log-
ikelihood:

max 3 lowp(esl) = = >(6.9(a;)) = A®
1
= max(f, 2]: O(z;)) — A(H)

= max(6, 1) — A(0)



* Recall the conjugate duality:

A™(p) = sup ({0, p) — A(0))

e A*(1) is the entropy of the distribution with E(®(x)) = pu.

* [hus, the maximum entropy and the maximum likelihood
estimators are the same under our exponential family.
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* Given a generative model p(x|0), recall the associated
Fisher Kernel:

U, : Fisher Vector = Vylogp(x|f) .
I : Fisher Information = E{U, U’} .
K(z,2') = (U, I 'U,) ,
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* Given a generative model p(x|0), recall the associated
Fisher Kernel:
U, : Fisher Vector = Vylogp(x|6) .
I : Fisher Information = E{U, U’} .

K(x,z') = <U$,I_1Ux/> ,

* When p(z]6) = exp ((6, ®(x)) — A()), the Fisher vector Is
)

U, = &
K(z,z') = (®(x), ®(z")) , (®: whitened features ) .
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Gibbs Model and Fisher Kernels

* Given a generative model p(x|0), recall the associated

Fisher Kernel:
U, : Fisher Vector = Vylogp

(]0) .

I : Fisher Information = E{U, U’} .

K(x,2") = (U, I_1U$/>

)

* When p(z]6) = exp ((6, ®(x)) — A()), the Fisher vector Is

U, = ®(x)

K(z,z') = (®(x), ®(z")) , (®: whitened features ) .

* [hus the maximum entropy model Is t

ne ‘‘canonica

oenerative model associated with linea

29
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* We have derived a fully probabillistic model in a
supervised setting:

Y
@ (observed)

X
¢ ¢ ¢ ¢ ¢ @ @& e €

(observed)
y ~ cat{l, K}
p(zly) = exp ({0y, ©(z)) — A(0,))
= p(y|z) = softmax({(0y, P(x))}y) -

30



e How about when no labels are observed!?

.

X
¢ ¢ ¢ ¢ ¢ ¢ ¢ e e &
(observed)

(hidden)

y ~ mult ()
p(zly) = exp ((0y, ®(x)) — A(Hy))

Zp p(x]y)



e Q: How to train this model!

—When adjusting expected values (Method of Moments), find
Lagrange multipliers.

— Equivalently, maximize log-likelihood.

— Also learn the sufficient statistics!?

32



ne log-likelihood Is log p(x|0) = (0, ®(x)) — A(0)
ne gradient with respect to 6 s

Vo logp(z]|0) = &(x) — Ve A(0)



* The log-likelihood is log p(x|0) = (0, ®(x)) — A(0)
* [he gradient with respect to 6 Is

Vologp(z|f) = ®(x) — Vo A(0)
VoA(0) = Vy log / exp((0, B(z)))da

_ [ Voexp((0,®(x)))dz
[ exp((0, ®(x)))dx
fCID r)exp((0, ®(x)))dx
[ exp((0, ®(z)))dx

= Eyznp(z)0)2(2)

* W We have

e [hus

Vo logp(zi|0) = ®(z;) — E(P(z))



* We estimate the expectation with a finite sample.

* Training Is thus reduced to being able to efficiently
sample from distributions of the form

p(z) = exp((f, ®(x)) — A(0))

* Markov-Chain Monte-Carlo (MCMC) I1s a broad family of
alsorithms doing precisely so.




* Basic principle: construct a Markov chain whose
equilibrium distribution is precisely p(z) and such that the
transition distributions are easy to sample from:

o~ ao()  me o~ g(almes)

ro —7> L1 —7 T2 —7 ...

* Two very important algorithms (there are many more)

—Metropolis-Hastings: very generic
—Gibbs Sampler: for models with small factors.
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Markov Chain Monte-Carlo

* Metropolis-Hastings [ | 953]: assumes one can easily

compute a function f(z) proportional to p(x).

* Let ¢(x|y) be a proposal transition kernel that Is
irreducible, 1.e., it can move to any point In the state space.

e Given X = z®)
generate Y; ~ q(y|zM). and define

w(r _ [ Yo with probability p(z(),Y;) ,
] 2 with probability 1 — p($(t)7 Yi)

f(y)q(x y)>
f(x)q(y|x)

with p(x,y) = min (1,

37



Proposition [M-H,’53]: If ¢(y|x) is irreducible (¢(y|x) > 0 for all z,y),
the chain converges to the stationary distribution p(x).
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Proposition [M-H,’53]: If ¢(y|x) is irreducible (¢(y|x) > 0 for all z,y),
the chain converges to the stationary distribution p(x).

e This result does not Inform about how fast we reach this
stationary distribution (mixing time).

* Proposal distribution too wide: we might reject too often

* Proposal distribution too narrow: long mixing time.
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Markov Chain Monte-Carlo

Proposition [M-H,’53]: If ¢(y|x) is irreducible (¢(y|x) > 0 for all z,y),
the chain converges to the stationary distribution p(x).

e This result does not Inform about how fast we reach this
stationary distribution (mixing time).

* Proposal distribution too wide: we might reject too often

* Proposal distribution too narrow: long mixing time.

e Several extensions

—Langevin Dynamics: attempt to climb in the direction of V log p(x).
€8

Yn—|—1|$n ™~ N(xn + vV logp(x), 72)

40



* A special case of M-H algorithm when 1t Is easy to
sample from the conditional distributions

P(T ()T ()5 - s T (k—1) T(kt1)> - - - » T(n))

41



Gibbs sampler [Geman & Geman, 34]

* A special case of M-H algorithm when 1t Is easy to
sample from the conditional distributions

P(T )| T(1)s -+ Th=1)s T(kt1)s - - - > T(n))

* [n that case, the proposal distributions are of the form

q

(zly) = 2@y Ya)s -+ s Yk—1)s Ykt1)s - - > Y(n) )

* [t refines a reversible Markov chain with stationary

distri
e Usec

bution p(x)

extensively In Markov Random Fields models.
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* Can scale to hig
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n-dimensional d
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* Generic, provab
* Can scale to hig

» Computationally expensive: in order to have gooc

y correct samp

n-dimensional d

ing methods.
ensity models.

estimators of the gradient we require many Iterations
(samples are not statistically independent in general)

* [ he method does not In
select the proposal distri
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» Generic, provably correct sampling methods.

* Can scale to high-dimensional densi

* Computationally expensive: in order to have gooc

ty models.

estimators of the gradient we require many iterations

(samples are not statistically indepe

* [he methoc

d

the proposa

e

ndent in general)

oes not Inform abou
istributions.

e Alternative/Extensions:

e Annealed

. how to optimally select

Importance Sampling [Neal 98]

* Hybrid Monte-Carlo (e.g. Langevin)

e Variational Inference

45



- From unsupervised to self-supervised learning
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From unsupervised to self-supervised learning

* S0 far, we have seen models that attempt to estimate a
density of the input domain x € R"

p(z) = / p(R)p(zlh)dh , p(alh) = exp((n, B(z)) — A(61))

p(z) = po(®(z)) - |det VE(z)|~



From unsupervised to self-supervised learning

* S0 far, we have seen models that attempt to estimate a
density of the input domain z € R"

p(z) = / p(R)p(zlh)dh , p(alh) = exp((n, B(z)) — A(61))

p(z) = po(®(z)) - |det VE(z)|~

» Chained Bayes Rule: for any ordering (Zo(1); - - - s To(n)) of
the coordinates we have

p(x) = Hp(wa(i)\fa(l) . -fa(i—1)>

1<n



From unsupervised to self-supervised learning

* S0 far, we have seen models that attempt to estimate a
density of the input domain z € R"

p(z) = / p(R)p(zlh)dh , p(alh) = exp((n, B(z)) — A(61))
p(x) = po(®(x)) - | det V()| !

» Chained Bayes Rule: for any ordering (Zo(1); - - - s To(n)) of
the coordinates we have

p(z) = Hp(ﬂfa(i)|$a(1) E fl?a(z'—l))

1<n

e Q:In which situations is it better to use the factorized?



- From unsupervised to self-supervised learning

* l[emporally ordered data

— Speech, Music
—Video

—lLanguage

— Other time series (Weather, Finance, ...)

* Spatially ordered data, Multi-Resolution data

—lmages

* Learning Is thus reduced to the problem of conditional

prediction.
p(x) = 1p(Ts|TN()) i

50



* Unsupervised learning “success story'.

w1 Wo Wi
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* Unsupervised learning “success story'.

w1 Wo Wi

* Language creates a notion of similarity between words:

words wy, wy are similar if they are “exchangeable”

i.e., they appear often within the same context.
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* Unsupervised learning

w1 Wo Wi

* Language creates a no

‘success story'.

lon of similarrty between words:

words wy, wy are simi.
i.e., they appear often

ar if they are “exchangeable”

within the same context.

* Goal: find a word representation & (w;) € R%that
expresses this similarity as a dot product

sim(w;, wj) ~ (@(w;), ®(w;)) -

53



* Main idea: Skip-gram with negative sampling.

» Construct a “training set”

e positive pairs D = { (wg, ¢k ) }x of (words, contexts) appearing in
a huge language corpus.

* negative pairs D' = {(wy/, ¢ )} of (words, contexts) not
appearing in the corpus.



* Main idea: Skip-gram with negative sampling.

» Construct a “training set”

e positive pairs D = { (wg, ¢k ) }x of (words, contexts) appearing in
a huge language corpus.

* negative pairs D" = {(wy, ¢ ) b of (words, contexts) not
appearing in the corpus.

* Model the probabillity of a pair (w, c) being positive as
p(D = 1lc, w) = 0({(Vy,ve)) , V,ve € R 1

7(r) = 1+e*



Word2vec [Mikolov et al.' | 3],

* Main idea: Skip-gram with negative sampling.

» Construct a “training set”

e positive pairs D = { (wg, ¢k ) }x of (words, contexts) appearing in
a huge language corpus.

» negative pairs D" = {(wy, cxr )} of (words, contexts) not
appearing in the corpus.
* Model the probability of a pair (w, c) being positive as
p(D = 1lc, w) = 0({(Vy,ve)) , V,ve € R 1

o(x) = g
+ Training with Maximum Likelihood: o

arg max H p(D = 1|c,w, 0) H p(D = 0lc, w, 0)
(w,c)~D (w,c)~D’
arg max i log 0 ((Vy, Ve) ) + i: log o (—(Ve, Ve))

0
 (w,e)~D / (w,c)~D’
D : positive contexts D’ : negative contexts



* Can be seen as an implicit matrix factorization using a
mutual information criteria [Yoav & Goldberg, [4].

* Huge impact on Google’s business bottom-line.

Country and Capital Vectors Projected by PCA
2 I 1 I |

l China:
Beijing
15+ Russia
Japan
1} "Moscow
Turkey Ankara *Tokyo
05 F
Poland:
0F Germany:
France Warsaw
« Berlin
0.5 | Italy: Paris
w - HAthens
Greece
1} Spain Rome
-15 F Poﬂdgal Lisbcxadrid

1 [google]




* Rather than modeling the density of natural images
p(z), v € R?

we may be also Interested iIn modeling the conditiona
distributions P(Zt+1]Z1, ..., 2t) where (Z¢)t is temporal
ordered data.
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Video Prediction

* Rather than modeling the density of natural images
p(z), v € R?

we may be also Interested iIn modeling the conditiona
distributions P(Zt+1]Z1, ..., 2t) where (Zt)t is temporally
ordered data.

* Similarly, can we find a signal representation ®(z;) that Is
consistent with the “video language” metric! 1.e.

(@(x1), ®(x5)) =~ h(|t — s])

* This Is the objective of Slow Feature Analysis [Sejnowski et al'02,
Cadieu& Olshausen’| 0 and many others].
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Adversarial result

 Conditional video

60

N adversarial cost

Adversarial+GDL result

Adversarial+GDL result



» Generalize the i1dea of positive, negative pairs to a multi-

class classification problem about spatial configurations.

Unlabeled training image

!!!!!!

LA AL
: .. .D
- ® 9 .

ooooooo -

e, Wt
. . . .
- - ™ .
LR “aaw

''''''

N

CNN

Train Deep Net to recover relative position
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Unlabeled training image

------------

& L
Train Deep Net to recover relative position '%_é =

* Premise: A patch representation ®(x) that does well In
this task indirectly builds object priors.

* [ he criterion Is not generative, but It retains enough
information to generalize to other tasks
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e Retrieval tasks:

Input Random Initialization

ImageNet AlexNet

Vv;"qli
L [ _ .x@,

o
lllnlll

reis

RS \ . A\LL

t
)

LERER

= [
—_— —_— _— —_— —_— —_— _— —_— —_— _— —_— _— —_— _— —_— —_—
. -

* [ he representation captures visual similarity, leveraged
object detection, retrieval, etc.
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~ Pixel Recurrent Networks

* Prediction tasks of the form z,41 = F(x1,...,2¢) require
a loss or an associated likelihood
e.g. [|Te41 — $t+1H2 & p(@ilrr, .. ox) = N(F (21, 2), 1)

* [n discrete domains we simply use a multinomial loss, In
continuous domains there I1s no principled choice.

* How about images!
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Pixel Recurrent Networks

* Prediction tasks of the form z,41 = F(x1,...,2¢) require
a loss or an associated likelihood
e.g. [|Te41 — $t+1|‘2 & p(@ilrr, .. ox) = N(F (21, 2), 1)

* In discrete domains we simply use a multinomial loss, In
continuous domains there Is no principled choice.

* How about images!

* We can treat them as discrete two-dimensional grids

r(u) € {0,255}

* Model each pixel from 1ts “past’” context:
plz(u)|lz(v);v € Q(u)) = softmax (P(x, Q(u)))

65



* Contexts are modeled using “diagonal BILSTMS".

I

HEEEEER EEEE
VIV Haiudl &
Haludl &

EENE

LM

* Multi-Scale architecture conditions generations upon low-
resolution samples (similarly as in LAPGANS).

* Very deep Recurrent Networks (> |0 layers).



* state-of- the art Image generation and modeling.
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* MNIST and Cifar- 10 log-likelihoods

Model NLL Test
DBM 2hl [1]: ~ 84.62
DBN 2hl [2]: ~ 84.55
NADE [3]: 88.33
EoNADE 2hl (128 orderings) [3]: 85.10
EoNADE-5 2hl (128 orderings) [4]: 84.68
DLGM [5]: ~ 86.60
DLGM 8 leapfrog steps [6]: ~ 85.51
DARN 1hl [7]: ~ 84.13
MADE 2hl (32 masks) [8]: 86.64
DRAW [9]: < 80.97
Diagonal BiLSTM (1 layer, h = 32): 80.75
Diagonal BiLSTM (7 layers, h = 16): 79.20

Table 4. Test set performance of different models on MNIST
in nats (negative log-likelihood). Prior results taken from [1]
(Salakhutdinov & Hinton, 2009), [2] (Murray & Salakhutdinov,
2009), [3] (Uriaet al., 2014), [4] (Raiko et al., 2014), [5] (Rezende
et al., 2014), [6] (Salimans et al., 2015), [7] (Gregor et al., 2014),
[8] (Germain et al., 2015), [9] (Gregor et al., 2015).

Model NLL Test (Train)
Uniform Distribution: 8.00
Multivariate Gaussian: 4.70

NICE [1]: 4.48

Deep Diffusion [2]: 4.20

Deep GMMs [3]: 4.00

RIDE [4]: 3.47
PixelCNN: 3.14 (3.08)
Row LSTM: 3.07 (3.00)
Diagonal BiLSTM: 3.00 (2.93)

Table 5. Test set performance of different models on CIFAR-10 in
bits/dim. For our models we give training performance in brack-
ets. [1] (Dinh et al., 2014), [2] (Sohl-Dickstein et al., 2015), [3]
(van den Oord & Schrauwen, 2014a), [4] personal communication
(Theis & Bethge, 2015).
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