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Motivation

e Brain in a vat cannot solve many problems
e Need interaction with external tools to solve

Interesting tasks
o eyes, hands are an exemplary external interfaces

e Many interesting interfaces are discrete

o (Google search enginee
o Database etc.
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Contemporary models

e RNN, CNN, any feed-forward network

o have constant running time
o no external memory

Such models cannot solve problem that
requires O(n"2) steps like multiplication



Unlimited memory interface
and arbitrary running time makes model
Turing Complete (not necessary trainable)



Controller-Interface paradigm

e NTM
o continuous memory
e Stack RNN
o stack memory
e Neural Random-Access Machines
o addition, subtraction, multiplication gates as an interface
e Memory network
o attention as the input interface
e RLNTM
o tapes as interfaces



Trainability

e Tasks that we consider are not-easy

e Can our models learn solution when actions
are given

e [ ater, we train models without providing
actions !!!



Training with supervision
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Feed-Forward Small LSTM Large LSTM
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Confidence in action. (Green) go to the right, (Red) go to the left.



Autocorrelation matrix

0

Autocorrelation of the hidden state : cos(h_i, h_j)
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Feed-Forward Small LSTM Large LSTM

1. i 1,
1.2t 1.2
1. - 1.0
¥ W]
ED.S- 5[]'8
T 0.6 T 0.6
S 0.4 0.4
L) [
0.2 0.2
0. , 0.0
-0, - =0.
X
o
m
£
[
S
]
1
]
o
J
o
5
T
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

Time Time Time



Underlying automata



Intermediate conclusions

e Models with long memory might have difficult
time learning simple algorithms, because
there is a mismatch between training, and
test states.

e Overfitting might happen with respect to
sample length (which is limited for training
iInstances, even though number of samples
IS huge)




Intermediate conclusions

e All previous Interface-Controller models
were tiny (100 units)

e NTM was not trainable with classic LSTM
but with a different unit (possible less
powerful).

e future goal: how to train big models for
algorithmical tasks (not tackled here).



Q-learning with NO supervision
over actions

Only input-output pairs



Q-learning

e Reward of 1 for every correct prediction, and
0 otherwise.

e Model trained with Q-learning

e Q(s, a) estimates sum of the future rewards

for an action “a” in a state “s”.
e Q is the off-policy algorithm (remarkable)

Qt—t—l(S:a) = Qt(Saa’) - &[Qt(s,a) - (R(SI) & 7mﬂ‘rflx Q'ﬂ(sf!&"))]



Q-learning as off-policy

e Policy inducted by Q is the argmax_a Q(s, a)

e \When we follow induced policy, we say that
we are on-policy

e \When we follow a different policy, we say
that we are off-policy

e Q converges to the Q for the optimal policy
regardless of policy that we follow (as long
as we can visit every state-action pair) !l



Watkins Q(lambda)

e Typical policy is a combination of on-policy
(95%) with a random uniform policy (5%).

e Most of the time, we are on-policy

e This allows to regress Q on the other
estimate:

1 T
“(s¢,a¢) E ’Y% R(st43) +7v mEXQ*(Si+ﬂ+1aa)



Dynamic Discount

e In Q-learning, model has to predict sum of
future rewards.

e However, length of the episode might vary.

e \We reparametrize Q, so it's estimates sum
of future rewards divided by number of
predictions left.

A T Q(S,CL)
Q(s,a) : 7(s)




Curriculum

e [hree rows addition was unsolvable in the
original form

e Ve start with small numbers that do not
require carry.
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Test length 100 100 100 100 100 100 100 100 1000 1000
#Units 600 400 200 200 200 200 200 200 200 200
Discount -y 1 1 1 0.99 0.95 D D D D D
Watkins Q () X X X X X X
Task Penalty X X X X X X X X
Copying 30% 60% 90% 50% 70% 90% 100% 100% 100% 100%
Reverse 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Reverse (FF controller) 0% 0% 0% 0% 0% 0% 100% 90% 100% 90%
Walk 0% 0% 0% 0% 0% 0% 10% 90% 10% 80%
Walk (FF controller) 0% 0% 0% 0% 0% 0% 100% 100% 100% 100%
2-row Addition 10% 70% 70% 70% 80% 60% 60% 100% 40% 100%
3-row Addition 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
3-row Addition (extra curriculum) 0% 50% 80% 40% 50% 50% 80% 80% 10% 60%
Single Digit Multiplication 0% 0% 0% 0% 0% 100% 100% 100% 0% 0%




Reinforce with NO supervision
over actions

Only input-output pairs



Reinforce

Objective of Reinforce:
Zal,...,a p(CLl? R a’n|9) Zz Ty

we access it through sampling:
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Reinforce

Derivative:
Do P (alf) > ri+ ), plalf) >,

p’ = p(logp)’
we access it through sampling:

K, log p/ Zz T + Zz Té



Training

e Trained with SGD
e Curriculum learning is critical

e Not easy to train (due to variance coming

from sampling)
o Various techniques to decrease variance
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Task - Duplicatedinput
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Task - RepeatCopy
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Memory interface

e Memory is a tape with 3 actions, go to the
left, stay, go to the right

e Controller always reads from previous
memory location, and always saves to the
next memory location

e |t stores high dimensional vector through
which we backpropagate



Task - Reverse with memory
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Time

Task. RepeatCopy with memory. Failure
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Gradient Checking - motivation

e Very simple to make a mistake in the
Implementation

e How to verify stochastic algorithm ?



Gradient Checking for Reinforce

e \We could sample actions many times and
compare the average gradient to average of
the numerical gradient.



Gradient Checking for Reinforce

e \We could sample actions many times and
compare the average gradient to average of
the numerical gradient.

e Impractical. To get good precision we would
need millions of samples.
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Gradient Checking for Reinforce

e It was critical to make model work.

e \We can limit size of action space during
gradient checking

e Gradient checking takes seconds



Variance of gradients

e Sampling of actions introduces variance into
gradient estimate

e \We subtract baseline reward to decrease
variance



Baseline reward
> . plalf) =1

> . D' (al0) =0
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Future work

e Solve tasks that require more than O(n)
steps

e Training with persistent memory (memory
that stores entire algorithms)

e Train large models on a family of tasks of
iIncreasing complexity (talk by Tomas)
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Q&A

Interfaces
Supervised learning
Underlying automata
Q-learning
o Dynamic discount
o Watkins Q(lambda)
Reinforce
Memory
Gradient checking
Variance reduction

http://arxiv.org/pdf/1505.00521.pdf
http://arxiv.org/abs/1511.07275
code: https://qithub.com/ilyasu123/rintm

https://github.com/wojzaremba/algorithm-learning
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