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Today

• Reminder:
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Review: Unsupervised Learning
•Given high-dimensional data                        , we want to 

estimate a low-dimensional model characterizing the 
population.

•Why is this an important problem?
• It is an essential building block in most high-dimensional 

prediction tasks. 
– Inverse Problems (super-resolution, inpainting, denoising, 

etc.).
– Structured Output Prediction (translation, Q&A, pose 

estimation, etc.)
– “Disentangling” or Posterior Inference.
– Learning with few labeled examples

X = (x1, . . . , xn)
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Review: Curse of Dimensionality

• Challenge: How to model                                         for 
large N ? 

• An existing hypothesis is that, although the ambient 
dimensionality is high, the intrinsic dimensionality of     is 
low. 
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• Latent Graphical Models or Mixtures.

Review: Latent Graphical Models

x

h

high-dimensional space

p(x) =

Z
p(x, h)dh =

Z
p(x | h)p(h)dh

latent space

h ⇠ p(h)

�

p(x | h) = p�(h)(x)

✓ = �(h)

p✓(x)

RBM
DBN
DBM
VAE
…



Objectives

• Auto encoders and manifold learning.

• The EM algorithm

• Variational Inference in Exponential Families

• Variational Autoencoders
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Auto encoders

• Goal: given data              , learn a reparametrization       
that approximates     well with minimal capacity.

• The model contains an encoder    and a decoder    .
• It introduces an information bottleneck to characterize 

input data from ambient space.  
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Auto encoders

• Motivations
• Dimensionality reduction: 

• Metric learning (in sequential datasets):

• Unsupervised Pre-training (less popular nowadays): 
provide initial.

• Q: How to limit the reconstruction capacity? 
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xi 2 Rd
, � : Rd ! Rd̃

, d̃ ⌧ d .

zt ⇡ 1
2 (zt�1 + zt+1)

linearization in transformed domain
Slow Feature Analysis



Auto encoders
• Optimization set-up:

• Choice of models
•  
•                                   leads to sparse auto-encoders 

(capacity can be measured by Gaussian Mean Width)
•                               leads to contractive 

autoencoders.

9

R: Regularization term

min
�, 

1

n

X

in

` (xi, (�(xi))) +R(�(X))

`(x, x

0
): Reconstruction loss

 Linear / Non-linear.

R(Z) = kZk1 (or kZk0)

R(�(x)) = kr�(x)k2



Auto encoders: Geometric Interpretation

• The reconstruction error approximates a distance to a 
covering manifold of X
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⌦(✏) = {x s.t. k (�(x))� xk  ✏}



Auto encoders: Geometric Interpretation

• The reconstruction error approximates a distance to a 
covering manifold of X.

• Intrinsic manifold coordinates “disentangle” factors.
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⌦(✏) = {x s.t. k (�(x))� xk  ✏}



Examples

• Both encoder and decoder are linear
• PCA

• Linear decoder, one-hot encoder
• K-Means

• Linear decoder, sparse regularization
• Dictionary Learning
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More Examples
• Sparse Coding approximations

- Predictive Sparse Decomposition (PSD) [Kavockoglu et al.,’08] 
considers an Augmented Lagrangian of the Sparse Autoencoder:

- LISTA [Gregor et al,’10]: Deeper Encoder using Recurrent weights.
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min
D,Z,�

kX �DZk2 + �kZk1 + ↵kZ � �(X)k2

�(X) = diag(�) tanh(WX + b)



Auto encoders: Probabilistic Interpretation

• We can also interpret z as latent variables of an underlying 
generative model for X:

• Rather than evaluating the true posterior 

   we consider a point estimate 
•  Q: How to perform “correct” posterior inference?
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p(x) =

Z
p(z)p(x | z)dz

p(z | x) = p(z)p(x|z)R
p(z0)p(x|z0)dz0

p(z | x) = �(z � �(x))



Approximate Posterior Inference
• In latent graphical models, we can interpret latent 

variables as factors: 

•  
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pose identity
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The EM algorithm

• It is designed to find MLE solutions of latent variable 
models.

• In general, we have log-likelihoods of the form
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log p(X |✓) = log

 
X

Z

p(X,Z | ✓)
!

, ✓ = model parameters .
Z = latent variables



The EM algorithm

• It is designed to find MLE solutions of latent variable 
models.

• In general, we have log-likelihoods of the form

• Using current parameters       , we compute the 
expected total likelihood of the model (E-step):

• Then we update the parameters to maximize this 
likelihood:
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log p(X |✓) = log

 
X

Z

p(X,Z | ✓)
!

, ✓ = model parameters .
Z = latent variables

✓
old

Q(✓, ✓
old

) = E
Z⇠p(Z | X,✓

old

) log p(X,Z | ✓)

✓
new

= argmax

✓

Q(✓, ✓
old

) .



EM and Variational Bound

• Q: Does this algorithm monotonically improve the 
likelihood? 

• Assume for now that latent variables are discrete. 
• For any distribution        over latent variables, we have
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log p(X | ✓) = log

 
X

Z

p(X,Z | ✓)
!

= log

 
X

Z

q(Z)

p(X,Z | ✓)
q(Z)

!

�
X

Z

q(Z) log

✓
p(X,Z | ✓)

q(Z)

◆
= L(q, ✓) .

(Jensen’s Inequality: E(f(X)) � f(E(X)) if f is convex )

q(Z)



Variational Bound

• We can express the variational lower bound as 

• Also, we have 
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L(q, ✓) = Eq(Z) [log p(X,Z | ✓)]� Eq(Z) log q(Z)

= Eq(Z) [log p(X,Z | ✓)] +H(q) .

H(q): Entropy of q(Z).

KL(q||p) = �
X

z

q(z) log

✓
p(z)

q(z)

◆
log p(X | ✓) = L(q, ✓) +KL(q(z)||p(z | x, ✓)) , where

is the Kullback-Leibler divergence.



Variational Bound

• Thus, the divergence               measures how far our 
variational approximation        is from the true posterior, 
and directly controls the bound on the log-likelihood. 

• Using 

• E-step: maximize lower bound           with respect to q, 
holding parameters fixed.

• M-step: maximize lower bound           with respect to 
parameters, holding q fixed.
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KL(q||p)
q(z)

log p(X | ✓) = L(q, ✓) +KL(q(z)||p(z | x, ✓))

L(q, ✓)

L(q, ✓)



Exponential Families 

• Suppose we have iid data              and we consider a 
collection of sufficient statistics              .

• The empirical expectations of these statistics are

• Q: Can we build a distribution        consistent with these 
empirical moments? i.e.  

• In general, this is an underdetermined problem. How to 
choose wisely amongst all possible solutions?
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x1, . . . xn

{�k(X)}k
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E
X⇠p(x){�k
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Exponential Families and Maximum Entropy

• A reasonable choice is to consider the distribution with 
maximum entropy subject to the empirical moments:

• The general form of maximum entropy is 
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p⇤ = argmax

p
H(p) , s.t. Ep{�k(X)} = µ̂k for all k.

Shannon Entropy: H(p) = �E{log(p)} .

p(x) / exp

(
X

k

�k�k(x)

)

�k: Lagrange multipliers adjusted such that Ep�k(X) = µ̂k for all k.



Exponential Families

• The exponential family associated with    is defined as the 
parametric family 

• It is well defined for the family of parameters  
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�

p✓(x) = exp{h✓,�(x)i �A(✓)} , with

A(✓) = log

Z
exp{h✓,�(x)}dx log-partition function

⌦ = {✓ ; A(✓) < 1}



Exponential Families

• Several well-known models belong to the exponential 
family
- Energy based models
- Gaussian Mixtures
- Latent Dirichlet Allocation
- etc.

24



Exponential Families

•  

-  

-  

• Higher order derivatives always exist. 
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@A

@✓k
(✓) = E✓{�k(X)} =

Z
�k(x)p✓(x)dx .

A(✓) is convex in its domain ⌦.

Proposition: The log-partition function A(✓) satisfies



Conjugate Duality

• Conjugate duality representation of convex functions:

• Q: How to interpret the dual conjugate?

• Variational representation: 
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A⇤(µ) = sup
✓2⌦

{hµ, ✓i �A(✓)}

canonical parameters

moment parameters

µk✓k

A⇤
(µ): Negative entropy of p✓(µ), where

p✓(µ) is the exponential family distribution such that

E✓(µ)�(X) = µ.

A(✓) = sup
µ
{h✓, µi �A⇤(µ)}



Variational Inference and Duality
• We derive the exact EM algorithm for exponential 

families with latent variables. Given observed variables     
and latent variables   , we consider

• Given observation           , the posterior distribution is  
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p✓(x, z) = exp {h✓,�(x, z)i �A(✓)} , with

A(✓) = log

Z

x,z

exp{h✓,�(x, z)i}dxdz

X
Z

X = x

p(z | x) = exp{h✓,�(x, z)i}R
exp{h✓,�(x, z0)i}dz0

= exp{h✓�(x, z)i �A

x

(✓)}

A

x

(✓) = log

Z

z

exp{h✓,�(x, z)i}dz



Variational Inference and Conjugate Duality

• The MLE for our parameters    is obtained by maximizing 
the incomplete log-likelihood of the data:

• The variational representation gives 

• It results in the lower-bound for the incomplete log-
likelihood:
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✓

L(✓, x) = log
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z
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i �A⇤
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• EM is thus a coordinate ascent on the lower bound:

• E step is called expectation because the maximizer of
               is, by duality, the expectation 

• Also, because                                                   , after 
each E step the inequality becomes an equality, thus M 
step increases log-likelihood. 
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µ(t+1)
x

= argmax

µ

x
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✓
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Approximate Posterior Inference

• For most models, the posterior is analytically intractable:

• Variational Bayesian Inference: consider a parametric 
family of approximations            and optimize variational 
lower bound with respect to the variational parameters      
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p(z | x) = p(x | z)p(z)R
p(x | z0)p(z0)dz0

q(z | �)

�



Mean Field Variational Bayes
• Joint likelihood of observed and latent variables:

• Let us consider a posterior  approximation          of the 
form

- Mean-field approximation: we model hidden variables as being 
independent.

• Corresponding lower-bound is given by  
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q(z|�)

q(z | �) =
Y

i

qi(zi | �i) �: Variational parameters

p(X,Z | ✓)

log p(X | ✓) �
Z

q(z | �) log p(x, z | ✓)
q(z | �) dz = Eq(z|�){log(p(X,Z | ✓)}+H(q(z | �)) .

✓: generative model parameters



Mean Field Variational Bayes

• Goal: optimize lower-bound with respect to variational 
parameters.

• As we have seen, this is equivalent to minimizing the 
divergence between true and approximate posterior :

• If             is a factorial distribution, the entropy term is 
tractable:

• Problematic term: 
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log p(X | ✓) = eL(✓,�) +DKL(q�(z)||p(z|x, ✓))

q(z | �)

H(q(z|�)) =
X

i

H(qi(zi|�i))

r�Eq(z|�) log p(X,Z|✓)



Mean Field Variational Bayes

• Denote 
• Then

• Stochastic approximation of                      : 

33

f(Z) = log p(X,Z|✓)

r�Eq(z|�)f(Z)

r�Eq(z|�)f(Z) = r�

Z
f(z)q(z|�)dz

=

Z
f(z)r�q(z|�)dz

=

Z
f(z)q(z|�)r� log q(z|�)dz

= Eq{f(Z)r� log q(z|�)}

r�Eq(z|�)f(Z) ⇡ 1

S

X

sS,z(s)⇠q(z|�)

f(z(s))r� log q(z
(s)|�)

[Paiskey, Blei, Jordan,’12]



Mean Field Variational Bayes

• The estimator of the gradient is unbiased, but it may 
suffer from large variance. 
- We may need a large number S of samples to stabilize the descent.

• Faster alternative?
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Variational Autoencoders

• Recall the variational lower bound:

• Can we optimize jointly both generative and variational 
parameters efficiently?

• For appropriate posterior approximations, we can 
reparametrize samples as  
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log p(X | ✓) = Eq(z|�){log(p(X,Z | ✓)}+H(q(z | �)) +DKL(q(z|�)||p(z|x, ✓))

log p(X | ✓) = L(✓,�, X) +DKL(q(z|�)||p(z|X, ✓))

Z ⇠ q(z|x,�) ) Z

d
= g�(✏, x) , ✏ ⇠ p0



Variational Autoencoders

• It results that 

  
  can be estimated via Monte-Carlo by 

• First term acts as a regularizer: limits the capacity of the 
encoder

• Second term is a reconstruction error.
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L(✓,�, X) = �DKL(q�(z|X)||p✓(z)) + Eq�(z|X){log p(X|z, ✓)}

\L(✓,�, X) = �DKL(q�(z|X)||p✓(z)) +
1

S

X

sS

log p(X|z(s), ✓)

z(s) = g�(X, ✏(s)) and ✏(s) ⇠ p0 .



Variational Autoencoders
•VAE idea: use neural networks to approximate variational 

and generative parameters.
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x

q(z|x,�)

p(x|z, ✓)

✏ ⇠ p0g(x, ·)



Variational Autoencoder

• Example: Let the prior over latent variables be Gaussian 
isotropic:

• Let the conditional likelihood be also Gaussian:
p(z) = N (z; 0, I)

p(x|z) = (x;µ(z),⌃(z)) µ(z),⌃(z) : Neural networks



Variational Autoencoder

• Example: Let the prior over latent variables be Gaussian 
isotropic:

• Let the conditional likelihood be also Gaussian:

• Variational approximate posterior also Gaussian:
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p(z) = N (z; 0, I)

p(x|z) = (x;µ(z),⌃(z)) µ(z),⌃(z) : Neural networks

q�(z|x) = N (z;µ(x),⌃(x))

µ(z),⌃(z) : Neural networks, (⌃ diagonal)

Z ⇠ q�(z|x) , Z = µ(x) + ⌃(x)✏ , ✏ ⇠ N (0,1)



Examples
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(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
p✓(x|z) with the learned parameters ✓.

(a) 2-D latent space (b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

Figure 5: Random samples from learned generative models of MNIST for different dimensionalities
of latent space.

B Solution of �DKL(q�(z)||p✓(z)), Gaussian case

The variational lower bound (the objective to be maximized) contains a KL term that can often be
integrated analytically. Here we give the solution when both the prior p✓(z) = N (0, I) and the
posterior approximation q�(z|x(i)

) are Gaussian. Let J be the dimensionality of z. Let µ and �
denote the variational mean and s.d. evaluated at datapoint i, and let µj and �j simply denote the
j-th element of these vectors. Then:

Z
q✓(z) log p(z) dz =

Z
N (z;µ,�2

) logN (z;0, I) dz

= �J

2

log(2⇡)� 1

2

JX

j=1

(µ

2
j + �

2
j )
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Extensions

• Importance Sampling Variational Autoencoders
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