
Stat 212b: Topics in Deep Learning
Lecture 17

Joan Bruna
UC Berkeley

1

Reminders & Announcements

• Deadline for Reviews: Friday Apr 1st
– Submit via BCourses assignment or email with [stat212b] in subject

line.

• Deadline for Final Project Proposal: Friday Apr 8th
– A short description of what you plan to do.
– Can be either a software implementation, an oral presentation and/or a

tiny research project.

• Ian Goodfellow’s guest lecture is cancelled
– replacement TBD.

2

Objectives

• (long) Review of previous lecture.

• Generative Adversarial Networks
– applications

• Maximum Entropy Distributions
– examples
– MCMC

• Self-Supervised learning
– word2vec
– slow feature analysis

3

• Latent Graphical Models or Mixtures.

Review: Latent Graphical Models

x

h

high-dimensional space

p(x) =

Z
p(x, h)dh =

Z
p(x | h)p(h)dh

latent space

h ⇠ p(h)

�

p(x | h) = p�(h)(x)

✓ = �(h)

p✓(x)

RBM
DBN
DBM
VAE
…

Review: Auto encoders

• Goal: given data , learn a reparametrization
that approximates well with minimal capacity.

• The model contains an encoder and a decoder .
• It introduces an information bottleneck to characterize

input data from ambient space.
5

X = {xi} zi = �(xi)

X

x z

x̂

�

 �

Review: Auto encoders Geometric Interpretation

• The reconstruction error approximates a distance to a
covering manifold of X.

• Intrinsic manifold coordinates “disentangle” factors.
6

⌦(✏) = {x s.t. k (�(x))� xk  ✏}

Review: EM and Variational Bound

• Q: Does the EM algorithm monotonically improve the
likelihood?

• Assume for now that latent variables are discrete.
• For any distribution over latent variables, we have

7

log p(X | ✓) = log

X

Z

p(X,Z | ✓)
!

= log

X

Z

q(Z)

p(X,Z | ✓)
q(Z)

!

�
X

Z

q(Z) log

✓
p(X,Z | ✓)

q(Z)

◆
= L(q, ✓) .

(Jensen’s Inequality: E(f(X)) � f(E(X)) if f is convex)

q(Z)

Variational Bound

• We can express the variational lower bound as

8

L(q, ✓) = Eq(Z) [log p(X,Z | ✓)]� Eq(Z) log q(Z)

= Eq(Z) [log p(X,Z | ✓)] +H(q) .

H(q): Entropy of q(Z).

Variational Bound

• We can express the variational lower bound as

• Also, we have

9

L(q, ✓) = Eq(Z) [log p(X,Z | ✓)]� Eq(Z) log q(Z)

= Eq(Z) [log p(X,Z | ✓)] +H(q) .

H(q): Entropy of q(Z).

KL(q||p) = �
X

z

q(z) log

✓
p(z)

q(z)

◆
log p(X | ✓) = L(q, ✓) +KL(q(z)||p(z | x, ✓)) , where

is the Kullback-Leibler divergence.

Approximate Posterior Inference

• For most models, the posterior is analytically intractable:

10

p(z | x) = p(x | z)p(z)R
p(x | z0)p(z0)dz0

Approximate Posterior Inference

• For most models, the posterior is analytically intractable:

• Variational Bayesian Inference: consider a parametric
family of approximations and optimize variational
lower bound with respect to the variational parameters

11

p(z | x) = p(x | z)p(z)R
p(x | z0)p(z0)dz0

q(z | �)

�

Mean Field Variational Bayes
• Joint likelihood of observed and latent variables:

12

p(X,Z | ✓) ✓: generative model parameters

Mean Field Variational Bayes
• Joint likelihood of observed and latent variables:

• Let us consider a posterior approximation of the
form

- Mean-field approximation: we model hidden variables as being
independent.

13

q(z|�)

q(z | �) =
Y

i

qi(zi | �i) �: Variational parameters

p(X,Z | ✓) ✓: generative model parameters

Mean Field Variational Bayes
• Joint likelihood of observed and latent variables:

• Let us consider a posterior approximation of the
form

- Mean-field approximation: we model hidden variables as being
independent.

• Corresponding lower-bound is given by

14

q(z|�)

q(z | �) =
Y

i

qi(zi | �i) �: Variational parameters

p(X,Z | ✓)

log p(X | ✓) �
Z

q(z | �) log p(x, z | ✓)
q(z | �) dz = Eq(z|�){log(p(X,Z | ✓)}+H(q(z | �)) .

✓: generative model parameters

Mean Field Variational Bayes

• Goal: optimize lower-bound with respect to variational
parameters.

• As we have seen, this is equivalent to minimizing the
divergence between true and approximate posterior :

15

log p(X | ✓) = eL(✓,�) +DKL(q�(z)||p(z|x, ✓))

Mean Field Variational Bayes

• Goal: optimize lower-bound with respect to variational
parameters.

• As we have seen, this is equivalent to minimizing the
divergence between true and approximate posterior :

• If is a factorial distribution, the entropy term is
tractable:

• Problematic term:

16

log p(X | ✓) = eL(✓,�) +DKL(q�(z)||p(z|x, ✓))

q(z | �)

H(q(z|�)) =
X

i

H(qi(zi|�i))

r�Eq(z|�) log p(X,Z|✓)

Mean Field Variational Bayes

• Denote
• Then

• Stochastic approximation of :

17

f(Z) = log p(X,Z|✓)

r�Eq(z|�)f(Z)

r�Eq(z|�)f(Z) = r�

Z
f(z)q(z|�)dz

=

Z
f(z)r�q(z|�)dz

=

Z
f(z)q(z|�)r� log q(z|�)dz

= Eq{f(Z)r� log q(z|�)}

r�Eq(z|�)f(Z) ⇡ 1

S

X

sS,z(s)⇠q(z|�)

f(z(s))r� log q(z
(s)|�)

[Paiskey, Blei, Jordan,’12]

Mean Field Variational Bayes

• The estimator of the gradient is unbiased, but it may
suffer from large variance.

• We may need a large number S of samples to stabilize
the descent.

• Faster alternative?

18

Variational Autoencoders

• Recall the variational lower bound:

19

log p(X | ✓) = Eq(z|�){log(p(X,Z | ✓)}+H(q(z | �)) +DKL(q(z|�)||p(z|x, ✓))

log p(X | ✓) = L(✓,�, X) +DKL(q(z|�)||p(z|X, ✓))

[Kingma & Welling’14, Rezende et al.’14]

Variational Autoencoders

• Recall the variational lower bound:

• Can we optimize jointly both generative and variational
parameters efficiently?

20

log p(X | ✓) = Eq(z|�){log(p(X,Z | ✓)}+H(q(z | �)) +DKL(q(z|�)||p(z|x, ✓))

log p(X | ✓) = L(✓,�, X) +DKL(q(z|�)||p(z|X, ✓))

[Kingma & Welling’14, Rezende et al.’14]

Variational Autoencoders

• Recall the variational lower bound:

• Can we optimize jointly generative and variational
parameters efficiently?

• For appropriate posterior approximations, we can
reparametrize samples as

21

log p(X | ✓) = Eq(z|�){log(p(X,Z | ✓)}+H(q(z | �)) +DKL(q(z|�)||p(z|x, ✓))

log p(X | ✓) = L(✓,�, X) +DKL(q(z|�)||p(z|X, ✓))

Z ⇠ q(z|x,�)) Z

d
= g�(✏, x) , ✏ ⇠ p0

[Kingma & Welling’14, Rezende et al.’14]

⇣
e.g. q(z|x,�) = N (z;µ(x),⌃(x)) $ z = µ(x) + ⌃(x)1/2✏ , ✏ ⇠ N (0,1)

⌘

Variational Autoencoders

• It results that

 can be estimated via Monte-Carlo by

22

L(✓,�, X) = �DKL(q�(z|X)||p✓(z)) + Eq�(z|X){log p(X|z, ✓)}

\L(✓,�, X) = �DKL(q�(z|X)||p✓(z)) +
1

S

X

sS

log p(X|z(s), ✓)

z(s) = g�(X, ✏(s)) and ✏(s) ⇠ p0 .

Variational Autoencoders

• It results that

 can be estimated via Monte-Carlo by

• First term acts as a regularizer: limits the capacity of the
encoder

• Second term is a reconstruction error.
23

L(✓,�, X) = �DKL(q�(z|X)||p✓(z)) + Eq�(z|X){log p(X|z, ✓)}

\L(✓,�, X) = �DKL(q�(z|X)||p✓(z)) +
1

S

X

sS

log p(X|z(s), ✓)

z(s) = g�(X, ✏(s)) and ✏(s) ⇠ p0 .

Variational Autoencoders
•How to model ?

24

x 7! g�(x, ·) and z 7! p✓(·, z)

Variational Autoencoders
•How to model ?

•VAE idea: use neural networks to approximate variational
and generative parameters.

25

x

q(z|x,�)

p(x|z, ✓)

✏ ⇠ p0g(x, ·)

x 7! g�(x, ·) and z 7! p✓(·, z)

Variational Autoencoder

• Example: Let the prior over latent variables be Gaussian
isotropic:

• Let the conditional likelihood be also Gaussian:

• Variational approximate posterior also Gaussian:

26

p(z) = N (z; 0, I)

p(x|z) = (x;µ(z),⌃(z)) µ(z),⌃(z) : Neural networks

q�(z|x) = N (z;µ(x),⌃(x))

µ(z),⌃(z) : Neural networks, (⌃ diagonal)

Z ⇠ q�(z|x) , Z = µ(x) + ⌃(x)1/2✏ , ✏ ⇠ N (0, 1)

Variational Autoencoder

27

(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
p✓(x|z) with the learned parameters ✓.

(a) 2-D latent space (b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

Figure 5: Random samples from learned generative models of MNIST for different dimensionalities
of latent space.

B Solution of �DKL(q�(z)||p✓(z)), Gaussian case

The variational lower bound (the objective to be maximized) contains a KL term that can often be
integrated analytically. Here we give the solution when both the prior p✓(z) = N (0, I) and the
posterior approximation q�(z|x(i)

) are Gaussian. Let J be the dimensionality of z. Let µ and �
denote the variational mean and s.d. evaluated at datapoint i, and let µj and �j simply denote the
j-th element of these vectors. Then:

Z
q✓(z) log p(z) dz =

Z
N (z;µ,�2

) logN (z;0, I) dz

= �J

2

log(2⇡)� 1

2

JX

j=1

(µ

2
j + �

2
j)

10

• Examples using a two-dimensional latent space:

Examples

28

(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
p✓(x|z) with the learned parameters ✓.

(a) 2-D latent space (b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

Figure 5: Random samples from learned generative models of MNIST for different dimensionalities
of latent space.

B Solution of �DKL(q�(z)||p✓(z)), Gaussian case

The variational lower bound (the objective to be maximized) contains a KL term that can often be
integrated analytically. Here we give the solution when both the prior p✓(z) = N (0, I) and the
posterior approximation q�(z|x(i)

) are Gaussian. Let J be the dimensionality of z. Let µ and �
denote the variational mean and s.d. evaluated at datapoint i, and let µj and �j simply denote the
j-th element of these vectors. Then:

Z
q✓(z) log p(z) dz =

Z
N (z;µ,�2

) logN (z;0, I) dz

= �J

2

log(2⇡)� 1

2

JX

j=1

(µ

2
j + �

2
j)

10

• Increasing latent dimensionality:

Extensions to semi-supervised learning
• Semi-supervised learning:

29

We observe {xi}iL1 and {xj , yj}jL2 , with xi ⇠ p(x), xj ⇠ p(x).

“8”

“6”

“5”

L1 � L2

Extension to Semi-Supervised Learning

• “Semi-supervised Learning with Deep Generative Networks”,
Kingma et al,’14.

• Labels are treated as either observed or hidden.

30

x

z1

z2y

labels

p(x, y, z1, z2) = p(y)p(z2)p(z1|z2, y)p(x|z1)

Extension to Semi-Supervised Learning

• “Semi-supervised Learning with Deep Generative Networks”,
Kingma et al,’14.

• For datapoint with labels:

• For datapoint with no labels:

31

log p

✓

(x, y) � E
q�(z|x,y) (log p✓(x|y, z) + log p

✓

(y) + log p(z)� log q

�

(z|x, y))

log p

✓

(x) � E
q�(y,z|x) (log p✓(x|y, z) + log p

✓

(y) + log p(z)� log q

�

(z, y|x))

Extension to Semi-Supervised Learning

• “Semi-supervised Learning with Deep Generative Networks”,
Kingma et al,’14.

• Classification results on MNIST:

32

Table 1: Benchmark results of semi-supervised classification on MNIST with few labels.

N NN CNN TSVM CAE MTC AtlasRBF M1+TSVM M2 M1+M2
100 25.81 22.98 16.81 13.47 12.03 8.10 (± 0.95) 11.82 (± 0.25) 11.97 (± 1.71) 3.33 (± 0.14)
600 11.44 7.68 6.16 6.3 5.13 – 5.72 (± 0.049) 4.94 (± 0.13) 2.59 (± 0.05)
1000 10.7 6.45 5.38 4.77 3.64 3.68 (± 0.12) 4.24 (± 0.07) 3.60 (± 0.56) 2.40 (± 0.02)
3000 6.04 3.35 3.45 3.22 2.57 – 3.49 (± 0.04) 3.92 (± 0.63) 2.18 (± 0.04)

4 Experimental Results

Open source code, with which the most important results and figures can be reproduced, is avail-
able at http://github.com/dpkingma/nips14-ssl. For the latest experimental results,
please see http://arxiv.org/abs/1406.5298.

4.1 Benchmark Classification
We test performance on the standard MNIST digit classification benchmark. The data set for semi-
supervised learning is created by splitting the 50,000 training points between a labelled and unla-
belled set, and varying the size of the labelled from 100 to 3000. We ensure that all classes are
balanced when doing this, i.e. each class has the same number of labelled points. We create a num-
ber of data sets using randomised sampling to confidence bounds for the mean performance under
repeated draws of data sets.

For model M1 we used a 50-dimensional latent variable z. The MLPs that form part of the generative
and inference models were constructed with two hidden layers, each with 600 hidden units, using
softplus log(1+ex) activation functions. On top, a transductive SVM (TSVM) was learned on values
of z inferred with q

�

(z|x). For model M2 we also used 50-dimensional z. In each experiment, the
MLPs were constructed with one hidden layer, each with 500 hidden units and softplus activation
functions. In case of SVHN and NORB, we found it helpful to pre-process the data with PCA.
This makes the model one level deeper, and still optimizes a lower bound on the likelihood of the
unprocessed data.

Table 1 shows classification results. We compare to a broad range of existing solutions in semi-
supervised learning, in particular to classification using nearest neighbours (NN), support vector
machines on the labelled set (SVM), the transductive SVM (TSVM), and contractive auto-encoders
(CAE). Some of the best results currently are obtained by the manifold tangent classifier (MTC)
(Rifai et al., 2011) and the AtlasRBF method (Pitelis et al., 2014). Unlike the other models in this
comparison, our models are fully probabilistic but have a cost in the same order as these alternatives.

Results: The latent-feature discriminative model (M1) performs better than other models based
on simple embeddings of the data, demonstrating the effectiveness of the latent space in providing
robust features that allow for easier classification. By combining these features with a classification
mechanism directly in the same model, as in the conditional generative model (M2), we are able to
get similar results without a separate TSVM classifier.

However, by far the best results were obtained using the stack of models M1 and M2. This com-
bined model provides accurate test-set predictions across all conditions, and easily outperforms the
previously best methods. We also tested this deep generative model for supervised learning with
all available labels, and obtain a test-set performance of 0.96%, which is among the best published
results for this permutation-invariant MNIST classification task.

4.2 Conditional Generation
The conditional generative model can be used to explore the underlying structure of the data, which
we demonstrate through two forms of analogical reasoning. Firstly, we demonstrate style and con-
tent separation by fixing the class label y, and then varying the latent variables z over a range of
values. Figure 1 shows three MNIST classes in which, using a trained model with two latent vari-
ables, and the 2D latent variable varied over a range from -5 to 5. In all cases, we see that nearby
regions of latent space correspond to similar writing styles, independent of the class; the left region
represents upright writing styles, while the right-side represents slanted styles.

As a second approach, we use a test image and pass it through the inference network to infer a
value of the latent variables corresponding to that image. We then fix the latent variables z to this

6

Extension to Semi-Supervised Learning

• “Semi-supervised Learning with Deep Generative Networks”,
Kingma et al,’14.

• Disentangling label and “style”:

33

(a) Handwriting styles for MNIST obtained by fixing the class label and varying the 2D latent variable z

(b) MNIST analogies (c) SVHN analogies

Figure 1: (a) Visualisation of handwriting styles learned by the model with 2D z-space. (b,c)
Analogical reasoning with generative semi-supervised models using a high-dimensional z-space.
The leftmost columns show images from the test set. The other columns show analogical fantasies
of x by the generative model, where the latent variable z of each row is set to the value inferred from
the test-set image on the left by the inference network. Each column corresponds to a class label y.

Table 2: Semi-supervised classification on
the SVHN dataset with 1000 labels.

KNN TSVM M1+KNN M1+TSVM M1+M2
77.93 66.55 65.63 54.33 36.02

(± 0.08) (± 0.10) (± 0.15) (± 0.11) (± 0.10)

Table 3: Semi-supervised classification on
the NORB dataset with 1000 labels.

KNN TSVM M1+KNN M1+TSVM
78.71 26.00 65.39 18.79

(± 0.02) (± 0.06) (± 0.09) (± 0.05)

value, vary the class label y, and simulate images from the generative model corresponding to that
combination of z and y. This again demonstrate the disentanglement of style from class. Figure 1
shows these analogical fantasies for the MNIST and SVHN datasets (Netzer et al., 2011). The
SVHN data set is a far more complex data set than MNIST, but the model is able to fix the style of
house number and vary the digit that appears in that style well. These generations represent the best
current performance in simulation from generative models on these data sets.

The model used in this way also provides an alternative model to the stochastic feed-forward net-
works (SFNN) described by Tang and Salakhutdinov (2013). The performance of our model sig-
nificantly improves on SFNN, since instead of an inefficient Monte Carlo EM algorithm relying on
importance sampling, we are able to perform efficient joint inference that is easy to scale.

4.3 Image Classification
We demonstrate the performance of image classification on the SVHN, and NORB image data sets.
Since no comparative results in the semi-supervised setting exists, we perform nearest-neighbour
and TSVM classification with RBF kernels and compare performance on features generated by
our latent-feature discriminative model to the original features. The results are presented in tables 2
and 3, and we again demonstrate the effectiveness of our approach for semi-supervised classification.

7

Other extensions
• Incorporate MCMC steps into the variational

approximation:

• Incorporate Importance Sampling to improve the
variational lower bound:

34

“Markov Chain Monte Carlo and Variational Inference:
Bridging the Gap”, Salimans et al’15

L
k

(x) = E
z1,...,zk⇠q(z|x)

"
log

1

k

kX

i=1

p(x, z

i

)

q(z

i

|x)

#
.

8 k , log p(x) � Lk+1(x) � Lk(x) , and

lim

k!1
Lk(x) = log p(x) if

p(x, z)

q(z|x) is bounded .

“Importance Weighted Autoencoders”
Burda et al’16

Other extensions

• Make posterior inference more flexible at small
computational cost using an inverse autoregressive
Gaussian model [Kingma, Salimans, Welling, ’16].

35

Workshop track - ICLR 2016

Figure 1: Random samples from learned generative model of CIFAR-10

Table 2: Generative modeling results on CIFAR-10 images.

Method s/epoch bits/dim 

Ours (diagonal covariance) 638 3.86
Ours (nonlinear autoregressive flow) 869 3.57

The transformation has a tractable Jacobian determinant, and it can be vectorized for implementa-
tion on a GPU. By applying this transformation to the samples from our approximate posterior we
can move their distribution closer to the exact posterior.

We empirically demonstrated the usefulness of inverse autoregressive flow for variational inference
by training a novel deep architecture of variational auto-encoders. In experiments we demonstrated
that autoregressive flow leads to significant performance gains compared to similar models with
diagonal Gaussian approximate posteriors.

REFERENCES

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: non-linear independent components esti-
mation. arXiv preprint arXiv:1410.8516, 2014.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder
for distribution estimation. arXiv preprint arXiv:1502.03509, 2015.

Karol Gregor, Andriy Mnih, and Daan Wierstra. Deep AutoRegressive Networks. arXiv preprint
arXiv:1310.8499, 2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural computation, 9(8):
1735–1780, 1997.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. Proceedings of the 2nd
International Conference on Learning Representations, 2013.

7

Other directed models

• Restricted Boltzmann Machines [Smolenski’86,Hinton,’02]
are undirected graphical models with binary variables

• Deep Belief Networks [Hinton et al’02]

36

p(x, z) = exp

�
h✓1, xzT i+ h✓2, xi+ h✓3, zi � logA(✓)

�

x (visible)

z (hidden)

x (visible)

z1 (hidden)

z2 (hidden)

zL (hidden)

Other directed models

• Deep Boltzmann Machines [Saladutnikov & Hinton,’09]

• See also:
• Wake-Sleep [Hinton et al’95]
• Generative Stochastic Networks [Bengio,’13].
• …

37

x (visible)

z1 (hidden)

z2 (hidden)

zL (hidden)

Can be trained
greedily layer-wise

Limits of Mixture Models

• Inference can be computationally expensive for large
models.

• The modeling is reduced to the task of modeling

• Q: How to account for image variability?
- corresponds to a model of additive

variability:

- In particular, can we guarantee that with a
mixture model?

- Modeling highly non-Gaussian textures?
- Gaussian likelihoods tend to suffer from regression to the mean.

38

p(x)

p(x|z)

p(x|z) = N (�(z),⌃(z))

x = �(z) + ✏ , ✏ ⇠ N (0,⌃(z))
� log p(x|z) / k⌃(z)�1/2

(x� �(z))k2

|p(x⌧)� p(x)| . k⌧k

• Flows or Transports of Measure

Generative Models of Complex data

GAN
NormFlow

…

x

h

high-dimensional space

latent space

h ⇠ p(h)
�

p(x) defined implicitly withZ
f(x)p(x)dx =

Z
f(�(h))p(h)dh , 8 f measurable

Measure Transports

• How to train the transport ?

• We saw two methods:
– Directly by optimizing data log-likelihood [Normalizing Flows]

– Using a Discriminative Model [Generative Adversarial Networks]

40

�

Normalizing Flows

•
•

• We have, for any measurable f,

41

[Variational Inference with Normalizing Flows, Rezende & Mohamed’15]
[Tabak et al.’10]

Consider a di↵eomorphism � : RN ! RN
.

If z 2 RN
is a random variable with density q(z),

what is the density of z0 = �(z)?

Ez⇠q(f(z
0)) =

Z
f(z0)q(z)dz

=

Z
f(�(z))q(z)dz =

Z
f(z)q(��1(z))| det(r��1(z))|dz

=

Z
f(z)q̃(z)dz = Ez0⇠q̃(f(z

0)) ,with

q̃(z0) = q(z) |detr�(z)|�1 , z = ��1(z0) .

Normalizing Flows

•

• One can parametrize invertible flows and use them
within the variational inference to improve the variational
approximation. [Rezende et al.’15]

• Also considered in [“NICE”, Dinh et al’15].

42

The density qK(z) obtained by transporting a base measure q0
through a cascade of K di↵eomorphisms �1, . . . ,�K is

zK = �K � . . .�1(z0) , with z0 ⇠ q0(z)

log qK(z) = log q0(z0)�
X

kK

log |detrzk�k| .

Diffusion and Non-equilibrium Thermodynamics

•

•

43

We can also consider infinitesimal flows:

@qt(z)

@t
= F(qt(z)) , q0(z) = p0(z) .

F describes the dynamics.

For F = �� we have Gaussian di↵usion.

It defines a Markov di↵usion kernel that successively transforms

data distribution p0(x) into a tractable distribution ⇡(x):

⇡(x) =

Z
T⇡(x|x0)⇡(x0)dx0

q(x(t+1)|x(t)) = T⇡(x
(t+1)|x(t)

,�t) �t: di↵usion rate.

[Sohl-Dickstein et al.’15]

• The “forward” trajectory diffuses the data distribution
into a tractable distribution, eg Gaussian.

44

Diffusion and Non-equilibrium Thermodynamics
[Sohl-Dickstein et al.’15]

• The “forward” trajectory diffuses the data distribution
into a tractable distribution, eg Gaussian.

• The generative model learns how to reverse the
diffusion:

– in the limit of infinitesimal diffusion, the forward and backward kernel
have the same functional form (Gaussian).

– The parameters of the model are .
• The data likelihood admits a lower bound that can be

evaluated efficiently using annealed importance sampling.

45

Diffusion and Non-equilibrium Thermodynamics

p(x(0...T)) = p(x(T))
Y

tT

p(x(t�1)|x(t)) .

{µ(x(t)
, t),⌃(x(t)

, t)}tT

[Sohl-Dickstein et al.’15]

46

Diffusion and Non-equilibrium Thermodynamics
[Sohl-Dickstein et al.’15]Deep Unsupervised Learning using Nonequilibrium Thermodynamics

t = 0 t = T

2

t = T

q
�
x

(0···T)

�

p
�
x

(0···T)

�

f

µ

�
x

(t), t
�
� x

(t)

Figure 1. The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from the forward trajectory
q

⇣
x

(0···T)
⌘

. The data distribution (left) undergoes Gaussian diffusion, which gradually transforms it into an identity-covariance Gaus-

sian (right). The middle row shows the corresponding time slices from the trained reverse trajectory p

⇣
x

(0···T)
⌘

. An identity-covariance
Gaussian (right) undergoes a Gaussian diffusion process with learned mean and covariance functions, and is gradually transformed back
into the data distribution (left). The bottom row shows the drift term, fµ

⇣
x

(t)
, t

⌘
� x

(t), for the same reverse diffusion process.

nealed Importance Sampling (AIS) (Neal, 2001), which
uses a Markov chain which slowly converts one distribu-
tion into another to compute a ratio of normalizing con-
stants. In (Burda et al., 2014) it is shown that AIS can also
be performed using the reverse rather than forward trajec-
tory. Langevin dynamics (Langevin, 1908), which are the
stochastic realization of the Fokker-Planck equation, show
how to define a Gaussian diffusion process which has any
target distribution as its equilibrium. In (Suykens & Vande-
walle, 1995) the Fokker-Planck equation is used to perform
stochastic optimization. Finally, the Kolmogorov forward
and backward equations (Feller, 1949) show that for many
forward diffusion processes, the reverse diffusion processes
can be described using the same functional form.

2. Algorithm

Our goal is to define a forward (or inference) diffusion pro-
cess which converts any complex data distribution into a
simple, tractable, distribution, and then learn a finite-time
reversal of this diffusion process which defines our gener-
ative model distribution (See Figure 1). We first describe
the forward, inference diffusion process. We then show

how the reverse, generative diffusion process can be trained
and used to evaluate probabilities. We also derive entropy
bounds for the reverse process, and show how the learned
distributions can be multiplied by any second distribution
(e.g. as would be done to compute a posterior when in-
painting or denoising an image).

2.1. Forward Trajectory

We label the data distribution q
�
x

(0)

�
. The data distribu-

tion is gradually converted into a well behaved (analyti-
cally tractable) distribution ⇡ (y) by repeated application
of a Markov diffusion kernel T

⇡

(y|y0
;�) for ⇡ (y), where

� is the diffusion rate,

⇡ (y) =

Z
dy0T

⇡

(y|y0
;�)⇡ (y

0
) (1)

q
⇣
x

(t)|x(t�1)

⌘
= T

⇡

⇣
x

(t)|x(t�1)

;�
t

⌘
. (2)

47

Diffusion and Non-equilibrium Thermodynamics
[Sohl-Dickstein et al.’15]

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

(a) (b) (c)

Figure 5. Inpainting. (a) A bark image from (Lazebnik et al., 2005). (b) The same image with the central 100⇥100 pixel region replaced
with isotropic Gaussian noise. This is the initialization p̃

⇣
x

(T)
⌘

for the reverse trajectory. (c) The central 100⇥100 region has been
inpainted using a diffusion probabilistic model trained on images of bark, by sampling from the posterior distribution over the missing
region conditioned on the rest of the image. Note the long-range spatial structure, for instance in the crack entering on the left side of the
inpainted region. The sample from the posterior was generated as described in Section 2.5, where r

⇣
x

(0)
⌘

was set to a delta function
for known data, and a constant for missing data.

Dataset K K � L
null

Swiss Roll 2.35 bits 6.45 bits
Binary Heartbeat -2.414 bits/seq. 12.024 bits/seq.
Bark -0.55 bits/pixel 1.5 bits/pixel
Dead Leaves 1.489 bits/pixel 3.536 bits/pixel
CIFAR-103

5.4± 0.2 bits/pixel 11.5± 0.2 bits/pixel
MNIST See table 2

Table 1. The lower bound K on the log likelihood, computed on a
holdout set, for each of the trained models. See Equation 12. The
right column is the improvement relative to an isotropic Gaussian
or independent binomial distribution. Lnull is the log likelihood
of ⇡

⇣
x

(0)
⌘

. All datasets except for Binary Heartbeat were scaled
by a constant to give them variance 1 before computing log like-
lihood.

open source implementation of the algorithm, and RM-
Sprop for optimization. The lower bound on the log like-
lihood provided by our model is reported for all datasets
in Table 1. A reference implementation of the algorithm
utilizing Blocks (van Merriënboer et al., 2015) is avail-
able at https://github.com/Sohl-Dickstein/
Diffusion-Probabilistic-Models.

3.1. Toy Problems

3.1.1. SWISS ROLL

A diffusion probabilistic model was built of a two dimen-
sional swiss roll distribution, using a radial basis function
network to generate f

µ

�
x

(t), t
�

and f

⌃

�
x

(t), t
�
. As illus-

trated in Figure 1, the swiss roll distribution was success-
fully learned. See Appendix Section D.1.1 for more details.

Model Log Likelihood

Dead Leaves
MCGSM 1.244 bits/pixel
Diffusion 1.489 bits/pixel

MNIST
Stacked CAE 174± 2.3 bits
DBN 199± 2.9 bits
Deep GSN 309± 1.6 bits
Diffusion 317± 2.7 bits

Adversarial net 325± 2.9 bits
Perfect model 349± 3.3 bits

Table 2. Log likelihood comparisons to other algorithms. Dead
leaves images were evaluated using identical training and test data
as in (Theis et al., 2012). MNIST log likelihoods were estimated
using the Parzen-window code from (Goodfellow et al., 2014),
with values given in bits, and show that our performance is com-
parable to other recent techniques. The perfect model entry was
computed by applying the Parzen code to samples from the train-
ing data.

3.1.2. BINARY HEARTBEAT DISTRIBUTION

A diffusion probabilistic model was trained on simple bi-
nary sequences of length 20, where a 1 occurs every 5th
time bin, and the remainder of the bins are 0, using a multi-
layer perceptron to generate the Bernoulli rates f

b

�
x

(t), t
�

of the reverse trajectory. The log likelihood under the true
distribution is log

2

�
1

5

�
= �2.322 bits per sequence. As

can be seen in Figure 2 and Table 1 learning was nearly
perfect. See Appendix Section D.1.2 for more details.

3.2. Images

We trained Gaussian diffusion probabilistic models on sev-
eral image datasets. The multi-scale convolutional archi-

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

t = 0 t = T

2

t = T

p
�
x

(0···T)

�

Figure 2. Binary sequence learning via binomial diffusion. A binomial diffusion model was trained on binary ‘heartbeat’ data, where a
pulse occurs every 5th bin. Generated samples (left) are identical to the training data. The sampling procedure consists of initialization
at independent binomial noise (right), which is then transformed into the data distribution by a binomial diffusion process, with trained
bit flip probabilities. Each row contains an independent sample. For ease of visualization, all samples have been shifted so that a pulse
occurs in the first column. In the raw sequence data, the first pulse is uniformly distributed over the first five bins.

(a) (b)

(c) (d)

Figure 3. The proposed framework trained on the CIFAR-10 (Krizhevsky & Hinton, 2009) dataset. (a) Example holdout data (similar
to training data). (b) Holdout data corrupted with Gaussian noise of variance 1 (SNR = 1). (c) Denoised images, generated by sampling
from the posterior distribution over denoised images conditioned on the images in (b). (d) Samples generated by the diffusion model.

The forward trajectory, corresponding to starting at the data
distribution and performing T steps of diffusion, is thus

q
⇣
x

(0···T)

⌘
= q

⇣
x

(0)

⌘ TY

t=1

q
⇣
x

(t)|x(t�1)

⌘
(3)

For the experiments shown below, q
�
x

(t)|x(t�1)

�
corre-

sponds to either Gaussian diffusion into a Gaussian distri-
bution with identity-covariance, or binomial diffusion into
an independent binomial distribution. Table App.1 gives
the diffusion kernels for both Gaussian and binomial distri-
butions.

samples
from the model

trained on
CIFAR-10

inpainting
experiments

Generative Adversarial Networks

48

[Goodfellow et al., ’14]

Generative Adversarial Networks

• Suppose we have a trainable black box generator:

49

trainable
X ⇠ p�(x)

�

[Goodfellow et al., ’14]

Generative Adversarial Networks

• Suppose we have a trainable black box generator:

• Given observed data , how to force our
generator to produce samples from ?

50

{Xi}i ; Xi ⇠ p(x)

p(x)

trainable
X ⇠ p�(x)

�

trainable
�

{Xi}i ; Xi ⇠ p(x)

{Xj}j ; Xj ⇠ p�(x)

training
data Discriminative

classifier
✓

[Goodfellow et al., ’14]

Generative Adversarial Networks

• Suppose we have a trainable black box generator:

• Given observed data , how to force our
generator to produce samples from ?

• The generator should make the classification task as hard
as possible for any discriminator.

51

{Xi}i ; Xi ⇠ p(x)

p(x)

trainable
X ⇠ p�(x)

�

trainable
�

{Xi}i ; Xi ⇠ p(x)

{Xj}j ; Xj ⇠ p�(x)

training
data Discriminative

classifier
✓

[Goodfellow et al., ’14]

Generative Adversarial Networks

• Train generator and discriminator in a minimax setting:

52

min

�

max

✓

�
E
x⇠pdata log p✓(y = 1|x) + E

x⇠p� log p

✓

(y = 0|x)
�
.

trainab
�

{Xi}i ; Xi ⇠ p(x)

{Xj}j ; Xj ⇠ p�(x)

training
data Discriminative

classifier
✓ p✓(y|x)

y = 1: “real” samples
y = 0: “fake” samples

[Goodfellow et al., ’14]

Generative Adversarial Networks

• Q: Do we have consistency? (in the limit of infinite
capacity)

Generative Adversarial Networks

• Q: Do we have consistency? (in the limit of infinite
capacity)

54

Given current p� and pdata, the optimum discriminator is given by

D(x) = p(y = 1|x) = pdata(x)

pdata(x) + p�(x)
.

For each x,

But

↵ =
pdata(x)

pdata(x) + p�(x)
, � = D(x) .

pdata(x) logD(x) + p�(x) log(1�D(x)) = (pdata(x) + p�(x)) (↵ log � + (1� ↵ log(1� �)) ,

↵ log � + (1� ↵) log(1� �) = �H(↵̄)�DKL(↵̄||p(y|x))  �H(↵̄) .

Generative Adversarial Networks

• It results that

• In practice, however, we parametrize both generator and
discriminator using neural networks.

• Optimize the cost using gradient descent.

55

min�H(↵̄) is attained when ↵ = 1/2, thus

p�(x) = pdata(x)

Generative Adversarial Training

• Challenge: it is unfeasible to optimize fully in the inner
discriminator loop:

56

F (�, ✓) =

�
E
x⇠pdata log p✓(y = 1|x) + E

x⇠p� log p

✓

(y = 0|x)
�
.

min

�
max

✓
F (�, ✓)

✓⇤(�) = argmax

✓
F (�, ✓) . G(�) := F (�, ✓⇤(�))

Generative Adversarial Training

• Challenge: it is unfeasible to optimize fully in the inner
discriminator loop:

• Indeed,

• Numerical approach: alternate k steps of discriminator
update with 1 step of generator update.

57

F (�, ✓) =

�
E
x⇠pdata log p✓(y = 1|x) + E

x⇠p� log p

✓

(y = 0|x)
�
.

min

�
max

✓
F (�, ✓)

✓⇤(�) = argmax

✓
F (�, ✓) . G(�) := F (�, ✓⇤(�))

@G(�)

@�
= 0 w.h.p.

LAPGAN

• Initial GAN models were hard to scale to large input
domains.

• Laplacian Pyramid of Adversarial Networks significantly
improved quality by generating independently at each
scale.

• Laplacian Pyramids are invertible linear multi-scale
decompositions:

58

figure source: http://sepwww.stanford.edu

[Denton, Chintala et al.’15]

http://sepwww.stanford.edu

LAPGAN
• Training procedure:

• Sampling procedure:

59

Gauthier [9] both explore this model with experiments on MNIST and faces, using l as a class
indicator. In our approach, l will be another image, generated from another CGAN model.

2.2 Laplacian Pyramid

The Laplacian pyramid [1] is a linear invertible image representation consisting of a set of band-pass
images, spaced an octave apart, plus a low-frequency residual. Formally, let d(.) be a downsampling
operation which blurs and decimates a j⇥ j image I , so that d(I) is a new image of size j/2⇥ j/2.
Also, let u(.) be an upsampling operator which smooths and expands I to be twice the size, so u(I)
is a new image of size 2j ⇥ 2j. We first build a Gaussian pyramid G(I) = [I0, I1, . . . , IK], where
I0 = I and I

k

is k repeated applications⇤ of d(.) to I . K is the number of levels in the pyramid,
selected so that the final level has very small spatial extent ( 8⇥ 8 pixels).

The coefficients h
k

at each level k of the Laplacian pyramid L(I) are constructed by taking the
difference between adjacent levels in the Gaussian pyramid, upsampling the smaller one with u(.)
so that the sizes are compatible:

h
k

= L
k

(I) = G
k

(I)� u(G
k+1(I)) = I

k

� u(I
k+1) (3)

Intuitively, each level captures image structure present at a particular scale. The final level of the
Laplacian pyramid h

K

is not a difference image, but a low-frequency residual equal to the final
Gaussian pyramid level, i.e. h

K

= I
K

. Reconstruction from a Laplacian pyramid coefficients
[h1, . . . , hK

] is performed using the backward recurrence:
I
k

= u(I
k+1) + h

k

(4)
which is started with I

K

= h
K

and the reconstructed image being I = I
o

. In other words, starting
at the coarsest level, we repeatedly upsample and add the difference image h at the next finer level
until we get back to the full resolution image.

2.3 Laplacian Generative Adversarial Networks (LAPGAN)

Our proposed approach combines the conditional GAN model with a Laplacian pyramid represen-
tation. The model is best explained by first considering the sampling procedure. Following training
(explained below), we have a set of generative convnet models {G0, . . . , GK

}, each of which cap-
tures the distribution of coefficients h

k

for natural images at a different level of the Laplacian pyra-
mid. Sampling an image is akin to the reconstruction procedure in Eqn. 4, except that the generative
models are used to produce the h

k

’s:

˜I
k

= u(˜I
k+1) +

˜h
k

= u(˜I
k+1) +G

k

(z
k

, u(˜I
k+1)) (5)

The recurrence starts by setting ˜I
K+1 = 0 and using the model at the final level G

K

to generate a
residual image ˜I

K

using noise vector z
K

: ˜I
K

= G
K

(z
K

). Note that models at all levels except the
final are conditional generative models that take an upsampled version of the current image ˜I

k+1 as
a conditioning variable, in addition to the noise vector z

k

. Fig. 1 shows this procedure in action for
a pyramid with K = 3 using 4 generative models to sample a 64⇥ 64 image.

The generative models {G0, . . . , GK

} are trained using the CGAN approach at each level of the
pyramid. Specifically, we construct a Laplacian pyramid from each training image I . At each level

⇤i.e. I2 = d(d(I)).

G2

~ I3

G3

z2

~ h2

z3

G1

z1
G0

z0

~ I2 l2

~ I0

h0
~

I1
~

~ h1

l1

l0

Figure 1: The sampling procedure for our LAPGAN model. We start with a noise sample z3 (right side) and
use a generative model G3 to generate Ĩ3. This is upsampled (green arrow) and then used as the conditioning
variable (orange arrow) l2 for the generative model at the next level, G2. Together with another noise sample
z2, G2 generates a difference image h̃2 which is added to l2 to create Ĩ2. This process repeats across two
subsequent levels to yield a final full resolution sample I0.

3

G0

l2

~ I3

G3

D0

z0

D1

D2

h2
~ h2 z3

D3

I3
I2 I2 I3

Real/Generated?

Real/
Generated?

G1

z1

G2

z2

Real/Generated?

Real/
Generated?

l0

I = I0

h0

I1 I1

l1

~ h1 h1

h0
~

Figure 2: The training procedure for our LAPGAN model. Starting with a 64x64 input image I from our
training set (top left): (i) we take I0 = I and blur and downsample it by a factor of two (red arrow) to produce
I1; (ii) we upsample I1 by a factor of two (green arrow), giving a low-pass version l0 of I0; (iii) with equal
probability we use l0 to create either a real or a generated example for the discriminative model D0. In the real
case (blue arrows), we compute high-pass h0 = I0 � l0 which is input to D0 that computes the probability of
it being real vs generated. In the generated case (magenta arrows), the generative network G0 receives as input
a random noise vector z0 and l0. It outputs a generated high-pass image h̃0 = G0(z0, l0), which is input to
D0. In both the real/generated cases, D0 also receives l0 (orange arrow). Optimizing Eqn. 2, G0 thus learns
to generate realistic high-frequency structure h̃0 consistent with the low-pass image l0. The same procedure is
repeated at scales 1 and 2, using I1 and I2. Note that the models at each level are trained independently. At
level 3, I3 is an 8⇥8 image, simple enough to be modeled directly with a standard GANs G3 & D3.

we make a stochastic choice (with equal probability) to either (i) construct the coefficients h
k

either
using the standard procedure from Eqn. 3, or (ii) generate them using G

k

:

˜h
k

= G
k

(z
k

, u(I
k+1)) (6)

Note that G
k

is a convnet which uses a coarse scale version of the image l
k

= u(I
k+1) as an input,

as well as noise vector z
k

. D
k

takes as input h
k

or ˜h
k

, along with the low-pass image l
k

(which is
explicitly added to h

k

or ˜h
k

before the first convolution layer), and predicts if the image was real or
generated. At the final scale of the pyramid, the low frequency residual is sufficiently small that it
can be directly modeled with a standard GAN: ˜h

K

= G
K

(z
K

) and D
K

only has h
K

or ˜h
K

as input.
The framework is illustrated in Fig. 2.

Breaking the generation into successive refinements is the key idea in this work. Note that we give
up any “global” notion of fidelity; we never make any attempt to train a network to discriminate
between the output of a cascade and a real image and instead focus on making each step plausible.
Furthermore, the independent training of each pyramid level has the advantage that it is far more
difficult for the model to memorize training examples – a hazard when high capacity deep networks
are used.

As described, our model is trained in an unsupervised manner. However, we also explore variants
that utilize class labels. This is done by add a 1-hot vector c, indicating class identity, as another
conditioning variable for G

k

and D
k

.

3 Model Architecture & Training
We apply our approach to three datasets: (i) CIFAR10 – 32⇥32 pixel color images of 10 different
classes, 100k training samples with tight crops of objects; (ii) STL – 96⇥96 pixel color images of
10 different classes, 100k training samples (we use the unlabeled portion of data); and (iii) LSUN
[30] – ⇠10M images of 10 different natural scene types, downsampled to 64⇥64 pixels.

For each dataset, we explored a variety of architectures for {G
k

, D
k

}. We now detail the best
performing models, selected using a combination of log-likelihood and visual appearance of the
samples. Complete Torch specification files for all models are provided in supplementary material
[4]. For all models, the noise vector z

k

is drawn from a uniform [-1,1] distribution.

4

LAPGAN

• Samples generated from the model:

60

Figure 5: 64 ⇥ 64 samples from three different LSUN LAPGAN models (top: tower, middle: bed-
room, bottom: church front). The first column shows the 4⇥ 4 validation set image used to start the
generation process, with subsequent columns showing different draws from the model.

8

LAPGAN

• Samples generated from the model:

61

Figure 5: 64 ⇥ 64 samples from three different LSUN LAPGAN models (top: tower, middle: bed-
room, bottom: church front). The first column shows the 4⇥ 4 validation set image used to start the
generation process, with subsequent columns showing different draws from the model.

8

DC-GAN

• Improved multi-scale architecture and Batch-
Normalization:

62

[Radford et al.’16]Under review as a conference paper at ICLR 2016

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 ⇥ 64 pixel image. Notably, no
fully connected or pooling layers are used.

suggested value of 0.9 resulted in training oscillation and instability while reducing it to 0.5 helped
stabilize training.

4.1 LSUN

As visual quality of samples from generative image models has improved, concerns of over-fitting
and memorization of training samples have risen. To demonstrate how our model scales with more
data and higher resolution generation, we train a model on the LSUN bedrooms dataset containing
a little over 3 million training examples. Recent analysis has shown that there is a direct link be-
tween how fast models learn and their generalization performance (Hardt et al., 2015). We show
samples from one epoch of training (Fig.2), mimicking online learning, in addition to samples after
convergence (Fig.3), as an opportunity to demonstrate that our model is not producing high quality
samples via simply overfitting/memorizing training examples. No data augmentation was applied to
the images.

4.1.1 DEDUPLICATION

To further decrease the likelihood of the generator memorizing input examples (Fig.2) we perform a
simple image de-duplication process. We fit a 3072-128-3072 de-noising dropout regularized RELU
autoencoder on 32x32 downsampled center-crops of training examples. The resulting code layer
activations are then binarized via thresholding the ReLU activation which has been shown to be an
effective information preserving technique (Srivastava et al., 2014) and provides a convenient form
of semantic-hashing, allowing for linear time de-duplication . Visual inspection of hash collisions
showed high precision with an estimated false positive rate of less than 1 in 100. Additionally, the
technique detected and removed approximately 275,000 near duplicates, suggesting a high recall.

4.2 FACES

We scraped images containing human faces from random web image queries of peoples names. The
people names were acquired from dbpedia, with a criterion that they were born in the modern era.
This dataset has 3M images from 10K people. We run an OpenCV face detector on these images,
keeping the detections that are sufficiently high resolution, which gives us approximately 350,000
face boxes. We use these face boxes for training. No data augmentation was applied to the images.

4

DC-GAN

• Improved multi-scale architecture and Batch-
Normalization:

63

[Radford et al.’16]

Under review as a conference paper at ICLR 2016

Figure 7: Vector arithmetic for visual concepts. For each column, the Z vectors of samples are
averaged. Arithmetic was then performed on the mean vectors creating a new vector Y . The center
sample on the right hand side is produce by feeding Y as input to the generator. To demonstrate
the interpolation capabilities of the generator, uniform noise sampled with scale +-0.25 was added
to Y to produce the 8 other samples. Applying arithmetic in the input space (bottom two examples)
results in noisy overlap due to misalignment.

Further work is needed to tackle this from of instability. We think that extending this framework

10

Under review as a conference paper at ICLR 2016

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

6.3.2 VECTOR ARITHMETIC ON FACE SAMPLES

In the context of evaluating learned representations of words (Mikolov et al., 2013) demonstrated
that simple arithmetic operations revealed rich linear structure in representation space. One canoni-
cal example demonstrated that the vector(”King”) - vector(”Man”) + vector(”Woman”) resulted in a
vector whose nearest neighbor was the vector for Queen. We investigated whether similar structure
emerges in the Z representation of our generators. We performed similar arithmetic on the Z vectors
of sets of exemplar samples for visual concepts. Experiments working on only single samples per
concept were unstable, but averaging the Z vector for three examplars showed consistent and stable
generations that semantically obeyed the arithmetic. In addition to the object manipulation shown
in (Fig. 7), we demonstrate that face pose is also modeled linearly in Z space (Fig. 8).

These demonstrations suggest interesting applications can be developed using Z representations
learned by our models. It has been previously demonstrated that conditional generative models can
learn to convincingly model object attributes like scale, rotation, and position (Dosovitskiy et al.,
2014). This is to our knowledge the first demonstration of this occurring in purely unsupervised

8

Generative Adversarial Networks

• GRAN [Generative Recurrent
Adversarial Nets, Im et al.’16]

• Video Prediction [Mathieu et al.’16]

• CNN Reconstruction [Brox et al.’16]

• A very hot topic within the Deep
Learning community

64

Generating images with recurrent adversarial networks

Figure 9. Cifar10 samples generated by GRAN Figure 10. Samples of LSUN images generated by GRAN

Table 4. The experimental hyper-parameters on different data
sets.

DATASET # KERNELS FILTER SZ. # z

MNIST [80, 40, 1] [5,5,5] 60
CIFAR10 [1024, 512, 216, 3] [5,5,5,5] 100
LSUN [1024, 512, 216, 128, 3] [5,5,5,5,5] 100

For all three datasets, GRAN3 and GRAN5 outperformed
GRAN1 as shown in Table 2.

Q: How do GRAN and other GAN type of models perform
compared to non generative adversarial models?

Although this may not be the best way to assess the two
models since generator of GRAN does get assessed explic-
itly, we tested comparing our model to other generative
models such as denoising VAE (DVAE) (Im et al., 2015)
and DRAW on the MNIST dataset. Table 3 presents the re-
sults of applying GAM. The error rates were all below 50%,
and especially low for DVAE’s samples. Surprisingly, even
though samples from DRAW look very nice, the error rate
on their samples were also quite low with GRAN3. This il-
lustrate that discriminator of generative adversarial models
are good at discriminating the samples generated by DVAE
and DRAW. Our hypothesis is that the samples look nicer
due to the smoothing effect of having a mean-square er-
ror in their objective, but they do not capture all relevant
aspects of the statics of real handwritten images.

Q: How do GRAN’s samples look?

We present samples from GRAN for MNIST, cifar10 and
LSUN in Figure 6, Figure 9 and Figure 10. Most of the
MNIST and cifar10 samples shown in Figure 6 and Fig-
ure 9 appear to be discernible and reasonably classifiable
by humans. Similarly, the LSUN samples from Figure 10
seem to cover the variety of church buildings and contain
fine detailed textures. The “image statics” of two real im-
age datasets are embedded into both types of sample.

Figure 11. Nearest Neighbour training examples for lsun samples.

Q: Does GRAN overfit the training data?

Since it is infeasible to look across the training data and de-
termine whether a given sample looks like a training case,
it is common (albeit somewhat questionable) to look at k-
nearest neighbours to do basic sanity check. As shown in

Generative Adversarial Networks

• Some open research directions:
1. Optimization:

1. How to ensure a correct algorithm?
2. Existence of a Lyapunov function?

2. Statistics:
1. How to determine the discriminator power (eg VC-dimension) to

obtain consistent estimators?
2. Control of overfitting to the training distribution?

3. Applications:
– Language Modeling
– Reinforcement Learning
– Algorithmic Tasks
– Importance Sampling

65

Limits of Transportation Models

• Direct learning by Optimizing the flow requires back
propagation through a term of the form

– Very expensive for generic transformations
– Highly specific flows affect the flexibility of the model.

• Indirect learning by the Discriminative Adversarial Training
is implicit
– No cheap way to evaluate the density
– Also, no cheap way to do inference, e.g.

• How to regularize the density estimation?
66

f(⇥) = log detr�(xi;⇥)

�

p(x)

p(z|x)

Gibbs Models

• Motivation: Given a collection of discriminative
measurements , how can we build a
generative model?

67

�(x) = {�j(x)}j

Gibbs Models

• Motivation: Given a collection of discriminative
measurements , how can we build a
generative model?

• Supervised Learning Setup:

68

µ

k

= E(x,y)⇠p̂

(�(x)|y = k)

�(x) = {�j(x)}j

p̂ : {(xi, yi)}Empirical training distribution yi 2 {1,K}

Empirical class-conditional moments:

k = 1 . . .K

Gibbs Models

• Motivation: Given a collection of discriminative
measurements , how can we build a
generative model?

• Supervised Learning Setup:

• Necessary condition:

69

µ

k

= E(x,y)⇠p̂

(�(x)|y = k)

�(x) = {�j(x)}j

p̂ : {(xi, yi)}Empirical training distribution yi 2 {1,K}

Empirical class-conditional moments:

k = 1 . . .K

Class-conditional models pk(x) satisfy

8 k , E
x⇠pk�(x) = µ

k

Q: Does this completely specify pk?

Gibbs Models

• Motivation: Given a collection of discriminative
measurements , how can we build a
generative model?

• Supervised Learning Setup:

• Necessary condition:

70

µ

k

= E(x,y)⇠p̂

(�(x)|y = k)

�(x) = {�j(x)}j

p̂ : {(xi, yi)}Empirical training distribution yi 2 {1,K}

Empirical class-conditional moments:

k = 1 . . .K

Class-conditional models pk(x) satisfy

8 k , E
x⇠pk�(x) = µ

k

Q: Does this completely specify pk?
Clearly not

Gibbs Models
• Thus, we need a regularization principle.
• A “good” norm for probability distributions is the entropy

• It captures a form of smoothness for probability
distributions
– On compact domains, the maximum entropy distribution is the uniform

measure (maximally smooth)
– On non-compact domains, the max-entropy distribution might not

exist.
• In our problem, we can use it to select, under the

constraints , those with maximum
uncertainty (maximum smoothness).

71

H(p) = �E[log p] = �
Z

p(x) log p(x)dx

8 k , E
x⇠pk�(x) = µ

k

Gibbs Models and Maximum Entropy

• We are thus interested in the problem

• Constrained optimization that we approach using calculus
of variations

• Lagrangian of the problem is

72

max

p

H(p)

s.t. E
x⇠p

�(x) = µ .2 Rd

L(p,�1, . . . ,�d

) = H(p) +
X

j

�
j

(E
x⇠p

�
j

(x)� µ
j

) .

= �
Z

p(x) log(p(x))dx+

X

j

�j

✓Z
�j(x)p(x)dx� µj

◆

Gibbs Models and Maximum Entropy

• Thus we have

73

@L

@p(x)

= � log p(x)� 1 +

X

j

�j�j(x) = 0

) log p(x) = �0 +

X

j

�j�j(x)

) p(x) =

exp

⇣P
j �j�j(x)

⌘

Z

where

�

j

are Lagrange multipliers guaranteeing that E
x⇠p

�
j

(x) = µ

j

.
Z is a Lagrange multiplier guaranteeing that p(x) = 1

Gibbs Model

• Thus, given features , maximum entropy distributions
are in the exponential family given by

• In a discriminative setting, the final model is a mixture in
this exponential family:

• This model has many names:
– Gibbs, Boltzmann, “Energy-based” Model, MaxEnt, …

74

�(x)

p(x) = exp (h�,�(x)i �A(�))

k ⇠ cat{1,K}

x ⇠ pk(x) = exp(h�k,�(x)i �A(�k)) , E
x⇠pk�(x) = µ

k

.

Gibbs Learning

• Q: How to train this model?
– i.e. how to adjust the Lagrange multipliers?

• Q: How to train such a model without labels/
discriminative features?
– What criteria?
– Learn the sufficient statistics

75

