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Review:“Vanishing Gradient” Problem

• The parameters of the RNN are trained by gradient 
descent by unrolling T steps of the recurrence:

• For the purpose of updating the parameters, the loss at 
time t is thus expressed in terms of  T previous hidden 
states: 
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Review:RNN Perspectives and Open Questions

• Prediction Challenge: capture long-term dependencies 
with tractable models.

• Linear vs Non-linear state-space dynamics. 
– Can we trade-off higher dimensional linear dynamics with non-linear, 

lower-dimensional dynamics?
– Role of gating and relationship with Residual Training. Optimization 

advantage or a more fundamental principle? 

• Inference?
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Review:Long Short Term Memory (LSTM)
•A very popular and efficient alternative is to modify the 

transition operator using gating mechanisms:

•The cell is a memory that needs to be explicitly erased in order 
to disappear. 

•What to store and when to write/erase is modeled with 
differentiable gates, trained with gradient descent.
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[Hochreiter & Schmidhuber’97]



Objective

•Sequence Structured Prediction
– Examples

•Unsupervised Learning
– Graphical Models
– Markov Random Fields
– Introduction to Variational Inference
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Handwitten Synthesis
[A. Graves]
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•Handwritten text is modeled with a mixture distribution 
over three-dimensional data (spatial coordinates and end-
of-stroke)

•Three-layer LSTM network with approximately 3M 
parameters. 



Handwitten Synthesis

Figure 15: Real and generated handwriting. The top line in each block is
real, the rest are unbiased samples from the synthesis network. The two texts
are from the validation set and were not seen during training.
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Sequence Structured Prediction
• Many tasks require a prediction from sequence to 

sequence:
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There is a light that never goes out

Il y a une lumière qui ne disparait jamais

Machine Translation

Question Answering

What is the best ramen place in the Bay Area?

Ramen Shop, in Rockridge



Sequence Structured Prediction

• Conditional model: 
– Input sequence is used to initialize the state of the output decoder.
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input sequence

“There” “is” “a” “light”“that”“never”“goes” “out” EOF

“jamais”
“disparait”“ne” “qui”“lumiere”“une” “a” “y” “Il”

output sequence

p(X̃ | X) =
TY

t=0

p(X̃t+1 | X, X̃1, . . . , X̃t)

X

X̃

�(X)



“Attention” Mechanisms

• Limits of sequence-to-sequence model. 
– All the information of the input sequence is contained in the vector

– As the length of input increases, we require more information to 
perform the translation.
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“Attention” Mechanisms

• Limits of sequence-to-sequence model. 
– All the information of the input sequence is contained in the vector

– As the length of input increases, we require more information to 
perform the translation. 

– Although the global amount of information grows, the local amount 
of information required to translate does not. How to exploit it?
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“Attention” Mechanisms
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[Badhanu et al.’15]

input sequence

“There” “is” “a” “light”“that”“never”“goes” “out” EOF

“jamais”
“disparait”“ne” “qui”“lumiere”“une” “a” “y” “Il”

output sequence

X
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“Attention” Mechanisms
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“Attention” Mechanisms
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[Badhanu et al.’15]

input sequence

“There” “is” “a” “light”“that”“never”“goes” “out” EOF

“jamais”
“disparait”“ne” “qui”“lumiere”“une” “a” “y” “Il”

output sequence

X

X̃

�(X)

p(X̃ | X) =
TY

t=0

p(X̃t+1 | att(X, X̃1, . . . , X̃t), X̃1, . . . , X̃t)



“Attention” Mechanisms

• Pros
– Generalizes to larger input/output sequences.

• Challenges
– Harder to train
– How to address larger memories efficiently?
– Learning where to look?
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[Badhanu et al.’15]



Machine Translation

Published as a conference paper at ICLR 2015

normalized the L2-norm of the gradient of the cost function each time to be at most a predefined
threshold of 1, when the norm was larger than the threshold (Pascanu et al., 2013b). Each SGD
update direction was computed with a minibatch of 80 sentences.

At each update our implementation requires time proportional to the length of the longest sentence in
a minibatch. Hence, to minimize the waste of computation, before every 20-th update, we retrieved
1600 sentence pairs, sorted them according to the lengths and split them into 20 minibatches. The
training data was shuffled once before training and was traversed sequentially in this manner.

In Tables 2 we present the statistics related to training all the models used in the experiments.

C TRANSLATIONS OF LONG SENTENCES

Source An admitting privilege is the right of a doctor to admit a patient to a hospital or a medical centre
to carry out a diagnosis or a procedure, based on his status as a health care worker at a hospital.

Reference Le privilège d’admission est le droit d’un médecin, en vertu de son statut de membre soignant
d’un hôpital, d’admettre un patient dans un hôpital ou un centre médical afin d’y délivrer un
diagnostic ou un traitement.

RNNenc-50 Un privilège d’admission est le droit d’un médecin de reconnaı̂tre un patient à l’hôpital ou un
centre médical d’un diagnostic ou de prendre un diagnostic en fonction de son état de santé.

RNNsearch-50 Un privilège d’admission est le droit d’un médecin d’admettre un patient à un hôpital ou un
centre médical pour effectuer un diagnostic ou une procédure, selon son statut de travailleur des
soins de santé à l’hôpital.

Google
Translate

Un privilège admettre est le droit d’un médecin d’admettre un patient dans un hôpital ou un
centre médical pour effectuer un diagnostic ou une procédure, fondée sur sa situation en tant
que travailleur de soins de santé dans un hôpital.

Source This kind of experience is part of Disney’s efforts to ”extend the lifetime of its series and build
new relationships with audiences via digital platforms that are becoming ever more important,”
he added.

Reference Ce type d’expérience entre dans le cadre des efforts de Disney pour ”étendre la durée de
vie de ses séries et construire de nouvelles relations avec son public grâce à des plateformes
numériques qui sont de plus en plus importantes”, a-t-il ajouté.

RNNenc-50 Ce type d’expérience fait partie des initiatives du Disney pour ”prolonger la durée de vie de
ses nouvelles et de développer des liens avec les lecteurs numériques qui deviennent plus com-
plexes.

RNNsearch-50 Ce genre d’expérience fait partie des efforts de Disney pour ”prolonger la durée de vie de ses
séries et créer de nouvelles relations avec des publics via des plateformes numériques de plus
en plus importantes”, a-t-il ajouté.

Google
Translate

Ce genre d’expérience fait partie des efforts de Disney à “étendre la durée de vie de sa série et
construire de nouvelles relations avec le public par le biais des plates-formes numériques qui
deviennent de plus en plus important”, at-il ajouté.

Source In a press conference on Thursday, Mr Blair stated that there was nothing in this video that might
constitute a ”reasonable motive” that could lead to criminal charges being brought against the
mayor.

Reference En conférence de presse, jeudi, M. Blair a affirmé qu’il n’y avait rien dans cette vidéo qui puisse
constituer des ”motifs raisonnables” pouvant mener au dépôt d’une accusation criminelle contre
le maire.

RNNenc-50 Lors de la conférence de presse de jeudi, M. Blair a dit qu’il n’y avait rien dans cette vidéo qui
pourrait constituer une ”motivation raisonnable” pouvant entraı̂ner des accusations criminelles
portées contre le maire.

RNNsearch-50 Lors d’une conférence de presse jeudi, M. Blair a déclaré qu’il n’y avait rien dans cette vidéo qui
pourrait constituer un ”motif raisonnable” qui pourrait conduire à des accusations criminelles
contre le maire.

Google
Translate

Lors d’une conférence de presse jeudi, M. Blair a déclaré qu’il n’y avait rien dans cette vido
qui pourrait constituer un ”motif raisonnable” qui pourrait mener à des accusations criminelles
portes contre le maire.

Table 3: The translations generated by RNNenc-50 and RNNsearch-50 from long source sentences
(30 words or more) selected from the test set. For each source sentence, we also show the gold-
standard translation. The translations by Google Translate were made on 27 August 2014.

15

[Badhanu et al., ‘15]

16



Image Captioning

• Sequence generation conditioned on visual features.

17

 [Vinyals et al’14, Karpathy et al ’14, Donahue et al’14, Kiros et al’14,MSR’14]



Image Captioning

• Sequence generation conditioned on visual features.

• Also, trained with visual attention:
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 [Vinyals et al’14, Karpathy et al ’14, Donahue et al’14, Kiros et al’14,MSR’14]

Neural Image Caption Generation with Visual Attention

Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. “soft”
(top row) vs “hard” (bottom row) attention. (Note that both models generated the same captions in this example.)

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

two variants: a “hard” attention mechanism and a “soft”
attention mechanism. We also show how one advantage of
including attention is the ability to visualize what the model
“sees”. Encouraged by recent advances in caption genera-
tion and inspired by recent success in employing attention
in machine translation (Bahdanau et al., 2014) and object
recognition (Ba et al., 2014; Mnih et al., 2014), we investi-
gate models that can attend to salient part of an image while
generating its caption.

The contributions of this paper are the following:
• We introduce two attention-based image caption gen-

erators under a common framework (Sec. 3.1): 1) a
“soft” deterministic attention mechanism trainable by
standard back-propagation methods and 2) a “hard”
stochastic attention mechanism trainable by maximiz-
ing an approximate variational lower bound or equiv-
alently by REINFORCE (Williams, 1992).

• We show how we can gain insight and interpret the
results of this framework by visualizing “where” and
“what” the attention focused on. (see Sec. 5.4)

• Finally, we quantitatively validate the usefulness of
attention in caption generation with state of the art
performance (Sec. 5.3) on three benchmark datasets:
Flickr8k (Hodosh et al., 2013) , Flickr30k (Young
et al., 2014) and the MS COCO dataset (Lin et al.,
2014).

2. Related Work
In this section we provide relevant background on previous
work on image caption generation and attention. Recently,
several methods have been proposed for generating image
descriptions. Many of these methods are based on recur-
rent neural networks and inspired by the successful use of
sequence to sequence training with neural networks for ma-
chine translation (Cho et al., 2014; Bahdanau et al., 2014;
Sutskever et al., 2014). One major reason image caption
generation is well suited to the encoder-decoder framework
(Cho et al., 2014) of machine translation is because it is
analogous to “translating” an image to a sentence.

The first approach to use neural networks for caption gener-
ation was Kiros et al. (2014a), who proposed a multimodal
log-bilinear model that was biased by features from the im-
age. This work was later followed by Kiros et al. (2014b)
whose method was designed to explicitly allow a natural
way of doing both ranking and generation. Mao et al.
(2014) took a similar approach to generation but replaced a
feed-forward neural language model with a recurrent one.
Both Vinyals et al. (2014) and Donahue et al. (2014) use
LSTM RNNs for their models. Unlike Kiros et al. (2014a)
and Mao et al. (2014) whose models see the image at each
time step of the output word sequence, Vinyals et al. (2014)
only show the image to the RNN at the beginning. Along

[Xu et al.’15]
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Unsupervised Learning



Unsupervised Learning
• Given high-dimensional data                        , we want to 

estimate a low-dimensional model characterizing the 
population.

• Why is this an important problem?

X = (x1, . . . , xn)

20



Unsupervised Learning
•Given high-dimensional data                        , we want to 

estimate a low-dimensional model characterizing the 
population.

•Why is this an important problem?
• It is an essential building block in most high-dimensional 

prediction tasks. 
– Inverse Problems (super-resolution, inpainting, denoising, 

etc.).
– Structured Output Prediction (translation, Q&A, pose 

estimation, etc.)
– “Disentangling” or Posterior Inference.
– Learning with few labeled examples

X = (x1, . . . , xn)
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Curse of Dimensionality

• Challenge: How to model                                         for 
large N ? 

22

p(x) , x 2 RN
( or x 2 ⌦

N
)



Curse of Dimensionality

• Challenge: How to model                                         for 
large N ? 

• An existing hypothesis is that, although the ambient 
dimensionality is high, the intrinsic dimensionality of     is 
low. 

23

p(x) , x 2 RN
( or x 2 ⌦

N
)

x

figure from Carter et al.



Curse of Dimensionality

• However, many signals of interest do have high intrinsic 
dimensionality:

• Deformation structure is high-dimensional:

• Textures:

• Text (long memory)
24



Unsupervised Learning

• Latent Graphical Models
– Variational Inference
– Boltzmann Machines

• Autoencoders and dimensionality reduction.
– Variational Autoencoders

• Measure Transportation
– Generative Adversarial Networks.

• Gibbs Energy Models
– Markov Random Fields
– Maximum Entropy distributions

• How to evaluate high-dimensional generative models?
• From unsupervised to self-supervised models.
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Graphical Models

• A n-dimensional random vector is represented in a graph 
with n nodes.
– Edges model statistical dependency between variables

• Two types of Graphical Models:
– Directed Graphs: Use conditional distributions. Can express causal 

relationships.
– Undirected Graphs: Energy based models.

26

x1x2x3

x4

x5

x6

X = (x1, . . . , x6)



Directed Graphical Models

• The direction specifies a conditional distribution:

• It is well defined if the directed graph has no cycles 
(Directed Acyclic Graph).

27

x1

x2

x3

x4

p(x1, x2, x3, x4) = p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x2, x3)



Latent or Mixture Models
• A directed graph with bipartite structure, in which some 

variables are unobserved:

• Additive generative models
– We can build complex generative models by additively combining 

simpler models. 
28

xi

zj



• Latent Graphical Models or Mixtures.

Generative Models of Complex data

x

h

high-dimensional space

p(x) =

Z
p(x, h)dh =

Z
p(x | h)p(h)dh

latent space



• Latent Graphical Models or Mixtures.

Generative Models of Complex data

x
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high-dimensional space

p(x) =

Z
p(x, h)dh =
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p(x | h)p(h)dh

latent space

h ⇠ p(h)



• Latent Graphical Models or Mixtures.

Generative Models of Complex data

x

h

high-dimensional space

p(x) =

Z
p(x, h)dh =

Z
p(x | h)p(h)dh

latent space

h ⇠ p(h)

�

p(x | h) = p�(h)(x)

✓ = �(h)



• Latent Graphical Models or Mixtures.

Generative Models of Complex data

x

h

high-dimensional space

p(x) =

Z
p(x, h)dh =

Z
p(x | h)p(h)dh

latent space

h ⇠ p(h)

�

p(x | h) = p�(h)(x)

✓ = �(h)

p✓(x)



• Latent Graphical Models or Mixtures.

Generative Models of Complex data

x

h

high-dimensional space

p(x) =

Z
p(x, h)dh =

Z
p(x | h)p(h)dh

latent space

h ⇠ p(h)

�

p(x | h) = p�(h)(x)

✓ = �(h)

p✓(x)

RBM
DBN
DBM
VAE
…



Latent Variables

• The simplest model is K-means clustering:
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• The simplest model is K-means clustering:

K = 6

Given data X = (x1, . . . , xn), min
c1,...,cK

X

in

min
j

kxi � cjk2

c1

c6

35

Latent Variables



Floyd Algorithm

•  
•   

36

For each i, we define ri a one-hot vector of length K encoding its cluster.

Cost function is

E(c, r) =
X

i

X

k

ri(k)kxi � ckk2



Floyd Algorithm

•  
•   

•  
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For each i, we define ri a one-hot vector of length K encoding its cluster.

Cost function is

E(c, r) =
X

i

X

k

ri(k)kxi � ckk2

Fixing c, we optimize r as

ri  argmin
k
kxi � ckk

Given assignments r, optimize E with respect to c:

ck =

P
i ri(k)xiP
i ri(k)

mean of all 
datapoints falling

in cluster k



Floyd Algorithm

• This iterative algorithm converges towards a local 
optimum (each step decreases the cost). 

• It is in fact an instance of the Expectation-Maximization 
algorithm (EM).

• In that case, the discrete latent variables are the cluster 
assignments. 
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Mixture of Gaussians 
•  We will look at mixture of Gaussians in terms of discrete latent variables.  

•  The Gaussian mixture can be written as a linear superposition of 
Gaussians: 

•  Introduce K-dimensional binary random 
variable z having a 1-of-K representation: 

•  We will specify the distribution over z in terms 
of mixing coefficients: 

• A generalization of K-Means is given by a Gaussian 
Mixture:

• This is also a discrete latent variable model:

• The distribution of the latent variable is multinomial:

Gaussian Mixture Models (GMM)

39

k ⇠ Mult(⇡) , x ⇠ N (µk,⌃k) .

(figure from R.Salakhutdinov)
z 2 {0, 1}K ,

X

k

zk = 1 .

p(zk = 1) = ⇡k , 0  ⇡k  1 ,
X

k

⇡k = 1 .



Mixture of Gaussians 
•  We will look at mixture of Gaussians in terms of discrete latent variables.  

•  The Gaussian mixture can be written as a linear superposition of 
Gaussians: 

•  Introduce K-dimensional binary random 
variable z having a 1-of-K representation: 

•  We will specify the distribution over z in terms 
of mixing coefficients: 

Gaussian Mixture Models (GMM)

• We can write 

• Thus

• Joint and marginal distributions are given by 

40

z

x

p(z) =
KY

k=1

⇡zk
k p(x | zk = 1) = N (x;µk,⌃k)

p(x | z) =
KY

k=1

N (x;µk,⌃k)
zk

p(x, z) = p(x | z)p(z) ,

p(x) =
X

z

p(x, z) =
KX

k=1

⇡kN (x;µk,⌃k) .



GMM and Posterior Inference

• What about the conditional p(z | x) ? Ie, given data, which 
mixture components are “responsible” ? 

• The posterior probability that           is a weighted 
average of prior probabilities that depends upon the 
data.

• Q: How to estimate the parameters              ? 
41

p(zk = 1 | x) = p(zk = 1, x)P
k0K p(zk0 = 1, x)

=
p(zk = 1)p(x | zk = 1)P

k0K p(zk0 = 1)p(x | zk0 = 1)

=
⇡kN (x;µk,⌃k)P
k0 ⇡k0N (x;µk0

,⌃k0)

zk = 1

{⇡, µ,⌃}



Maximum Likelihood Estimation

•  

•  
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Given independent samples X = {x1, . . . , xn}, the total log-likelihood is

E(⇡, µ,⌃) = log p(X | ⇡, µ,⌃) =
X

in

log

 
X

k

⇡kN (xi;µk,⌃k)

!

@E

@µk
=

X

i

⇡kN (xi;µk,⌃k)P
k0 ⇡k0N (xi;µk0

,⌃k0)
⌃�1

k (xi � µk) .

µk =
1

Nk

X

i

p(zi,k = 1 | xi)xi , Nk =
X

i

p(zi,k = 1 | xi) .

Thus the mean µk is the weighted average of datapoints, with weights

given by the posterior probabilities of belonging to component k.



Maximum Likelihood Estimation

• Similarly

• MLE parameters do not have closed-form solution
- Parameters depend upon posterior probabilities                        , 

which themselves depend upon parameters.
• Iterative algorithm: Expectation-Maximization (EM):

- E-step: Update posterior probabilities with parameters fixed.
- M-step: Update parameters with posterior probabilities fixed. 
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@E

@⌃k
= 0 ) ⌃k =

1

Nk

X

i
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p(zk = 1 | x)



The EM algorithm

• It is designed to find MLE solutions of latent variable 
models.

• In general, we have log-likelihoods of the form

• Using current parameters       , we compute the 
expected total likelihood of the model (E-step):

• Then we update the parameters to maximize this 
likelihood:

44

log p(X |✓) = log

 
X

Z

p(X,Z | ✓)
!

, ✓ = model parameters .
Z = latent variables

✓
old

Q(✓, ✓
old

) = E
Z⇠p(Z | X,✓

old

) log p(X,Z | ✓)

✓
new

= argmax

✓

Q(✓, ✓
old

) .


