Discrete
Neural Turing Machines

by Wojciech Zaremba
currently at OpenAl
(work done at Facebook, and Google)

Google ﬂ

NYU

Motivation

e Brain in a vat cannot solve many problems
e Need interaction with external tools to solve

Interesting tasks
o eyes, hands are an exemplary external interfaces

e Many interesting interfaces are discrete

o (Google search enginee
o Database etc.

Input Interface || Output Interface ||Memory Interface
A

Controller Output

Past State - Controller » Future State

Controller Input
A

Input Interface || Output Interface ||Memory Interface

Contemporary models

e RNN, CNN, any feed-forward network

o have constant running time
o no external memory

Such models cannot solve problem that
requires O(n"2) steps like multiplication

Unlimited memory interface
and arbitrary running time makes model
Turing Complete (not necessary trainable)

Controller-Interface paradigm

e NTM
o continuous memory
e Stack RNN
o stack memory
e Neural Random-Access Machines
o addition, subtraction, multiplication gates as an interface
e Memory network
o attention as the input interface
e RLNTM
o tapes as interfaces

Trainability

e Tasks that we consider are not-easy

e Can our models learn solution when actions
are given

e [ater, we train models without providing
actions !!!

Training with supervision

Accuracy

Copving Task

Reverse Task

Walk Task

2
n

102

10° 10°
Complexity

10° 10!

10° 10°
Complexity

10* 10%

10° 10°
Complexity

10°

Addition Task ___3 rows Addition___ Single Digit Multiplication

ey

\

%

III:

\

10° 10 10° 10%*10° 10° 10° 10%°10% 10 10> 10°
Complexity Complexity Complexity

Feed-Forward Small LSTM Large LSTM

1. A ; : : ‘ ; 2 13 1.
1.2] 1.2 1.2
1. = 1.0 1.0
& ")]
Y 0.8 { 20.8 e 0.8
] o]
T 0.6] g 0.6} = 0.6
| | So.a4l G 0.4
U O O
0.2 1 0.2 0.2
0 Iy 0.0; 0.0
-0 . - - ; . —0.2 —N.2

Confidence in action. (Green) go to the right, (Red) go to the left.

Autocorrelation matrix

0

Autocorrelation of the hidden state : cos(h_i, h_j)

5 10 15 20 25 30 35 g 5 10 15 20 25 30 35 @ 5 10 15 20 25 30 35
Time Time Time

Feed-Forward Small LSTM Large LSTM

1. i 1,
1.2t 1.2
1. - 1.0
¥ W]
ED.S- 5[]'8
T 0.6 T 0.6
S 0.4 0.4
L) [
0.2 0.2
0. , 0.0
-0, - =0.
X
o
m
£
[
S
]
1
]
o
J
o
5
T
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

Time Time Time

Underlying automata

Intermediate conclusions

e Models with long memory might have difficult
time learning simple algorithms, because
there is a mismatch between training, and
test states.

e Overfitting might happen with respect to
sample length (which is limited for training
iInstances, even though number of samples
IS huge)

Intermediate conclusions

e All previous Interface-Controller models
were tiny (100 units)

e NTM was not trainable with classic LSTM
but with a different unit (possible less
powerful).

e future goal: how to train big models for
algorithmical tasks (not tackled here).

Q-learning with NO supervision
over actions

Only input-output pairs

Q-learning

e Reward of 1 for every correct prediction, and
0 otherwise.

e Model trained with Q-learning

e Q(s, a) estimates sum of the future rewards

for an action “a” in a state “s”.
e Q is the off-policy algorithm (remarkable)

Qt—t—l(S:a) = Qt(Saa’) - &[Qt(s,a) - (R(SI) & 7mﬂ‘rflx Q'ﬂ(sf!&"))]

Q-learning as off-policy

e Policy inducted by Q is the argmax_a Q(s, a)

e \When we follow induced policy, we say that
we are on-policy

e \When we follow a different policy, we say
that we are off-policy

e Q converges to the Q for the optimal policy
regardless of policy that we follow (as long
as we can visit every state-action pair) !l

Watkins Q(lambda)

e Typical policy is a combination of on-policy
(95%) with a random uniform policy (5%).

e Most of the time, we are on-policy

e This allows to regress Q on the other
estimate:

1 T
“(s¢,a¢) E ’Y% R(st43) +7v mEXQ*(Si+ﬂ+1aa)

Dynamic Discount

e In Q-learning, model has to predict sum of
future rewards.

e However, length of the episode might vary.

e \We reparametrize Q, so it's estimates sum
of future rewards divided by number of
predictions left.

A T Q(S,CL)
Q(s,a) : 7(s)

Curriculum

e [hree rows addition was unsolvable in the
original form

e Ve start with small numbers that do not
require carry.

28 33 2 0 6 98 01 8 5 2 0 2 1
2(;101;3 3|;1 3 1 3 1[;)11 3 1 4 0 7 0 5 4
2012013 712 8 0 8 31313 2 7 5 0 7 1

Test length 100 100 100 100 100 100 100 100 1000 1000
#Units 600 400 200 200 200 200 200 200 200 200
Discount -y 1 1 1 0.99 0.95 D D D D D
Watkins Q () X X X X X X
Task Penalty X X X X X X X X
Copying 30% 60% 90% 50% 70% 90% 100% 100% 100% 100%
Reverse 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Reverse (FF controller) 0% 0% 0% 0% 0% 0% 100% 90% 100% 90%
Walk 0% 0% 0% 0% 0% 0% 10% 90% 10% 80%
Walk (FF controller) 0% 0% 0% 0% 0% 0% 100% 100% 100% 100%
2-row Addition 10% 70% 70% 70% 80% 60% 60% 100% 40% 100%
3-row Addition 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
3-row Addition (extra curriculum) 0% 50% 80% 40% 50% 50% 80% 80% 10% 60%
Single Digit Multiplication 0% 0% 0% 0% 0% 100% 100% 100% 0% 0%

Reinforce with NO supervision
over actions

Only input-output pairs

Reinforce

Objective of Reinforce:
Zal,...,a p(CLl? R a’n|9) Zz Ty

we access it through sampling:

4aziri

mn

Reinforce

Derivative:
Do P (alf) > ri+), plalf) >,

p’ = p(logp)’
we access it through sampling:

K, log p/ Zz T + Zz Té

Training

e Trained with SGD
e Curriculum learning is critical

e Not easy to train (due to variance coming

from sampling)
o Various techniques to decrease variance

OQutput
Tape (0483

Input

Copy

OQutput
Tape

Input
Tape

74
Q77444

DuplicatedInput

OQutput
Tape

Input
TJL& E152r

2514

Reverse

Task - Duplicatedinput

Time

Input Tape

Output Tape

WWWE66TTTE88888RRRWWWY Y'Y

WETEBRWY®

H

Time

Task - Reverse

Input Tape Output Tape
G8C33EABW WEAE33C8G0
G $#
G #
8 #
c $#
3 $#
3 #
E #
A #
6 #
6 $#
W W
W 6
6 A
A E
E 3
3 3
3 2
C 8
8 G
G Q

Task - RepeatCopy

Time

Input Tape

Output Tape

3HBEW=560L
3

HEEW+S5DLHBEW+SDLHEEW560L8
H
[—_

W

T & &% & # & # #

_ Tassusses

Memory interface

e Memory is a tape with 3 actions, go to the
left, stay, go to the right

e Controller always reads from previous
memory location, and always saves to the
next memory location

e |t stores high dimensional vector through
which we backpropagate

Task - Reverse with memory

Time

Input Tape Memory Output Tape
ERFCS5TR3BGA AGB3RTSCFRE®
E i
R #
F #
o sk #
5 * #
T * #
R * #
3 * #
B * #
G * #
A * A
A # G
A * B
A * 3
A * R
A * i
A * 5
A ¥ #
A * 84
A * #
A f
A R
A
A

Time

Task. RepeatCopy with memory. Failure

Input Tape Memory Output Tape

ZLKDOLTPTKL * LKDLTPTKLLKDLTPTKL®

2 * L

2 * #

[E; * K
L * #
K * D
K * #
D * [
D * #
L * T
L * P
T * P
T * #
F *
P * #
7 * K
7 * #
T * |
T * #

L * T
[* #
L *
i * #
L * i
L * #
L * L
= * #
L *
L * #®
| * *
L * "
L * 1%
L * #
L * T
i * #
| *

Gradient Checking - motivation

e Very simple to make a mistake in the
Implementation

e How to verify stochastic algorithm ?

Gradient Checking for Reinforce

e \We could sample actions many times and
compare the average gradient to average of
the numerical gradient.

Gradient Checking for Reinforce

e \We could sample actions many times and
compare the average gradient to average of
the numerical gradient.

e Impractical. To get good precision we would
need millions of samples.

sample(t) Eﬁ'u .e'l:-,-“a, "~. JE J.I*EI: Il:--c’l‘w- |:~: "'“”.:"E.',__,-' 'y o g |

. ':;:ul l_"'a'.-_.'-llﬂ;" |r:|-|-.: :.:'.-'.I:I lr'-lTI.:: I'T.--:~ :ﬁ::] e r{:- I
def sample(time=t): A N N N A A A

|
|

|

' l

| sample from J @ & @
| - - B
|

|

|

|
|
. |
polay |f-’-1:{t— 1)] Execute in '[|
the environment L,\) I
Ln:mp until the end of the episode :
Accumulate
reward
T
Et:l (@)
*Eackpmpagate

53 Iug Pa {ﬂt Eﬂ'l:(t— 1})
Reinforce

sample(t} "ETE

a ;:I-I--?' :-'-- :!'| -'i:|-| : :'.r -:: :':-._-\': -:;F-_u“] |'r- -: ':- -:_!
def sample(time=t): \{\ e e i T - S v B o B8 S
I--:_:r row=| In the minoaatcn J i) Faiin e T
[@y.az....a7] = Al o P S R
returm ay ; Execlute in I
the environment \ r
)

T T T R S
L
.,
- I IS I . . .

Loop until the end of the episode

Accumulate
reward
T T
[Zr.:l f":”-l:r:'_ Pa\d1:7)

#Eackpmpagate
Jp log Pﬂ(ﬂﬂﬂi:{t—l})
Gradient Checking of Reinforce

Gradient Checking for Reinforce

e It was critical to make model work.

e \We can limit size of action space during
gradient checking

e Gradient checking takes seconds

Variance of gradients

e Sampling of actions introduces variance into
gradient estimate

e \We subtract baseline reward to decrease
variance

Baseline reward
> . plalf) =1

> . D' (al0) =0
Eologp' (O, mi—v)+ >, 7]

Future work

e Solve tasks that require more than O(n)
steps

e Training with persistent memory (memory
that stores entire algorithms)

e Train large models on a family of tasks of
iIncreasing complexity (talk by Tomas)

Thanks to my collaborators

Rob Fergus, llya Sutskever, Tomas Mikolov
and Armand Joulin

Q&A

Interfaces
Supervised learning
Underlying automata
Q-learning
o Dynamic discount
o Watkins Q(lambda)
Reinforce
Memory
Gradient checking
Variance reduction

http://arxiv.org/pdf/1505.00521.pdf
http://arxiv.org/abs/1511.07275
code: https://qithub.com/ilyasu123/rintm

https://github.com/wojzaremba/algorithm-learning

http://arxiv.org/abs/1511.07275
http://arxiv.org/abs/1511.07275
http://arxiv.org/abs/1511.07275
http://arxiv.org/abs/1511.07275
https://github.com/ilyasu123/rlntm
https://github.com/wojzaremba/algorithm-learning
https://github.com/wojzaremba/algorithm-learning

