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Representation of Stationary Processes 
x(u): realizations of a stationary process X(u) (not Gaussian)



Representation of Stationary Processes
x(u): realizations of a stationary process X(u) (not Gaussian)

Discriminability: need to capture high-order moments

�(X) = {E(fi(X))}i

Stability: E(kb�(X)� �(X)k2) small

b�(X) =

(
1

N

X

n

fi(x)(n)

)

i

Estimation from samples x(n):
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Properties of Scattering Moments
• Captures high order moments:

m = 1 m = 2
SJ [p]XPower Spectrum

[Bruna, Mallat, ’11,’12]



Properties of Scattering Moments
• Captures high order moments:

m = 1 m = 2
SJ [p]XPower Spectrum

[Bruna, Mallat, ’11,’12]

• Cascading non-linearities is necessary to reveal higher-
order moments.



Consistency of Scattering Moments

Theorem: [B’15] If  is a wavelet such that k k1  1, and X(t) is a

linear, stationary process with finite energy, then

lim

N!1
E(k ˆSNX � SXk2) = 0 .



Consistency of Scattering Moments

Corollary: If moreover X(t) is bounded, then

E(k ˆSNX � SXk2)  C
|X|21p

N
.

• Although we extract a growing number of features, their 
global variance goes to 0.

• No variance blow-up due to high order moments.
• Adding layers is critical (here depth is log(N)). 

Theorem: [B’15] If  is a wavelet such that k k1  1, and X(t) is a

linear, stationary process with finite energy, then

lim

N!1
E(k ˆSNX � SXk2) = 0 .



Fractal Processes

• Motivation: Find statistical models for chaotic phenomena 
such as Turbulent flows.
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Fractal Processes

• Motivation: Find statistical models for chaotic phenomena 
such as Turbulent flows.

• Kolmogorov “5/3” theory (1941): isotropic energy 
dissipation induces a power spectrum of the form
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Fractal Processes

• Kolmogorov “5/3” theory (1941): isotropic energy 
dissipation induces a power spectrum of the form
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Fractal Processes

• Kolmogorov “5/3” theory (1941): isotropic energy 
dissipation induces a power spectrum of the form

• This model implies scale self-similarity:
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Fractal Processes

• Kolmogorov “5/3” theory (1941): isotropic energy 
dissipation induces a power spectrum of the form

• This model implies scale self-similarity:

• Two main families:
•  
•  

• Multifractality allows the distribution to change with scale: 
intermittency. 
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fF (!) / |!|�5/3 .

{X(st)} = Ws{X(t)}

Ws deterministic: Mono-fractal processes (e.g. Brownian Motion)

Ws random: Multifractal processes.



S̃X(j1) =
SX(j1)

SX(1)

First Order:

Second Order:

(Invariance to global amplitude changes)

Scattering Renormalization



- Invariance to Self-similarity:

Renormalisation Properties

Proposition: If {X(2jt)}t
l
= Aj{X(t)}t, then

8j1 , S̃X(j1, j2) = S̃X(j2 � j1) .



- Invariance to Self-similarity:

- Near Invariance to Fractional Derivatives:

Renormalisation Properties

Proposition: If {X(2jt)}t
l
= Aj{X(t)}t, then

8j1 , S̃X(j1, j2) = S̃X(j2 � j1) .

– For wavelets well localized in frequency,

Proposition: If LX = X ?h is such that 8j {|X ?L j |}t
l
= Cj{|X ? j |}t,

then
S̃X(j1, j2) = S̃(LX)(j1, j2) .

D��j ⇡ Cj�j , hence S̃X(j1, j2) ⇡ S̃D�X(j1, j2) .



Fractional Derivative Near Invariance

– For wavelets well localized in frequency,

Proposition: If LX = X ?h is such that 8j {|X ?L j |}t
l
= Cj{|X ? j |}t,

then
S̃X(j1, j2) = S̃(LX)(j1, j2) .
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•First Order Decay: Hurst exponent:

• Intermittency
– In Turbulence: irregular dissipation of kinetic energy
– Multiplicative Canonical Cascades (Yaglom, Mandelbrot): self-similar and 

intermittent (multifractal)
– Can be defined from q-order wavelet moments: 

•How to efficiently measure intermittency?

Intermittent Processes
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E(|X ?  j |q) ' 2j⇣(q) (j ! �1) Intermittency: curvature of ⇣(q)



Scattering and Intermittency

Theorem [BBMM’13]:

If X(t) Fractional Brownian Motion, then

˜SX(l) ' 2

�l/2 ,

If X(t)↵-stable Lévy process, then

˜SX(l) ' 2

l(↵�1�1) ,

If X(t)Multiplicative Random Cascade, then

˜SX(l) ' O(1) ,
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Original?

Forged?

Forgery Detection

(from Charlotte dataset)

[with I.Daubechies]



Forgery Detection
First order coe�cients: SX(j, �) = E(|X ⇤ ⇥j,�|)
Renormalized second order coe�cients:

S̃X(j1, j2, �1, �2) =
SX(j1, j2, �1, �2)

SX(j1, �1)
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Wilcoxon RankSum Test

SX(j, �) : p = 0.54
S̃X(j1 � j2, �1, �2) : p = 0.00025(assuming independent patches)
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Geometric regularity: More intermittent

“A posteriori” Interpretation



CNNs for Texture Representation

• Q:How to obtain a texture representation from a CNN?
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CNNs for Texture Representation

• Q:How to obtain a texture representation from a CNN?
• Simple, yet powerful, idea [Gatys et al.’15]: 

29
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Figure 1: Synthesis method. Texture analysis (left). The original texture is passed through the CNN
and the Gram matrices G

l

on the feature responses of a number of layers are computed. Texture
synthesis (right). A white noise image ~̂x is passed through the CNN and a loss function E

l

is
computed on every layer included in the texture model. The total loss function L is a weighted sum
of the contributions E

l

from each layer. Using gradient descent on the total loss with respect to the
pixel values, a new image is found that produces the same Gram matrices Ĝ

l

as the original texture.

spatial extent of the image. In the model a texture is uniquely defined by the outcome of those
measurements and every image that produces the same outcome should be perceived as the same
texture. Therefore new samples of a texture can be generated by finding an image that produces the
same measurement outcomes as the original texture. Conceptually this idea was first proposed by
Julesz [13] who conjectured that a visual texture can be uniquely described by the Nth-order joint
histograms of its pixels. Later on, texture models were inspired by the linear response properties
of the mammalian early visual system, which resemble those of oriented band-pass (Gabor) filters
[10, 21]. These texture models are based on statistical measurements taken on the filter responses
rather than directly on the image pixels. So far the best parametric model for texture synthesis
is probably that proposed by Portilla and Simoncelli [21], which is based on a set of carefully
handcrafted summary statistics computed on the responses of a linear filter bank called Steerable
Pyramid [24]. However, although their model shows very good performance in synthesising a wide
range of textures, it still fails to capture the full scope of natural textures.

In this work, we propose a new parametric texture model to tackle this problem (Fig. 1). Instead
of describing textures on the basis of a model for the early visual system [21, 10], we use a con-
volutional neural network – a functional model for the entire ventral stream – as the foundation for
our texture model. We combine the conceptual framework of spatial summary statistics on feature
responses with the powerful feature space of a convolutional neural network that has been trained on
object recognition. In that way we obtain a texture model that is parameterised by spatially invariant
representations built on the hierarchical processing architecture of the convolutional neural network.

2

Stationary or “style” representation:

�(x) =

(
1

Nk

X

uk

�k(x)(uk, ·)�k(x)(uk, ·)T , k = 1  K

)

Let (�1(x)(u1,�1),�2(x)(u2,�2), . . . ,�K(x)(uK ,�K)) the outputs of each layer

of a pre-trained CNN



Ergodic Texture Reconstruction
• Scattering Moments of 2nd order capture essential geometric 

structures with only                  coefficients.
• However, not all texture geometry is captured. 
• Results using a deep VGG network from [Gathys et al, NIPS’15]

O((logN)

2
)



Ergodic Texture Reconstruction
• Scattering Moments of 2nd order capture essential geometric 

structures with only                  coefficients.
• However, not all texture geometry is captured. 
• Results using a deep VGG network from [Gathys et al, NIPS’15]

O((logN)

2
)



Texture and Geometry

• We have seen that both in the case of scattering and in 
general CNNs, texture and template/geometry 
representations use the same nonlinearities
– We only change the pooling operator to adapt to stationarity.

• Q: Can we disentangle texture and geometry by 
combining these two representations?

32



Texture and Geometry

• “StyleNet”, Gatys et al,’15. 
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Content
Representations

Style
Representations

Convolutional Neural Network

Style Reconstructions

Content Reconstructions

a edcb
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Figure 1. Image representations in a Convolutional Neural Network (CNN). A given input image is represented as a set of filtered images
at each processing stage in the CNN. While the number of different filters increases along the processing hierarchy, the size of the filtered
images is reduced by some downsampling mechanism (e.g. max-pooling) leading to a decrease in the total number of units per layer of the
network. Content Reconstructions. We can visualise the information at different processing stages in the CNN by reconstructing the input
image from only knowing the network’s responses in a particular layer. We reconstruct the input image from from layers ‘conv1 2’ (a),
‘conv2 2’ (b), ‘conv3 2’ (c), ‘conv4 2’ (d) and ‘conv5 2’ (e) of the original VGG-Network. We find that reconstruction from lower layers is
almost perfect (a–c). In higher layers of the network, detailed pixel information is lost while the high-level content of the image is preserved
(d,e). Style Reconstructions. On top of the original CNN activations we use a feature space that captures the texture information of an
input image. The style representation computes correlations between the different features in different layers of the CNN. We reconstruct
the style of the input image from a style representation built on different subsets of CNN layers ( ‘conv1 1’ (a), ‘conv1 1’ and ‘conv2 1’
(b), ‘conv1 1’, ‘conv2 1’ and ‘conv3 1’ (c), ‘conv1 1’, ‘conv2 1’, ‘conv3 1’ and ‘conv4 1’ (d), ‘conv1 1’, ‘conv2 1’, ‘conv3 1’, ‘conv4 1’
and ‘conv5 1’ (e). This creates images that match the style of a given image on an increasing scale while discarding information of the
global arrangement of the scene.

Networks. Since the texture model is also based on deep
image representations, the style transfer method elegantly
reduces to a single optimisation problem. New images are
generated by performing a pre-image search to match fea-
ture representations of example images. This general ap-
proach has been used before in the context of texture syn-
thesis [9, 21, 7] and to improve the understanding of deep
image representations [23, 20]. In fact, StyleNet combines
a parametric texture model based on Convolutional Neural
Networks [7] with a method to invert their image represen-
tations [20].

2. Deep image representations

The results presented below were generated on the ba-
sis of the VGG network [24], which was trained to perform
object recognition and localisation [22] and is described ex-
tensively in the original work [24]. We used the feature
space provided by a normalised version of the 16 convo-
lutional and 5 pooling layers of the 19-layer VGG network.
We normalized the network by scaling the weights such that
the mean activation of each convolutional filter over images
and positions is equal to one. Such re-scaling can be done

2



Texture and Geometry
• “StyleNet”, Gatys et al,’15. 
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Figure 2. Style transfer algorithm. First content and style features are extracted and stored. The style image ~a is passed through the network
and its style representation A

l on all layers included are computed and stored (left). The content image ~p is passed through the network
and the content representation P

l in one layer is stored (right). Then a random white noise image ~x is passed through the network and its
style features Gl and content features F l are computed. On each layer included in the style representation, the element-wise mean squared
difference between G

l and A

l is computed to give the style loss L
style

(left). Also the mean squared difference between F

l and P

l is
computed to give the content loss L

content

(right). The total loss L
total

is then a linear combination between the content and the style loss.
Its derivative with respect to the pixel values can be computed using error back-propagation (middle). This gradient is used to iteratively
update the image ~x until it simultaneously matches the style features of the style image ~a and the content features of the content image ~p

(middle, bottom).

The gradients of E
l

with respect to the pixel values ~x can
be readily computed using standard error back-propagation
(Fig 2, left).

2.3. Style transfer

To transfer the style of an artwork ~a onto a photograph ~p

we synthesise a new image that simultaneously matches the
content representation of ~p and the style representation of ~a
(Fig 2). Thus we jointly minimise the distance of the fea-
ture representations of a white noise image from the content
representation of the photograph in one layer and the style
representation of the painting defined on a number of layers
of the Convolutional Neural Network. The loss function we
minimise is

L
total

(~p,~a, ~x) = ↵L
content

(~p, ~x) + �L
style

(~a, ~x) (7)

where ↵ and � are the weighting factors for content and
style reconstruction, respectively. The gradient with respect

to the pixel values @L
total

@~x

can be used as input for some nu-
merical optimisation strategy. Here we use L-BFGS [28],
which we found to work best for image synthesis. To ex-
tract image information on comparable scales, we always
resized the style image to the same size as the content im-
age before computing its feature representations. Finally,
note that in difference to [20] we do not regularise our syn-
thesis results with image priors. It could be argued, though,
that the texture features from lower layers in the network
act as a specific image prior for the style image. Addition-
ally some differences in the image synthesis are expected
due to the different network architecture and optimisation
algorithm we use.

3. Results

The key finding of this paper is that the representations of
content and style in the Convolutional Neural Network are
well separable. That is, we can manipulate both representa-
tions independently to produce new, perceptually meaning-

4

Given x1 and x2, we look for x̂ such that

�s(x1) ⇡ �s(x̂) and �(x2) ⇡ �(x̂).



Texture and Geometry
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D
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F
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C
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Figure 3. Images that combine the content of a photograph with the style of several well-known artworks. The images were created by
finding an image that simultaneously matches the content representation of the photograph and the style representation of the artwork.
The original photograph depicting the Neckarfront in Tübingen, Germany, is shown in A (Photo: Andreas Praefcke). The painting that
provided the style for the respective generated image is shown in the bottom left corner of each panel. B The Shipwreck of the Minotaur
by J.M.W. Turner, 1805. C The Starry Night by Vincent van Gogh, 1889. D Der Schrei by Edvard Munch, 1893. E Femme nue assise by
Pablo Picasso, 1910. F Composition VII by Wassily Kandinsky, 1913.
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Texture and Geometry

• Advertisement of the MLSS I am co-organizing:

36



Texture and Geometry

• Check out your own pictures at deepart.io!

37

http://deepart.io


Time Series

• An ordered sequence of (multivariate) random variables:

•      can be continuous or discrete:

• Important Statistical assumption: 

38

{Xt}t2N
Xt

p(Xt+⌧1 , Xt+⌧2 , . . . , Xt+⌧k) = p(X⌧1 , X⌧2 , . . . , X⌧k) , 8 t, ⌧1, . . . , ⌧k

We say that {Xt} is stationary.



Time Series Tasks

•Statistical Modeling:
–Speech Synthesis,  Music generation, etc.

•Forecasting/Prediction:
–Biostatistics.
–Financial applications

•Regression/Classification:
–Sentiment Analysis
–Action Recognition.
–Speech Recognition.
–Machine Translation, Question/Answering.

39



Curse of Dimensionality

•  

• Thus we need to introduce models that have finite 
amount of capacity.
– Stationarity implies capacity should be constant in time. 

• Q: What does this assumption require/imply?

40

As t increases, complexity of P (X1, . . . , Xt) increases exponentially



Memory of a Process

• Measure of the statistical dependency between       and  

– A particularly simple measure is through the second-order moments:

41

Xt

Xt+⌧

RX(⌧) ' |⌧ |�↵
kRXk1 =

P
k |RX(k)| measures decorrelation scale



Memory of a Process

• For discrete time series, we can use a divergence 
between the joint distribution of                and the 
product of its marginals: 

42

(Xt, Xt+⌧ )

mX(⌧) = DKL (p(Xt, Xt+⌧ ) || p(Xt)p(Xt+⌧ ))

mX(⌧) ' |⌧ |�↵



Stationary Time Series Models

• A stationary process with no memory is called a white 
noise:

• A general class of stationary processes is obtained by 
filtering white noise with an integrable kernel:

43

{Wt} iid. Wt ⇠ F✓

Xt = Wt ? h , with khk1 =
X

k

|hk| < 1 , EWt = 0 .

Wt h
Xt

These are called linear processes.



Stationary Time Series Models

• Pure Autoregressive Processes (AR(p)):

• Moving Average Processes (MA(q)):

• ARMA(p,q): 

• Second-order moments are sufficient to fitting 
parameters (Yule-Walker Equations).

44

Xt � a1Xt�1 � . . . apXt�p = Wt

Xt = Wt + b1Wt�1 + bqWt�q

Xt � a1Xt�1 � . . . apXt�p = Wt + b1Wt�1 + bqWt�q



Spectral Theory for Stationary Processes
•  

• Then the previous models can be rewritten as

45

Xt � a1Xt�1 � . . . apXt�p = Wt + b1Wt�1 + bqWt�q

(1� a1B � . . . apB
p)Xt = (1 + b1B + . . . bqB

q)Wt

Denote by B the shift or translation operator: BXt = Xt�1

Xt =
1 + b1B + . . . bqBq

1� a1B � . . . apBp
Wt



Spectral Theory for Stationary Processes
•  

• Then the previous models can be rewritten as 

• This is a convolution:
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Xt � a1Xt�1 � . . . apXt�p = Wt + b1Wt�1 + bqWt�q

(1� a1B � . . . apB
p)Xt = (1 + b1B + . . . bqB

q)Wt

Denote by B the shift or translation operator: BXt = Xt�1

Xt =
1 + b1B + . . . bqBq

1� a1B � . . . apBp
Wt

X ? h(t) =
qX

k=0

hkXt�k =
qX

k=0

hkB
kXt =

 
X

k

hkB
k

!
Xt

Suppose h has q + 1 taps (h0, . . . , hq):



• We cannot easily define a Fourier transform of a 
stationary process (without random measure theory).
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Spectral Theory for Stationary Processes



• We cannot easily define a Fourier transform of a 
stationary process (without random measure theory)

• But we can easily define the Fourier transform of its 
autocorrelation:

48

Spectral Theory for Stationary Processes

R̂X(ei!) =
X

k

RX(k)e�i!k



• We cannot easily define a Fourier transform of a 
stationary process (without random measure theory)

• But we can easily define the Fourier transform of its 
autocorrelation

• In terms of the autocorrelation

• Zeros and Poles decomposition:
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Spectral Theory for Stationary Processes

R̂X(ei!) =
X

k

RX(k)e�i!k

R̂X(ei!) = �2 |1 + b1ei! + · · ·+ bqeiq!|2

|1� a1ei! � · · ·� apeip!|2

R̂X(ei!) = �2

Q
kq |ei! � zk|2Q
k0p |ei! � pk0 |2



Forecasting

•  
•  
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Q: Given X1 = x1, . . . , Xt = xt, how to estimate Xt+1?

When Xt are continuous random variables, we can consider

E(|X̂t+1 �Xt+1|2 | X1, . . . , Xt)



Forecasting

•  
•  

•  

•   
–  
–  
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Q: Given X1 = x1, . . . , Xt = xt, how to estimate Xt+1?

When Xt are continuous random variables, we can consider

E(|X̂t+1 �Xt+1|2 | X1, . . . , Xt)

For general noise models Wt and general nonlinear predictors

ˆXt+1 = F (X1, . . . , Xt), no closed form solution.

Two important exceptions:

If Wt is Gaussian then optimal predictor is lineal and explicit.

Linear predictors only depend upon correlation measurements:

e�cient solution (Durbin-Levinson algorithm)



Forecasting

•  
•  

•  

•   
–  
–  

• Limitations
– Many predictions require a nonlinear component (hysteresis)
– How to combine information from different sources? 
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Q: Given X1 = x1, . . . , Xt = xt, how to estimate Xt+1?

When Xt are continuous random variables, we can consider

E(|X̂t+1 �Xt+1|2 | X1, . . . , Xt)

For general noise models Wt and general nonlinear predictors

ˆXt+1 = F (X1, . . . , Xt), no closed form solution.

Two important exceptions:

If Wt is Gaussian then optimal predictor is lineal and explicit.

Linear predictors only depend upon correlation measurements:

e�cient solution (Durbin-Levinson algorithm)



State-space Models

•  

•  

•  

• Only tractable on particular models.
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We can consider a hidden state Yt with its own internal dynamics:

Yt+1 = F (Yt,Wt)

Wt: Internal noise modeling uncertainty

Hidden states influences observations Xt:

Xt = G(Yt, Zt)

Zt: observational noise

Q: How to infer the hidden states given observations?
i.e P (Yt | X1, . . . , Xt)



The Kalman Filter

• If we consider Gaussian Noises          and Linear 
Dynamics, we have a fully Gaussian model.

• The posterior distribution of hidden states is also 
Gaussian, and is computed using the Kalman Filter. 
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Wt, Zt



The Kalman Filter

• If we consider Gaussian Noises          and Linear 
Dynamics, we have a fully Gaussian model.

• The posterior distribution of hidden states is also 
Gaussian, and is computed using the Kalman Filter. 

• Very useful in Control Theory: it can incorporate control 
variables.

• Parameter fitting possible with iterative schemes (such as 
EM algorithm).

• However, this is still a Gaussian model: poor modeling of 
highly non-linear phenomena.
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Wt, Zt



Hidden Markov Models (HMMs)

• Suppose the hidden state     is now a discrete random 
variable, taking N possible values. 

• We can model         using a Markov process: 

56

Yt

{Yt}t

p(Y1, . . . , Yt) = p(Y1)p(Y2 | Y1) . . . p(Yt | Y1, . . . , Yt�1)

= p(Y1)
Y

it

p(Yi | Yi�1)



Hidden Markov Models (HMMs)

• Suppose the hidden state     is now a discrete random 
variable, taking N possible values. 

• We can model         using a Markov process: 

• The transition probabilities are encoded with the matrix

• Efficient learning and inference with EM-type algorithms
• Very successful in speech processing among others.
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Yt

{Yt}t

p(Y1, . . . , Yt) = p(Y1)p(Y2 | Y1) . . . p(Yt | Y1, . . . , Yt�1)

= p(Y1)
Y

it

p(Yi | Yi�1)

⇧k,l = P (Yi = ck | Yi�1 = cl) , k, l = 1, . . . N



Limitations of HMMs

• The memory of the model is encoded with a state 
amongst N:
– This amounts to                    . 
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log(N) bits



Limitations of HMMs

• The memory of the model is encoded with a state 
amongst N:
– This amounts to                    . 

• In many high-dimensional systems, the information that 
the past conveys about the future is considerable
– Speech Recognition: need to remember utterance, accent, pitch, 

syntax, etc.
– Watching movies: remember the characters, the plot.
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log(N) bits

The required number of states grows exponentially

with the amount of information.



• We can combine the advantages of previous models into 
a non-linear continuous dynamical system:

• Typically, we consider 

Recurrent Neural Networks (RNN)
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p(X1, . . . , Xt) =
Y

it

p(Xi | Yi) with

Yi = F✓(Yi�1, Xi�1) Fi 2 RL

Xt

Yt+1

p(Xt+1 | X1, . . . , Xt)

F✓(Yi, Xi) = ⇢(AY,Y Yi�1 +AY,XXi) ,

with ⇢ a non-expansive point-wise nonlinearity.



RNNs and CNNs

• We can consider a CNN with IIR filters: 
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Yt � a1Yt�1 � . . . apYt�p = Xt $ Y = X ? h

ĥ(ei!) =
1P

jp aje
ij!

=
1

ā
Q

jp(e
iw � zj)

Xt
h ⇢

convolution

point-wise

nonlinearity

X̃tYt



RNNs and CNNs

• Multivariate IIR filters with multiple layers (with p=1):
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⇢

⇢

⇢

8
>><

>>:

Yt = A1Yt�1 +BXt

X̃t = ⇢(Yt)
Ỹt = Ã1Ỹt�1 + B̃X̃t

. . .

CNN 
(using IIR filters)

t

Xt

Yt

Ỹt

Y̌t

X̌t

X̃t



RNNs and CNNs

• RNN: Non-linear recurrence:
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⇢

t

Xt

Yt

Ỹt

Y̌t

X̌t

X̃t

8
>>>><

>>>>:

Yt = ⇢(A1Yt�1 +BXt)
X̃t = CYt

Ỹt = ⇢(Ã1Ỹt�1 + B̃X̃t)
X̌t = C̃Ỹt

. . .⇢ ⇢ ⇢ ⇢

RNN 


