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x(u): realizations of a stationary process X (u) (not Gaussian)
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(u) (not Gaussian)

Discriminability: need to capture high-order moments
Stability: E(||®(X) — ®(X)||?) small
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Properties of Scattering Moments o
. | [Bruna Mallat

rder moments:

Power Spectrum

ol gh o

* Cascading non-linearities 1s necessary to reveal higher-
order moments.



Theorem: [B’15] If ¢ is a wavelet such that |[¢|1 < 1, and X (¢) is a
linear, stationary process with finite energy, then

lim E(||SyX —SX||*)=0.
N — o0



Consistency of Scattering Moments

Theorem: [B’15] If ¢ is a wavelet such that |[¢|1 < 1, and X (¢) is a
linear, stationary process with finite energy, then

lim E(||SyX — SX|?)=0.
N —00

Corollary: If moreover X (t) is bounded, then

X5

E(|SyX — SX||?) < C .
(HN H)— \/N

* Although we extract a growing number of features, their
olobal variance goes to 0.

* No variance blow-up due to high order moments.

* Adding layers is critical (here depth i1s log(N)).



* Motivation: Find statistical models for chaotic phenomena
such as Turbulent flows. |
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* Motivation: Find statistical models for chaotic phenomena
such as Turbulent flows. Vo et § Yot
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* Kolmogorov “5/3" theory (|94 I) |sotrop/|/é energy

dissipation induces a power spectrum of the form
fr(w) o< |w] =272
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* Kolmogorov "“5/3" theory (1941): 1sotropic energy

dissipation induces a power spectrum of the form
fr(w) o< |w] =272



* Kolmogorov "“5/3" theory (1941): 1sotropic energy

dissipation induces a power spectrum of the form
fr(w) o< |w] =272

* This model implies scale self-similarity:

{X(st)} = W{X ()}



Fractal Processes

* Kolmogorov "“5/3" theory (1941): 1sotropic energy

dissipation induces a power spectrum of the form
fr(w) o< |w] =272

* This model implies scale self-similarity:

{X(st)} = W{X ()}

e Two main families:

oIV, deterministic: Mono-fractal processes (e.g. Brownian Motion

oV, random: Multifractal processes.

* Multifractality allows the distribution to change with scale:
intermittency.
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First Order:

SX() = Gy

(Invariance to global amplitude changes)

Second Order:

_ , 71,72 € Z
SX (j) E(X ;) 707



- Invariance to Self-similarity:

Proposition: If {X(27t)}, = Ai{X (1)}, then

Vi1, SX (j1,42) = SX(j2 — 71) -



~ Renormalisation Propertes

- Invariance to Self-similarity:

Proposition: If {X(27t)}, = Ai{X (1)}, then
Vi1, SX (j1,j2) = SX (j2 — j1) -

- Near Invariance to Fractional Derivatives:

Proposition: If LX = X % h is such that Vj {| X * L, }+ L Ci{| X * 14| }e,
then

gX(jlva) — S(LX)(]MJQ) :
—For wavelets well localized in frequency,

D%p; =~ Cj1p; , hence SX(j1,72) =~ SD*X (j1, ja) .



~ Fractional Derivative Near Invariance

Proposition: If LX = X % h is such that Vj {| X % L1, | }4 L Ci{| X *;|}e,
then ) 3
SX(j1,52) = S(LX)(J1,72) -

—For wavelets well localized in frequency,

D%; =~ Cj1p; , hence SX(j1,72) ~ SD*X (j1, ja) .
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\nterm ttent Processes

. F|rst Order Decay: Hurst exponent:

SX(j) = E(|X x1]) =277
* Intermittency

—In Turbulence: irregular dissipation of kinetic energ

—Multiplicative Canonical Cascades (Yaglom, Mandelbrot): self-similar and t
intermittent (multifractal)

—(Can be defined from g-order wavelet moments:
E(|X x1;|7) ~ 276 () (j = —o0) Intermittency: curvature of ((q)

30 T T T T T T 400

20

N

0

2001

0

-2001
-10

-20 ! ! ! ! ! ! -400

°  “Brownian thotibn * . ° Multipliéatite Clascade;

* How to efficiently measure intermittency?




Theorem [BBMM'13]:

If X (t) Fractional Brownian Motion, then SX (1) ~ 27%/2

If X (t) a-stable Lévy process, then SX (1) ~ ol ~1) ,

If X (¢t) Multiplicative Random Cascade, then SX (1) ~ O(1) ,

X(t) -
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X (t) ~ FBM X (t) ~ Levy X (1) ~ MRW

Second Order: Measure of Multiscale Intermittency




(from Charlotte dataset)

Original? [with I.Daubechies]

Forged?



_ rorgeryDetecion
Flrst order coefficients: SX (], 0) = E( ]

Renormalized second order coeflicients:

-~ SX(71,72,01,0
SX(]17]2791782) — S(f);(;i 91) 2)




Forgery Detection

Flrst order coefficients: SX (], 0) = E( -

Renormalized second order coeflicients:

-~ SX(71,72,01,0
SX(]17]2791782) — ;S(f);(;i 91) 2)

SX(J')I:ZISX(j,Iel) SX()= Y SX(j1,j1+1,601,02)

—— original | 161 71,601,602 | I—original,
——copy | —— copy




10°;
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Flrst order coefficients: SX (], 0) = E( -

Forgery Detection

Renormalized second order coeflicients:

10’
1

5 SX(j1,752,01,02)
SX jlaj2791782 — ’ . : 7
( ) SX(JhHl)
SX(j) =) 5X(j,0) SX(U) = S SX(ji,jr+1,61.02)
0 —— original ey 71,601,602 | ‘—original I
| — Ccopy : — COopy
10"
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Wilcoxon RankSum Test SX(y,0) : p=0.54

(assuming independent patches) SX (]1 _ j27 6)17 (92) L p = 0.00025



Original

Geometric regularity: More intermittent



ow to obtain a texture representation from a CNN!?



* Q:How to obtain a texture represen

ation from a CNNY

* Simple, yet powerful, iIdea [Gatys et a

157

Let (®1(x)(u1, A1), Pa(x)(uz, A2), ..., Px(x)(uk, Ax)) the outputs of each layer

of a pre-trained CNN

29

S Stationary or “style” representation:

- {]Vk Z‘I’k(flf)(uk, V() (uk, )", k=1< K}



 Scattering Moments of 2Znd order capture essential geometric
structures with only O((log V)?) coefficients.

* However, not all texture geometry Is captured.
» Results using a deep VGG network from [Gathys et al, NIPS' [ 5]

Synthesised
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 Scattering Moments of 2Znd order capture essential geometric
structures with only O((log N)?) coefficients.

* However, not all texture geometry Is captured.
» Results using a deep VGG network from [Gathys et al, NIPS' [ 5]

Synthesised Source

Synthesised




* We have seen that both in the case of scattering and in
oseneral CNINs, texture and template/geometry
representations use the same nonlinearities

—We only change the pooling operator to adapt to stationarity.

» Q: Can we disentangle texture and geometry by
combining these two representations!
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» "StyleNet", Gatys et al, | 5.

o Style
Representations

[
Input image Q Q

Content —
Representations -

Convolutional Neural Network

!

Content Reconstructions




» "StyleNet", Gatys et al, | 5.

Given x; and x5, we look for  such that
bi(r1) = Ps(2) and P(x2) =~ P(2).

2
Er = Z (G" —A") Liotal = Lcontent + ﬁ»cstyle
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* Advertisement of the MLSS | am co-organizing:

BMLSS2016
Cadlz Spaln

May 11-21 2016
I-SWS. org/mlssQO16

//

'f/, ST == image credit: Leon Gat S & Matthlas Bethge
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* Check out your own pictures at deepart.io!

37


http://deepart.io

* An ordered sequence of (multivariate) random variables:

1 Xt }en

e X, can be contmuous or d|screte

Google

| google is

,' i \\ | i H“"Wﬂn‘:l‘v‘wlwuvh‘ o

google is evil

google is god

google is your friend

google is skynet

google is acting weird

google is down

google is awesome

google is taking over the world
google is watching you

google is cia

Google Sean 'm Feeling L

. Important Statistical assumption:

p(Xt+T17Xt+T27 T 7Xt-|-7'k) :p(X717X7'27 s 7X7'k) ) v thlv T

We say that {X;} is stationary.

y Tk



~ Time Seriesfasks

e Statistical Modeling:

—Speech Synthesis, Music generation, etc.

* Forecasting/Prediction:

—Blostatistics.
—Financial applications

* Regression/Classification:
—Sentiment Analysis
—Action Recognition.
—Speech Recognition.
—Machine Translation, Question/Answering.
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e As t increases, complexity of P(X,..., X;) increases exponentially

* Thus we need to Introduce models that have finite
amount of capacity.

— Stationarity implies capacity should be constant in time.

* Q:What does this assumption require/imply?

40



* Measure of the statistical dependency between X, and
Xt—I—T

— A particularly simple measure Is through the second-order moments:

|Rx|l1 =, |Rx (k)| measures decorrelation scale
Rx(r)~|r|™"

41



-or discrete time serles, we can use a divergence
between the joint distribution of (X, X;y.)and the
broduct of 1ts marginals:

mx (1) = Dir, (p(Xt, Xeqr) || p(Xe)D(Xtsr))

mx (7)== |7|~°

Google

google is

google is evil

google is god

google is your friend

google is skynet

google is acting weird

google is down

google is awesome

google is taking over the world
google is watching you

google is cia

Google Search I'm Foeling Lucky
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* A stationary process with no memory is called a white

NoIse; B
{Wi} dd. W, ~ F,

* A general class of stationary processes Is obtained by
filtering white noise with an integrable kernel.

Xy =Wyxh, with |hly = |hx| <oco, EW; =0 .
k

Wi Xt

. h .

These are called [inear processes.
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* Pure Autoregressive Processes (AR(p)):

Xt — &1Xt_1 — ... apXt_p — Wt

* Moving Average Processes (MA(Q)):
X =W +0Wiq + qut—q

* ARMA(p,q):

Xt — alXt—l — ... CLpXt_p — Wt -+ blwt_l -+ qut—q

* Second-order moments are sufficient to fitting
parameters (Yule-Walker Equations).

44




* Denote by B the shift or translation operator: BX; = X;_;

* [hen the previous models can be rewritten as
Xt — CLlXt_l — ... apXt—p — Wt -+ b1Wt_1 -+ qut—q

(1 — CLlB — .. .apo)Xt = (1 —|—blB—|— . ..quq)Wt

140 B+...b,B

X, =
' l-a1B—...a,BP

Wi

45



* Denote by B the shift or translation operator: BX; = X;_;

* [hen the previous models can be rewritten as
Xt — Clet_l — ... apXt—p — Wt -+ 61Wt_1 -+ qut—q

(1 — alB — .. .apo)Xt = (1 —|—blB—|— . ..quq)Wt

14+ bB+...b,BY
N l-a1B—...a,BP
 This Is a convolution:

Xt Wi

Suppose h has ¢ + 1 taps (ho, ..., hy):

q q
Xxh(t)=) hXe—pe=» hB*X, = (Z th’f) X,
k=0 k=0 k



* We cannot easlily define a Fourler transform of a
stationary process (without random measure theory).
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* We cannot easlily define a Fourler transform of a
stationary process (without random measure theory)

* But we can easlily define the Fourier transform of its
autocorrelation:

RX(eiw) _ ZRX(k)e—iwk
k

48



* We cannot easlily define a Fourler transform of a

stationary process (without random

measure theory)

» But we can easily define the Fourier-
autocorrelation

Rx(e")=> Rx(k)e "
k

e In terms of the autocorrelation

‘ransform of 1ts

wk

: - 1+ b1e™ + -+ + bye'dv|?
Rx(e™) = o° ‘ . 1
X( ) ‘1_a1€zw_,,,_ap€zpw|2
» Zeros and Poles decomposition:
H eiw — ‘2
R (zw) 2 k<q k
x\e )=0 I W _ p |2
k’gp € pk,



e Q: Given X1 = x1,..., Xy = 24, how to estimate X;,17

e When X; are continuous random variables, we can consider

(| X1 — Xea P | Xy, X)
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e Q: Given X1 = x1,..., Xy = 24, how to estimate X;,17

e When X; are continuous random variables, we can consider
1 2

([ X1 — X1 |7 ] X1y o0, Xi)

* For general noise models W; and general nonlinear predictors
X1 = F(Xq,...,X}), no closed form solution.

e I'wo important exceptions:
—If WW; is Gaussian then optimal predictor is lineal and explicit.

— Linear predictors only depend upon correlation measurements:
efficient solution (Durbin-Levinson algorithm)

51



Forecasting

e Q: Given X1 = x1,...,X; = x4, how to estimate X; 17

e When X; are continuous random variables, we can consider
1 2

(| X1 — Xy |7 | Xy, X)

* For general noise models W; and general nonlinear predictors
X1 = F(Xq,...,X}), no closed form solution.

* T'wo important exceptions:
— If W; is Gaussian then optimal predictor is lineal and explicit.

— Linear predictors only depend upon correlation measurements:
efficient solution (Durbin-Levinson algorithm)

e L imitations

—Many predictions require a nonlinear component (hysteresis)

—How to combine information from different sources!?
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* We can consider a hidden state Y; with its own internal dynamics:

Yipr = F(Y:, W)

W;: Internal noise modeling uncertainty

e Hidden states influences observations X;:
Xt — G()/ta Zt)
/. observational noise

e ): How to infer the hidden states given observations?’
i.e P(Y: | Xq,...,X¢)

* Only tractable on particular models.
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e [f we consider Gaussian Noises W;, Z, and Linear
Dynamics, we have a fully Gaussian model.

ﬁ

* [ he posterior distribution of hidden states Is also
Gausslan, and 1s computed using the Kalman Filter.

54



The Kalman Filter

f we consider Gaussian Noises W;, Z; anc

ﬁ

The posterior distribution of

Dynamics, we have a fully Gaussian model.

L Inear

nidden states Is also

Gaussian, and I1s computed using the Kalman Filter.

* Very useful iIn Control Theory: it can incorporate control

variables.

-M algorithm).

nighly non-linear phenomena.

55

Parameter fitting possible with iterative schemes (such as

owever, this Is still a Gaussian model: poor modeling of



* Suppose the hidden state Y; Is now a discrete random
variable, taking N possible values.

* We can model {Y;}: using a Markov process:

p(Yh"'a)/t) :p(Yl)p(YZ | Yl) p(}/t ‘ Y17°°°7)/t—1)

= p(Y1) H}?(Yz | Yio1)

i<t



Hidden Markov Models (HMMs)

* Suppose the hidden state Y; Is now a discrete random
variable, taking N possible values.

* We can model {Y;}: using a Markov process:

p(Yla'”a)/t) :p(Yl)p(YZ ‘ Yl) p(}/t ‘ Y17°°°7}/t—1)

=pM) | [p(Yi | Yica)

1<t
* [he transition probabllities are encoded with the matrix

Hk,l:P(Y;':Ck‘Y;’_lzcl), k,l:1,...N

* Efficient learning and inference with EM-type algorithms
* Very successful in speech processing among others.



* [he memory of the model Is encoded with a state
amongst N

—This amounts to log(/N') bits.
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Limitations of HMMs

* [he memory of the model Is encoded with a state
amongst N
—This amounts to log(/N') bits.

* In many high-dimensional systems, the information that
the past conveys about the future Is considerable

— Speech Recognition: need to remember utterance, accent, pitch,
syntax, etc.

—Watching movies: remember the characters, the plot.

The required number of states grows exponentially
with the amount of information.
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* We can combine the advantages of previous models into
a non-linear continuous dynamical system:

p(X1,....Xy) = || p(X; | V;) with

i<t
lfi :FH(Yi—laXi—l) Fz GRL
Xy
! ! ! ! : !
—P) _"}/t—l—l_’ —P| —P|

.o Voo Voo

* Typically, we consider Fy(Y;, X;) = p(AyyYi_1 + Ay x X;)

with p a non-expansive point-wise nonlinearity.
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* We can consider a CNN with IR filters:
E—aﬂ/}_l —...apY;_p:Xt — Y =Xxh

. 1 1
h(e'™) = —

2ij<p @€ allj (e = %)

~

X Y, X
t > h tb- P t»

convolution  point-wise
nonlinearity

61



* Multivariate lIR filters with multiple layers (with p=1):
Yo =AY 1+ BX,

Xe =p)

i =AY+ BX,

S S S |

W FE AT wsie IR fters

l I




e RNIN: Non-linear recurrence: { Yy 1Yi1 + BXy)

N
AN

1?}—1 + BXt)

!
| I

Q=2
~ ztb’l

p P p p
o }

RNN




