Stat 21 2b: Topics In Deep Learning
Lecture 14

Joan Bruna
UC Berkeley

IIIIIIIIIIIIIIIIIIIIII



Review: 'Vanishing Gradient” Problem
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* Prediction Challenge: capture long-term dependencies
with tractable models.

* Linear vs Non-linear state-space dynamics.

— Can we trade-off higher dmensional linear dynamics with non-linear,
lower-dimensional dynamics!

—Role of gating and relationship with Residual Training. Optimization
advantage or a more fundamental principle!

e Inference!



Review:Long Short Term Memory (LSTM)

Hochreiter & Schmidhuber'97
* A very popular and efficient altematlée %thl;elmecgc(:l& fy%hrg e ]

transition operator using gating mechanisms:
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Output Gate Ot

* [he cell Is a memory that needs to be explicitly erased in order
to disappear.

* What to store and when to write/erase i1s modeled with
differentiable gates, trained with gradient descent.



Objectve

* Sequence Structured Prediction
— Examples

* Unsupervised Learning
— Graphical Models
—Markov Random Fields

— Introduction to Variational Inference



[A. Graves]

* Hanawritten text 1s modeled with a mixture distribution
over three-dimensional data (spatial coordinates and end-
of-stroke)

* [hree-layer LSTM network with approximately 3™
parameters. Ounpur e (%) @
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* Many tasks require a prediction from sequence to

SEC

uence.

Machine Translation

There 1s a light that never goes out

|

Il vy a une lumiere gqul ne disparalt jamais

Question Answering

What 1s the best ramen place in the Bay Area?

|

Ramen Shop, 1n Rockridge



* Conditional model:
—Input sequence Is used to Initialize the state of the output decoder.

input sequence X

— > 0 0 o
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“There” “i1s” “a” “light"™that™never™goes” “out” EOF l

Pttt

“disparait™ne” “qui™lumiere™une”
“Jamais’

output sequence X
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* Limits of sequence-to-sequence model.

— All the Information of the input sequence Is contained in the vector
$(X)

—As the length of input Iincreases, we require more information to
perform the translation.

BOWHA » MUPD.

T ~ LEO TOLSTOY
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* Limits of sequence-to-sequence model.

— All the Information of the input sequence Is contained in the vector
$(X)

—As the length of input Iincreases, we require more information to
perform the translation.

BOWHA » MWPD.

lllllllll

— Although the global amount of information grows, the local amount
of iInformation required to translate does not. How to exploit it?
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input sequence X

— > 0 0 o
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“There” “1s” “a” “light"™that™never™goes” “out” EOF
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. Yd%ﬁparaiﬂﬁmy’ “qui™lumiere™une” “a” Wy “WT1”
jamais

output sequence X’
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input sequence X

— > 0 0 o

N R e |

“There” “1s” “a” “light"™that™never™goes” “out” EOF

[ N N T R

. Yd%ﬁparaiﬂﬁmy’ “qui™lumiere™une” “a” Wy “WT1”
jamais

output sequence X’
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Badnan et ol 5

input sequence X

— > 0 0 o

N R e |

“There” “1s” “a” “light"™that™never™goes” “out” EOF

[ N N T R

. Yd%ﬁparaiﬂﬁmy’ “qui™lumiere™une” “a” Wy “WT1”
jamais

output sequence X' T 3 . . 3 -
p(X | X) =[] p(Xesr | att(X, X1,.... %), X1, ..., Xo)
t=0
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— Generalizes to larger input/output sequences.

* Challenges

— Harder to train

— How to address larger memories efficiently?

— Learning where to look?
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_Machine Iranslation I
[Badhanu et al.," | 5]

Source An admitting privilege is the right of a doctor to admit a patient to a hospital or a medical centre
to carry out a diagnosis or a procedure, based on his status as a health care worker at a hospital.
Reference Le privilege d’admission est le droit d’un médecin, en vertu de son statut de membre soignant

d’un hopital, d’admettre un patient dans un hopital ou un centre médical afin d’y délivrer un
diagnostic ou un traitement.

RNNenc-50 Un privilege d’admission est le droit d’un médecin de reconnaitre un patient a 1’hopital ou un
centre médical d’un diagnostic ou de prendre un diagnostic en fonction de son €tat de santé.

RNNsearch-50 | Un privilege d’admission est le droit d’un médecin d’admettre un patient a un hopital ou un
centre médical pour effectuer un diagnostic ou une procédure, selon son statut de travailleur des
soins de santé a I’hopital.

Google Un privilege admettre est le droit d’'un médecin d’admettre un patient dans un hopital ou un
Translate centre médical pour effectuer un diagnostic ou une procédure, fondée sur sa situation en tant
que travailleur de soins de santé dans un hopital.

|16
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[lés et aI 4 Kéhy’eal Donahue‘et al |4|<|ros etal ‘I 4MSR li 4] |
* Sequence generation condrtioned on visual features.

A person riding a Two dogs play in the grass. A skateboarder does a trick A dog is jumping to catch a
motorcycle on a dirt road. .

|7



\mage ‘ ptlon ng

[»l_as et al |4 Krhyreal' Donahue‘etal |4 K|ros et al ‘I 4MSR |4] A
* Sequence generation condrtioned on visual features.

A person riding a Two dogs play in the grass. A skateboarder does a trick A dog is jumping to catch a
motorcycle on a dirt road. on a ramp. frisbee

* Also, trained with visual attention: [Xuetal'l5]

Figure 3 Examples of attendmg to the correct object (white indicates the attended regions, underlmes 1ndlcated the corresponding word)

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
I mountain in the background.

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.



Unsupervised Learning

19



* Given high-dimensional data X = (x1,...,z,), we want to
estimate a low-dimensional model characterizing the
population.

* Why Is this an important problem?

20



Unsupervised Learning

e Given high-dimensional data X = (z1, ..., Z,)we want to
estimate a low-dimensional model characterizing the
population.

* Why is this an important problem?

* [t Is an essential buillding block In most high-dimensional
drediction tasks.

— Inverse Problems (super-resolution, inpainting, denoising,
etc.).

— Structured Output Prediction (translation, Q&A, pose
estimation, etc.)

— "Disentangling’ or Posterior Inference.
— Learning with few labeled examples

21



e Challenge: How to model p(z) , x € RY (or x € Q") for
large N ¢



e Challenge: How to model p(z) , z € RY (or x € Q%) for
large N ?

* An existing hypothesis Is that, although the ambient
dimensionality Is high, the intrinsic dimensionality of Z Is
low.

fioure from Carter et dl.
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* However, many signals of interest do have high intrinsic
dimensionality:

* Deformation structure is high-dimensional:

e [extures:
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* [ext (long memory)
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Unsupervised Learning

* Latent Graphical Models

—Variational Inference

— Boltzmann Machines

* Autoencoders and dimensionality reduction.

— Variational Autoencoders

* Measure [ransportation

— Generative Adversarial Networks.

* Gibbs Energy Models

— Markov Random Fields
—Maximum Entropy distributions

* How to evaluate high-dimensional generative models!

* From unsupervised to self-supervised models.

25



* A n-dimensional random vector Is represented in a graph
with n nodes.

— Edges model statistical dependency between variables

* Two types of Graphical Models:

— Directed Graphs: Use conditional distributions. Can express causal
relationships.

—Undirected Graphs: Energy based models.

26



* The direction specifies aac;_onditional distribution:
1

* [t 1s well defined If the directed graph has no cycles
(Directed Acyclic Graph).




* A directed graph with bipartite structure, in which some
variables are unobserved:

» Additive generative models

—We can build complex generative models by additively combining
simpler models.

28



* Latent Graphical Models or Mixtures.

latent space

high-dimensional space @
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* Latent Graphical Models or Mixtures.

latent space

high-dimensional space @
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* Latent Graphical Models or Mixtures.

latent space

high-dimensional space
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* Latent Graphical Models or Mixtures.

latent space

high-dimensional space
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* Latent Graphical Models or Mixtures.

latent space

high-dimensional space ®
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* [he simplest model i1s K-means clustering:

34



* [he simplest model i1s K-means clustering:

35



e For each i, we define r; a one-hot vector of length K encoding its cluster.

e Cost function is

= 2. 2 itk — el

36



e For each i, we define r; a one-hot vector of length K encoding its cluster.

* Cost function is
ZZH )li — el

e Fixing ¢, we optimize r as

r; <— arg mkin |x; — cil

Given assignments r, optimize F with respect to c:

mean of all
Cp = ZZ Tz(k)xz datapoints falling
Zi ri(k) in cluster k

37



* [his iterative algorithm converges towards a local
optimum (each step decreases the cost).

* [t 1 In fact an instance of the Expectation-Maximization
algorithm (EM).

* |n that case, the discrete latent variables are the cluster
assignments.

38



* A generalization of K-Means is given by a Gaussian
Mixture:

ko~ Mult(m) , v ~ N(ug, Xi) . ~

* [his is also a discrete latent variable moael: o T

k (figure from R.Sa‘/akhutdinov)
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 [he distribution of the latent variable i1s multinomial:

plzk=1)=m , 0<m <1, Z?Tkzl.
k

39



* \We can vvriKte

= [ p|2=1) =N m
k=1

K
* [hus  plz|2) = HN(CE;MkaZk)Zk

* Joint and marginal distributions are given by
p(z,z) = p(z | 2)p(2) ,
Zp T,2) Zﬂk/\/’(az;,uk, Zk)
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GMM and Posterior Inference

* What about the condrtional p(z | x) ¢ le, given data, which
mixture components are “responsible” ?

p(zkzl\w)zz

pzk =1, 2)

* [ he posterior pro

average of
data.

DFIOr P

k<K p(Zk;/ — 1, CE)

plzr = p(z | 2p = 1)

D T N (5 pger, Xgr )

pability that zr =1 Is a weight

robabillities that depends upo

* Q: How to estimate the parameters {m, u, X} ?

4]
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¢Given independent samples X = {x1,...,z,}, the total log-likelihood is

E(m, 1, %) = logp(X | m,pu, %) = > log (Z TN ( 37@7Mk72k))

1<n

« OE TN (@i e, 2 )
Ok ~ D T N (245 o 5 Xier )

S (@i — k) -

1
e = N ;p(zi,k =1]®)z; , Ng = ;p(zi,k =1] ).

Thus the mean u; is the weighted average of datapoints, with weights
given by the posterior probabilities of belonging to component k.

4)



7"

* Similarly

OF 1

o5 =0 = D= ;p(zi,k = 1| 2;)(x; — pr) (@i — px
OF N
— =0 = m = — :
Oy n

* MLE parameters do not have closed-form solution

- Parameters depend upon posterior probabilities  p(z, =1 | x)
which themselves depend upon parameters.

* [terative algorithm: Expectation-Maximization (EM):

- E-step: Update posterior probabilities with parameters fixed.

- M-step: Update parameters with posterior probabilities fixed.
43



The EM algorithm

* [t 1s designed to find MLE solutions of latent variable
models.

* In general, we have log-likelihoods of the form

logp(X |6) = log (Z p(X, 7 | «9)) , & = model parameters .
Z

/, = latent variables

* Using current parameters 0.4 , we compute the
expected total likelihood of the model (E-step):

Q(9790ld) — <1:Zf\Jp(Z | X,@Old) logp(X7Z ‘ 9)

* [hen we update the parameters to maximize this

ikelihood: Orow = TS max Q(0,0,4) .

44




