Stat 212b:Topics in Deep Learning Lecture 15

Joan Bruna UC Berkeley

Today

• Reminder:

Review: Unsupervised Learning

- Given high-dimensional data $X = (x_1, \ldots, x_n)$ want to estimate a low-dimensional model characterizing the population.
- Why is this an important problem?
- It is an essential building block in most high-dimensional prediction tasks.
 - Inverse Problems (super-resolution, inpainting, denoising, etc.).
 - Structured Output Prediction (translation, Q&A, pose estimation, etc.)
 - "Disentangling" or Posterior Inference.
 - Learning with few labeled examples

Review: Curse of Dimensionality

• Challenge: How to model p(x), $x \in \mathbb{R}^N$ (or $x \in \Omega^N$) for large N ?

 \bullet An existing hypothesis is that, although the ambient dimensionality is high, the *intrinsic* dimensionality of x is

Review: Latent Graphical Models

• Latent Graphical Models or Mixtures.

. . .

Objectives

Auto encoders and manifold learning.

• The EM algorithm

Variational Inference in Exponential Families

Variational Autoencoders

Auto encoders

• Goal: given data $X = \{x_i\}$, learn a reparametrization $z_i = \Phi(x_i)$ that approximates X well with minimal capacity.

- The model contains an encoder Φ and a decoder Ψ .
- It introduces an *information bottleneck* to characterize input data from ambient space.

Auto encoders

- Motivations
 - Dimensionality reduction:

$$x_i \in \mathbb{R}^d$$
, $\Phi : \mathbb{R}^d \to \mathbb{R}^{\tilde{d}}$, $\tilde{d} \ll d$.

Metric learning (in sequential datasets):

$$z_t \approx \frac{1}{2}(z_{t-1} + z_{t+1})$$

linearization in transformed domain Slow Feature Analysis

 Unsupervised Pre-training (less popular nowadays): provide initial.

Q: How to limit the reconstruction capacity?

Auto encoders

Optimization set-up:

$$\min_{\Phi,\Psi} \frac{1}{n} \sum_{i \le n} \ell\left(x_i, \Psi(\Phi(x_i))\right) + \mathcal{R}(\Phi(X))$$

 $\ell(x,x')$: Reconstruction loss

 \mathcal{R} : Regularization term

- Choice of models
 - Ψ Linear / Non-linear.
 - $\mathcal{R}(Z) = \|Z\|_1$ (or $\|Z\|_0$) leads to sparse auto-encoders (capacity can be measured by Gaussian Mean Width)
 - $\mathcal{R}(\Phi(x)) = \|\nabla\Phi(x)\|^2$ leads to contractive autoencoders.

Auto encoders: Geometric Interpretation

$$\Omega(\epsilon) = \{x \ s.t. \ \|\Psi(\Phi(x)) - x\| \le \epsilon\}$$

 The reconstruction error approximates a distance to a covering manifold of X

Auto encoders: Geometric Interpretation

- The reconstruction error approximates a distance to a covering manifold of X.
- Intrinsic manifold coordinates "disentangle" factors.

Examples

- Both encoder and decoder are linear
 - PCA

- Linear decoder, one-hot encoder
 - K-Means

- Linear decoder, sparse regularization
 - Dictionary Learning

More Examples

Sparse Coding approximations

- Predictive Sparse Decomposition (PSD) [Kavockoglu et al.,'08] considers an Augmented Lagrangian of the Sparse Autoencoder:

$$\min_{D,Z,\Phi} ||X - DZ||^2 + \lambda ||Z||_1 + \alpha ||Z - \Phi(X)||^2$$
$$\Phi(X) = \operatorname{diag}(\beta) \tanh(WX + b)$$

- LISTA [Gregor et al,'10]: Deeper Encoder using Recurrent weights.

Auto encoders: Probabilistic Interpretation

- We can also interpret z as latent variables of an underlying generative model for X: $p(x) = \int p(z)p(x\mid z)dz$
- Rather than evaluating the true posterior $p(z\mid x) = \frac{p(z)p(x|z)}{\int p(z')p(x|z')dz'}$ we consider a point estimate $p(z\mid x) = \delta(z \Phi(x))$
- Q: How to perform "correct" posterior inference?

Approximate Posterior Inference

 In latent graphical models, we can interpret latent variables as factors:

• How to infer z given x?

The EM algorithm

- It is designed to find MLE solutions of latent variable models.
- In general, we have log-likelihoods of the form

$$\log p(X\mid\theta) = \log\left(\sum_{Z} p(X,Z\mid\theta)\right) \ , \ \theta = \text{model parameters} \ .$$

 $Z = \text{latent variables}$

The EM algorithm

- It is designed to find MLE solutions of latent variable models.
- In general, we have log-likelihoods of the form

$$\log p(X\mid\theta) = \log\left(\sum_{Z} p(X,Z\mid\theta)\right) \ , \ \theta = \text{model parameters} \ .$$
 $Z = \text{latent variables}$

• Using current parameters θ_{old} , we compute the expected total likelihood of the model (E-step):

$$Q(\theta, \theta_{old}) = \mathbb{E}_{Z \sim p(Z \mid X, \theta_{old})} \log p(X, Z \mid \theta)$$

• Then we update the parameters to maximize this likelihood: $\theta_{new} = \arg\max_{\theta} Q(\theta, \theta_{old}) \; .$

EM and Variational Bound

- Q: Does this algorithm monotonically improve the likelihood?
- Assume for now that latent variables are discrete.
- For any distribution q(Z) over latent variables, we have

$$\log p(X \mid \theta) = \log \left(\sum_{Z} p(X, Z \mid \theta) \right) = \log \left(\sum_{Z} q(Z) \frac{p(X, Z \mid \theta)}{q(Z)} \right)$$
$$\geq \sum_{Z} q(Z) \log \left(\frac{p(X, Z \mid \theta)}{q(Z)} \right) = \mathcal{L}(q, \theta) .$$

(Jensen's Inequality: $\mathbb{E}(f(X)) \ge f(\mathbb{E}(X))$ if f is convex)

Variational Bound

We can express the variational lower bound as

$$\mathcal{L}(q,\theta) = \mathbb{E}_{q(Z)} \left[\log p(X, Z \mid \theta) \right] - \mathbb{E}_{q(Z)} \log q(Z)$$
$$= \mathbb{E}_{q(Z)} \left[\log p(X, Z \mid \theta) \right] + H(q) .$$

H(q): Entropy of q(Z).

Also, we have

$$\log p(X \mid \theta) = \mathcal{L}(q, \theta) + KL(q(z)||p(z \mid x, \theta)) \text{, where}$$

$$KL(q||p) = -\sum_{z} q(z) \log \left(\frac{p(z)}{q(z)}\right)$$

is the Kullback-Leibler divergence.

Variational Bound

• Thus, the divergence KL(q||p) measures how far our variational approximation q(z) is from the true posterior, and directly controls the bound on the log-likelihood.

Using

$$\log p(X \mid \theta) = \mathcal{L}(q, \theta) + KL(q(z)||p(z \mid x, \theta))$$

- E-step: maximize lower bound $\mathcal{L}(q,\theta)$ with respect to q, holding parameters fixed.
- M-step: maximize lower bound $\mathcal{L}(q,\theta)$ with respect to parameters, holding q fixed.

- Suppose we have iid data $x_1, \ldots x_n$ and we consider a collection of sufficient statistics $\{\phi_k(X)\}_k$.
- The empirical expectations of these statistics are

$$\hat{\mu}_k = \frac{1}{n} \sum_i \phi_k(x_i)$$

• Q: Can we build a distribution p(x) consistent with these empirical moments? i.e.

$$\mathbb{E}_{X \sim p(x)} \{ \phi_k(X) \} = \hat{\mu}_k \text{ for all } k.$$

• In general, this is an underdetermined problem. How to choose wisely amongst all possible solutions?

Exponential Families and Maximum Entropy

• A reasonable choice is to consider the distribution with maximum entropy subject to the empirical moments:

$$p^* = \arg \max_p H(p)$$
, s.t. $\mathbb{E}_p\{\phi_k(X)\} = \hat{\mu}_k$ for all k .
Shannon Entropy: $H(p) = -\mathbb{E}\{\log(p)\}$.

• The general form of maximum entropy is

$$p(x) \propto \exp\left\{\sum_{k} \lambda_k \phi_k(x)\right\}$$

 λ_k : Lagrange multipliers adjusted such that $\mathbb{E}_p \phi_k(X) = \hat{\mu}_k$ for all k.

• The exponential family associated with ϕ is defined as the parametric family

$$p_{\theta}(x) = \exp\{\langle \theta, \phi(x) \rangle - A(\theta)\} , \text{ with}$$

$$A(\theta) = \log \int \exp\{\langle \theta, \phi(x) \} dx \qquad \text{log-partition function}$$

It is well defined for the family of parameters

$$\Omega = \{\theta ; A(\theta) < \infty\}$$

- Several well-known models belong to the exponential family
 - Energy based models
 - Gaussian Mixtures
 - Latent Dirichlet Allocation
 - etc.

• **Proposition:** The log-partition function $A(\theta)$ satisfies

$$\frac{\partial A}{\partial \theta_k}(\theta) = \mathbb{E}_{\theta}\{\phi_k(X)\} = \int \phi_k(x)p_{\theta}(x)dx.$$

- $A(\theta)$ is convex in its domain Ω .

Higher order derivatives always exist.

Conjugate Duality

Conjugate duality representation of convex functions:

$$A^*(\mu) = \sup_{\theta \in \Omega} \{ \langle \mu, \theta \rangle - A(\theta) \}$$

canonical parameters \longleftrightarrow moment parameters θ_k

- Q: How to interpret the dual conjugate?
 - $A^*(\mu)$: Negative entropy of $p_{\theta(\mu)}$, where $p_{\theta(\mu)}$ is the exponential family distribution such that $\mathbb{E}_{\theta(\mu)}\phi(X) = \mu$.
- Variational representation: $A(\theta) = \sup_{\mu} \{ \langle \theta, \mu \rangle A^*(\mu) \}$

Variational Inference and Duality

• We derive the exact EM algorithm for exponential families with latent variables. Given observed variables X and latent variables Z, we consider

$$p_{\theta}(x,z) = \exp \{ \langle \theta, \phi(x,z) \rangle - A(\theta) \}$$
, with

$$A(\theta) = \log \int_{x,z} \exp\{\langle \theta, \phi(x,z) \rangle\} dxdz$$

ullet Given observation X=x , the posterior distribution is

$$p(z \mid x) = \frac{\exp\{\langle \theta, \phi(x, z) \rangle\}}{\int \exp\{\langle \theta, \phi(x, z') \rangle\} dz'} = \exp\{\langle \theta \phi(x, z) \rangle - A_x(\theta)\}$$

$$A_x(\theta) = \log \int_z \exp\{\langle \theta, \phi(x, z) \rangle\} dz$$

Variational Inference and Conjugate Duality

• The MLE for our parameters θ is obtained by maximizing the incomplete log-likelihood of the data:

$$\mathcal{L}(\theta, x) = \log \int_z \exp\{\langle \theta, \phi(x, z) \rangle - A(\theta)\} dz = A_x(\theta) - A(\theta) .$$

The variational representation gives

$$A_x(\theta) = \sup_{\mu_x} \{ \langle \theta, \mu_x \rangle - A_x^*(\mu_x) \}$$
$$A_x^*(\mu_x) = \sup_{\theta} \{ \langle \theta, \mu_x \rangle - A_x(\theta) \}$$

 It results in the lower-bound for the incomplete loglikelihood:

$$\mathcal{L}(\theta, x) \ge \langle \mu_x, \theta \rangle - A_x^*(\mu_x) - A(\theta) = \widetilde{\mathcal{L}}(\mu_x, \theta)$$

EM is thus a coordinate ascent on the lower bound:

$$\mu_x^{(t+1)} = \arg\max_{\mu_x} \widetilde{\mathcal{L}}(\mu_x, \theta^{(t)})$$
 (E step)
$$\theta^{(t+1)} = \arg\max_{\rho} \widetilde{\mathcal{L}}(\mu_x^{(t+1)}, \theta)$$
 (M step)

- E step is called expectation because the maximizer of $\widetilde{\mathcal{L}}(\mu_x, \theta)$ is, by duality, the expectation $\mu_x^{(t+1)} = \mathbb{E}_{\theta^{(t)}} \phi(x, Z)$
- Also, because $\max_{\mu} \{\langle \mu_x, \theta^{(t)} \rangle A_x^*(\mu_x)\} = A_x(\theta^{(t)})$, after each E step the inequality becomes an equality, thus M step increases log-likelihood.

Approximate Posterior Inference

• For most models, the posterior is analytically intractable:

$$p(z \mid x) = \frac{p(x \mid z)p(z)}{\int p(x \mid z')p(z')dz'}$$

• Variational Bayesian Inference: consider a parametric family of approximations $q(z \mid \beta)$ and optimize variational lower bound with respect to the variational parameters β

Joint likelihood of observed and latent variables:

$$p(X, Z \mid \theta)$$

 θ : generative model parameters

• Let us consider a posterior approximation $q(z|\beta)$ of the form

$$q(z \mid \beta) = \prod_{i} q_i(z_i \mid \beta_i)$$
 β : Variational parameters

- Mean-field approximation: we model hidden variables as being independent.
- Corresponding lower-bound is given by

$$\log p(X \mid \theta) \ge \int q(z \mid \beta) \log \frac{p(x, z \mid \theta)}{q(z \mid \beta)} dz = \mathbb{E}_{q(z \mid \beta)} \{\log(p(X, Z \mid \theta))\} + H(q(z \mid \beta))$$

- Goal: optimize lower-bound with respect to variational parameters.
- As we have seen, this is equivalent to minimizing the divergence between true and approximate posterior:

$$\log p(X \mid \theta) = \widetilde{\mathcal{L}}(\theta, \beta) + D_{KL}(q_{\beta}(z) || p(z|x, \theta))$$

• If $q(z \mid \beta)$ is a factorial distribution, the entropy term is tractable:

$$H(q(z|\beta)) = \sum_{i} H(q_i(z_i|\beta_i))$$

• Problematic term: $\nabla_{\beta} \mathbb{E}_{q(z|\beta)} \log p(X, Z|\theta)$

[Paiskey, Blei, Jordan,' I 2]

- Denote $f(Z) = \log p(X, Z|\theta)$
- Then

$$\nabla_{\beta} \mathbb{E}_{q(z|\beta)} f(Z) = \nabla_{\beta} \int f(z) q(z|\beta) dz$$

$$= \int f(z) \nabla_{\beta} q(z|\beta) dz$$

$$= \int f(z) q(z|\beta) \nabla_{\beta} \log q(z|\beta) dz$$

$$= \mathbb{E}_{q} \{ f(Z) \nabla_{\beta} \log q(z|\beta) \}$$

• Stochastic approximation of $\nabla_{\beta}\mathbb{E}_{q(z|\beta)}f(Z)$:

$$\nabla_{\beta} \mathbb{E}_{q(z|\beta)} f(Z) \approx \frac{1}{S} \sum_{s \leq S, z^{(s)} \sim q(z|\beta)} f(z^{(s)}) \nabla_{\beta} \log q(z^{(s)}|\beta)$$

- The estimator of the gradient is unbiased, but it may suffer from large variance.
 - We may need a large number S of samples to stabilize the descent.
- Faster alternative?

Variational Autoencoders

Recall the variational lower bound:

$$\log p(X \mid \theta) = \mathbb{E}_{q(z\mid\beta)} \{\log(p(X,Z\mid\theta))\} + H(q(z\mid\beta)) + D_{KL}(q(z\mid\beta)) | p(z\mid x,\theta)$$

$$\log p(X \mid \theta) = \mathcal{L}(\theta, \beta, X) + D_{KL}(q(z|\beta)||p(z|X, \theta))$$

 Can we optimize jointly both generative and variational parameters efficiently?

 For appropriate posterior approximations, we can reparametrize samples as

$$Z \sim q(z|x,\beta) \Rightarrow Z \stackrel{d}{=} g_{\beta}(\epsilon,x) , \ \epsilon \sim p_0$$

Variational Autoencoders

• It results that

$$\mathcal{L}(\theta, \beta, X) = -D_{KL}(q_{\beta}(z|X)||p_{\theta}(z)) + \mathbb{E}_{q_{\beta}(z|X)}\{\log p(X|z, \theta)\}$$

can be estimated via Monte-Carlo by

$$\widehat{\mathcal{L}(\theta, \beta, X)} = -D_{KL}(q_{\beta}(z|X)||p_{\theta}(z)) + \frac{1}{S} \sum_{s \leq S} \log p(X|z^{(s)}, \theta)$$

$$z^{(s)} = g_{\beta}(X, \epsilon^{(s)}) \text{ and } \epsilon^{(s)} \sim p_0.$$

- First term acts as a regularizer. limits the capacity of the encoder
- Second term is a reconstruction error.

Variational Autoencoders

 VAE idea: use neural networks to approximate variational and generative parameters.

Variational Autoencoder

• Example: Let the prior over latent variables be Gaussian isotropic:

$$p(z) = \mathcal{N}(z; 0, \mathbf{I})$$

• Let the conditional likelihood be also Gaussian:

$$p(x|z) = (x; \mu(z), \Sigma(z))$$
 $\mu(z), \Sigma(z)$: Neural networks

Variational Autoencoder

Example: Let the prior over latent variables be Gaussian isotropic:

$$p(z) = \mathcal{N}(z; 0, \mathbf{I})$$

• Let the conditional likelihood be also Gaussian:

$$p(x|z) = (x; \mu(z), \Sigma(z))$$
 $\mu(z), \Sigma(z)$: Neural networks

Variational approximate posterior also Gaussian:

$$q_{\beta}(z|x) = \mathcal{N}(z; \overline{\mu}(x), \overline{\Sigma}(x))$$

$$\overline{\mu}(z), \overline{\Sigma}(z) : \text{Neural networks}, (\overline{\Sigma} \text{ diagonal})$$

$$Z \sim q_{\beta}(z|x) \Leftrightarrow Z = \overline{\mu}(x) + \overline{\Sigma}(x)\epsilon , \ \epsilon \sim \mathcal{N}(0, \mathbf{1})$$

Examples

(a) Learned Frey Face manifold

(b) Learned MNIST manifold

Extensions

• Importance Sampling Variational Autoencoders