
Discrete
Neural Turing Machines

by Wojciech Zaremba
currently at OpenAI 

(work done at Facebook, and Google)



Motivation

● Brain in a vat cannot solve many problems
● Need interaction with external tools to solve 

interesting tasks
○ eyes, hands are an exemplary external interfaces

● Many interesting interfaces are discrete 
○ Google search enginee
○ Database etc.





Contemporary models

● RNN, CNN, any feed-forward network
○ have constant running time
○ no external memory

Such models cannot solve problem that 
requires O(n^2) steps like multiplication



Unlimited memory interface 
and arbitrary running time makes model

Turing Complete (not necessary trainable)



Controller-Interface paradigm
● NTM

○ continuous memory
● Stack RNN

○ stack memory
● Neural Random-Access Machines

○ addition, subtraction, multiplication gates as an interface
● Memory network

○ attention as the input interface
● RLNTM

○ tapes as interfaces



Trainability

● Tasks that we consider are not-easy
● Can our models learn solution when actions 

are given
● Later, we train models without providing 

actions !!!



Training with supervision







Confidence in action. (Green) go to the right, (Red) go to the left.



Autocorrelation of the hidden state : cos(h_i, h_j)





Underlying automata



Intermediate conclusions

● Models with long memory might have difficult 
time learning simple algorithms, because 
there is a mismatch between training, and 
test states.

● Overfitting might happen with respect to 
sample length (which is limited for training 
instances, even though number of samples 
is huge) 



Intermediate conclusions

● All previous Interface-Controller models 
were tiny (100 units)

● NTM was not trainable with classic LSTM 
but with a different unit (possible less 
powerful).

● future goal: how to train big models for 
algorithmical tasks (not tackled here).



Q-learning with NO supervision 
over actions

Only input-output pairs



Q-learning

● Reward of 1 for every correct prediction, and 
0 otherwise. 

● Model trained with Q-learning
● Q(s, a) estimates sum of the future rewards 

for an action “a” in a state “s”.
● Q is the off-policy algorithm (remarkable) 



Q-learning as off-policy

● Policy inducted by Q is the argmax_a Q(s, a)
● When we follow induced policy, we say that 

we are on-policy
● When we follow a different policy, we say 

that we are off-policy
● Q converges to the Q for the optimal policy 

regardless of policy that we follow (as long 
as we can visit every state-action pair) !!!



Watkins Q(lambda)

● Typical policy is a combination of on-policy 
(95%) with a random uniform policy (5%). 

● Most of the time, we are on-policy
● This allows to regress Q on the other 

estimate:



Dynamic Discount

● In Q-learning, model has to predict sum of 
future rewards.

● However, length of the episode might vary. 
● We reparametrize Q, so it’s estimates sum 

of future rewards divided by number of 
predictions left. 



Curriculum

● Three rows addition was unsolvable in the 
original form

● We start with small numbers that do not 
require carry.





Reinforce with NO supervision 
over actions

Only input-output pairs



Reinforce

Objective of Reinforce: 

we access it through sampling: 



Reinforce
Derivative:

we access it through sampling: 



Training

● Trained with SGD

● Curriculum learning is critical

● Not easy to train (due to variance coming 
from sampling)
○ Various techniques to decrease variance





Task - DuplicatedInput



Task - Reverse



Task - RepeatCopy



Memory interface

● Memory is a tape with 3 actions, go to the 
left, stay, go to the right

● Controller always reads from previous 
memory location, and always saves to the 
next memory location

● It stores high dimensional vector through 
which we backpropagate 



Task - Reverse with memory



Task. RepeatCopy with memory. Failure



Gradient Checking - motivation

● Very simple to make a mistake in the 
implementation

● How to verify stochastic algorithm ? 



Gradient Checking for Reinforce
● We could sample actions many times and 

compare the average gradient to average of 
the numerical gradient.



Gradient Checking for Reinforce
● We could sample actions many times and 

compare the average gradient to average of 
the numerical gradient.

● Impractical. To get good precision we would 
need millions of samples.







Gradient Checking for Reinforce
● It was critical to make model work. 
● We can limit size of action space during 

gradient checking
● Gradient checking takes seconds



Variance of gradients

● Sampling of actions introduces variance into 
gradient estimate

● We subtract baseline reward to decrease 
variance



Baseline reward



Future work

● Solve tasks that require more than O(n) 
steps

● Training with persistent memory (memory 
that stores entire algorithms)

● Train large models on a family of tasks of 
increasing complexity (talk by Tomas)



Thanks to my collaborators
Rob Fergus, Ilya Sutskever, Tomas Mikolov 

and Armand Joulin



Q&A
● Interfaces
● Supervised learning
● Underlying automata
● Q-learning

○ Dynamic discount
○ Watkins Q(lambda)

● Reinforce
● Memory
● Gradient checking
● Variance reduction

http://arxiv.org/pdf/1505.00521.pdf
http://arxiv.org/abs/1511.07275

code: https://github.com/ilyasu123/rlntm 
https://github.com/wojzaremba/algorithm-learning 

http://arxiv.org/abs/1511.07275
http://arxiv.org/abs/1511.07275
http://arxiv.org/abs/1511.07275
http://arxiv.org/abs/1511.07275
https://github.com/ilyasu123/rlntm
https://github.com/wojzaremba/algorithm-learning
https://github.com/wojzaremba/algorithm-learning

