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Review: Embed RF into Deep Neural Networks?

•  

•  The Random Forest is obtained with an ensemble of 
two-layer networks.

• Training is radically different: greedy in RF versus gradient 
descent in Deep Learning.
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Review: Deformable Parts Model
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Fig. 4. The matching process at one scale. Responses from the root and part filters are computed a different
resolutions in the feature pyramid. The transformed responses are combined to yield a final score for each root
location. We show the responses and transformed responses for the “head” and “right shoulder” parts. Note how the
“head” filter is more discriminative. The combined scores clearly show two good hypothesis for the object at this scale.

“Object Detection with 
discriminatively trained

Deformable Parts Model”, 
Felzenszwalb, Girshick et al.’10

Provides a Generative 
Model that is 

compatible with the 
Deep Convolutional 

Architecture.

Can it scale to model 
high-dimensional 

variability present in 
natural images?



Review: Region-based CNN (R-CNN)

• Suppose that for each bounding box we ask: is there a 
{house, bicycle, dog, man, …, none} ?

• This is standard object classification.
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Review: R-CNN [R. Girshick et al, 14-15]

• Rather than testing every possible rectangular region, we 
rely on a Region Proposal algorithm (which can also be 
done by a CNN).

• Each proposal region is warped and analyzed with 
another CNN.
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Putting it together: R-CNN

Girschick et al, “Rich feature hierarchies for 
accurate object detection and semantic 
segmentation”, CVPR 2014

Slide credit: Ross Girschick



Review: Graph Transformer Network
• [Bottou, Bengio & LeCun, ’97]
• Graphical model over possible 

“segmentations” of 
handwritten characters

• Used commercially to read 
~10% checks in the US (1996).
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Review: CRFs as Convolutional Neural Networks

• [Zheng et al,’15] 
approximate the mean-field 
message passing iterations 
with CNN layers with 
shared parameters.

• The system can be efficiently 
trained end-to-end.
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proposed an approach based on learning messages. Many
of these ideas can be traced back to [53], which proposed
unrolling message passing algorithms as simpler operations
that could be performed within a CNN. In a different setup,
Krähenbühl and Koltun [28] demonstrated automatic pa-
rameter tuning of dense CRF when a modified mean-field
algorithm is used for inference. An alternative inference ap-
proach for dense CRF, not based on mean-field, is proposed
in [58].

In contrast to the works described above, our approach
shows that it is possible to formulate dense CRF as an RNN
so that one can form an end-to-end trainable system for se-
mantic image segmentation which combines the strengths
of deep learning and graphical modelling. The concurrent
and independent work [47] explores a similar joint training
approach for semantic segmentation.

3. Conditional Random Fields

In this section we provide a brief overview of CRF for
pixel-wise labelling and introduce the notation used in the
paper. A CRF, used in the context of pixel-wise label pre-
diction, models pixel labels as random variables that form
a MRF when conditioned upon a global observation. The
global observation is usually taken to be the image.

Let Xi be the random variable associated to pixel i,
which represents the label assigned to the pixel i and
can take any value from a pre-defined set of labels L =
{l1, l2, . . . , lL}. Let X be the vector formed by the ran-
dom variables X1, X2, . . . , XN , where N is the number of
pixels in the image. Given a graph G = (V,E), where
V = {X1, X2, . . . , XN}, and a global observation (im-
age) I, the pair (I,X) can be modelled as a CRF charac-
terized by a Gibbs distribution of the form P (X = x|I) =
1

Z(I) exp(−E(x|I)). Here E(x) is called the energy of

the configuration x ∈ LN and Z(I) is the partition func-
tion [31]. From now on, we drop the conditioning on I in
the notation for convenience.

In the fully connected pairwise CRF model of [27], the
energy of a label assignment x is given by:

E(x) =
∑

i

ψu(xi) +
∑

i<j

ψp(xi, xj), (1)

where the unary energy components ψu(xi) measure the
inverse likelihood (and therefore, the cost) of the pixel
i taking the label xi, and pairwise energy components
ψp(xi, xj) measure the cost of assigning labels xi, xj to
pixels i, j simultaneously. In our model, unary energies are
obtained from a CNN, which, roughly speaking, predicts la-
bels for pixels without considering the smoothness and the
consistency of the label assignments. The pairwise ener-
gies provide an image data-dependent smoothing term that
encourages assigning similar labels to pixels with similar

Algorithm 1 Mean-field in dense CRFs [27], broken down
to common CNN operations.

Qi(l)← 1
Zi

exp (Ui(l)) for all i ◃ Initialization

while not converged do

Q̃
(m)
i (l)←

∑

j ̸=i k
(m)(fi, fj)Qj(l) for all m

◃ Message Passing

Q̌i(l)←
∑

m w(m)Q̃
(m)
i (l)

◃ Weighting Filter Outputs

Q̂i(l)←
∑

l′∈L µ(l, l′)Q̌i(l)
◃ Compatibility Transform

Q̆i(l)← Ui(l)− Q̂i(l)
◃ Adding Unary Potentials

Qi ←
1
Zi

exp
(

Q̆i(l)
)

◃ Normalizing

end while

Figure 1. A mean-field iteration as a CNN. A single iteration of

the mean-field algorithm can be modelled as a stack of common

CNN layers.

properties. As was done in [27], we model pairwise poten-
tials as weighted Gaussians:

ψp(xi, xj) = µ(xi, xj)
M
∑

m=1

w(m)k
(m)
G (fi, fj), (2)

where each k
(m)
G for m = 1, . . . ,M , is a Gaussian kernel

applied on feature vectors. The feature vector of pixel i,
denoted by fi, is derived from image features such as spatial
location and RGB values [27]. We use the same features as
in [27]. The function µ(., .), called the label compatibility
function, captures the compatibility between different pairs
of labels as the name implies.

Minimizing the above CRF energy E(x) yields the most
probable label assignment x for the given image. Since this
exact minimization is intractable, a mean-field approxima-
tion to the CRF distribution is used for approximate max-
imum posterior marginal inference. It consists in approxi-
mating the CRF distribution P (X) by a simpler distribution
Q(X), which can be written as the product of independent
marginal distributions, i.e., Q(X) =

∏

i Qi(Xi). The steps
of the iterative algorithm for approximate mean-field infer-
ence and its reformulation as an RNN are discussed next.
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tween the labels to a varied extent, depending on the com-
patibility between these labels. Compatibility between the
two labels l and l′ is parameterized by the label compatibil-
ity function µ(l, l′). The Potts model, given by µ(l, l′) =
[l ̸= l′], where [.] is the Iverson bracket, assigns a fixed
penalty if different labels are assigned to pixels with simi-
lar properties. A limitation of this model is that it assigns
the same penalty for all different pairs of labels. Intuitively,
better results can be obtained by taking the compatibility
between different label pairs into account and penalizing
the assignments accordingly. For example, assigning la-
bels “person” and “bicycle” to nearby pixels should have
a lesser penalty than assigning “sky” and “bicycle”. There-
fore, learning the function µ from data is preferred to fixing
it in advance with Potts model. We also relax our compat-
ibility transform model by assuming µ(l, l′) ̸= µ(l′, l) in
general.

Compatibility transform step can be viewed as another
convolution layer where the spatial receptive field of the fil-
ter is 1 × 1, and the number of input and output channels
are both L. Learning the weights of this filter is equivalent
to learning the label compatibility function µ. Transferring
error differentials from the output of this step to the input
can be done since this step is a usual convolution operation.

4.5. Adding Unary Potentials

In this step, the output from the compatibility transform
stage is subtracted element-wise from the unary inputs U .
While no parameters are involved in this step, transferring
error differentials can be done trivially by copying the dif-
ferentials at the output of this step to both inputs with the
appropriate sign.

4.6. Normalization

Finally, the normalization step of the iteration can be
considered as another softmax operation with no parame-
ters. Differentials at the output of this step can be passed on
to the input using the softmax operation’s backward pass.

5. The End-to-end Trainable Network

We now describe our end-to-end deep learning system
for semantic image segmentation. To pave the way for this,
we first explain how repeated mean-field iterations can be
organized as an RNN.

5.1. CRF as RNN

In the previous section, it was shown that one iteration
of the mean-field algorithm can be formulated as a stack of
common CNN layers (see Fig. 1). We use the function fθ
to denote the transformation done by one mean-field iter-
ation: given an image I , pixel-wise unary potential values
U and an estimation of marginal probabilities Qin from the

FCN CRF-RNN

Figure 2. The End-to-end Trainable Network. Schematic vi-

sualization of our full network which consists of a CNN and the

CNN-CRF network. Best viewed in colour.
previous iteration, the next estimation of marginal distribu-
tions after one mean-field iteration is given by fθ(U,Qin, I).
The vector θ =

{

w(m), µ(l, l′)
}

, m ∈ {1, . . . ,M}, l, l′ ∈
{l1, . . . , lL} represents the CRF parameters described in
Section 4.

Multiple mean-field iterations can be implemented by re-
peating the above stack of layers in such a way that each
iteration takes Q value estimates from the previous iteration
and the unary values in their original form. This is equiva-
lent to treating the iterative mean-field inference as a Recur-
rent Neural Network (RNN). The behaviour of the network
is given by the following equations where H1, H2 are hid-
den states, and T is the number of mean-field iterations:

H1(t) =

{

softmax(U), t = 0

H2(t− 1), 0 < t ≤ T,
(3)

H2(t) = fθ(U,H1(t), I), 0 ≤ t ≤ T, (4)

Y (t) =

{

0, 0 ≤ t < T

H2(t), t = T.
(5)

We name this RNN structure CRF-RNN. Parameters of
the CRF-RNN are same as the mean-field parameters de-
scribed in Section 4 and denoted by θ here. Since the calcu-
lation of error differentials w.r.t. these parameters in a single
iteration was described in Section 4, they can be learnt in the
RNN setting using the standard back-propagation through
time algorithm [46, 38]. It was shown in [27] that the mean-
field iterative algorithm for dense CRF converges in less
than 10 iterations. Furthermore, in practice, after about 5
iterations, increasing the number of iterations usually does
not significantly improve results [27]. Therefore, it does
not suffer from the vanishing and exploding gradient prob-
lem inherent to deep RNNs [7, 41]. This allows us to use a
plain RNN architecture instead of more sophisticated archi-
tectures such as LSTMs in our network.

5.2. Completing the Picture

Our approach comprises a fully convolutional network
stage, which predicts pixel-level labels without consid-
ering structure, followed by a CRF-RNN stage, which
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Objectives

• Embeddings

• Extensions to Non-Euclidean Domains
- Locally Connected Networks
- Spectral Networks
- Spatial Transformer Networks

• Representations of Stationary Processes
- Scattering Moments
- Properties and Applications
- Texture Synthesis
- CNNs for Texture Representation.

8



Embeddings

• Q: Can we use a CNN to learn a metric                      
with specific properties?

• Ex: metric compatible with object categories and/or 
transformations. 

• Ex: metric compatible with a retrieval task:
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•  
•  
• Idea: we want to push closer positive pairs and push 

farther negative pairs:

Embeddings with “Siamese” Architectures

10

positive pairs (x1, x2) 2 X ⇥ X : (x1, x2) ⇠ q

pos
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•  
•  
• Idea: we want to push closer positive pairs and push 

farther negative pairs:

• The “contrastive” term can be replaced by other losses.

Embeddings with General Architectures
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Dimensionality Reduction and Embedding

• [DrLiM, Hasdell et al, ’06] considered a setup where       
is a low-dimensional embedding using a siamese CNN 
architecture:

12

�(x)

used was 20 and 3 respectively. Experiments on the MNIST

dataset [9] used a convolutional network as G
W

(figure 3).

Convolutional networks are trainable, non-linear learning

machines that operate at pixel level and learn low-level fea-

tures and high-level representations in an integratedmanner.

They are trained end-to-end to map images to outputs. Be-

cause of a structure of shared weights and multiple layers,

they can learn optimal shift-invariant local feature detectors

while maintaining invariance to geometric distortions of the

input image.

Figure 3. Architecture of the function
G

W

(a convolutional net-

work) which was learned to map the MNIST data to a low
dimen-

sional manifold with invariance to shifts.

The layers of the convolutional network comprise a con-

volutional layer
C

1 with 15 feature maps, a subsampling

layer S
2 , a second convolutional layer C

3 with 30 feature

maps, and fully connected layer F
3 with 2 units. The sizes

of the kernels for the
C

1 and
C

3 were 6x6 and 9x9 respec-

tively.3.2. Learned Mapping of MNIST samples

The first experiment is designed to establish the basic

functionality of the DrLIM
approach. The neighborhood

graph is generated with euclidean distances and no prior

knowledge.

The training set is built from
3000 images of the hand-

written digit 4 and 3000 images of the handwritten digit 9

chosen randomly from
the MNIST

dataset [9].
Approxi-

mately 1000 images of each digit comprised the test set.

These images were shuffled, paired, and labeled according

to a simple euclidean distance measure: each sample
X⃗

i

was paired with its 5 nearest neighbors, producing the set

S
X

i . All other possible pairs were labeled dissimilar, pro-

ducing 30,000 similar pairs and on the order of 18 million

dissimilar pairs.

The mapping of the test set to a 2D
manifold is shown

in figure 4. The lighter-colored blue dots are 9’s and the

darker-colored red dots are 4’s. Several input test samples

are shown next to their manifold positions. The 4’s and 9’s

are in two somewhat overlapping regions, with an overall

organization that is primarily determined by the slant angle

of the samples. The samples are spread rather uniformly in

the populated region.

Figure 4. Experiment demonstrating the effectiveness of the Dr-

LIM
in a trivial situation with MNIST digits. A

Euclidean near-

est neighbor metric is used to create the local neighborhood rela-

tionships among the training samples, and a mapping function is

learned with a convolutional network. Figure shows the placement

of the test samples in output space. Even though the neighborhood

relationships among these samples are unknown, they are well or-

ganized and evenly distributed on the 2D
manifold.

3.3. Learning a Shift-InvariantMapping ofMNIST

samples

In this experiment, the DrLIM
approach is evaluated us-

ing 2 categories of MNIST, distorted by adding samples that

have been horizontally translated. The objective is to learn

a 2D
mapping that is invariant to horizontal translations.

In the distorted set, 3000 images of 4’s and 3000 im-

ages of 9’s are horizontally translated by -6, -3, 3, and 6

pixels and combined with the originals, producing a total

of 30,000 samples. The 2000 samples in the test set were

distorted in the same way.

First the system
was trained using pairs from

a euclidean

distance neighborhood graph (5 nearest neighbors per sam-

ple), as in experiment 1. The large distances between trans-

lated samples creates a disjoint neighborhood relationship

graph and the resulting mapping is disjoint as well. The out-

put points are clustered according to the translated position

of the input sample (figure 5). Within each cluster, however,

the samples are well organized and evenly distributed.

For comparison, the LLE algorithm
was used to map the

distorted MNIST using the same euclidean distance neigh-

borhood graph. The result was a degenerate embedding in

which differently registered samples were completely sepa-

rated (figure 6). Although there is sporadic local organiza-

Figure 8. Test set results: the DrLIM approach learned a mapping to 3d space for images of a single airplane (extracted fromNORB dataset).
The output manifold is shown under five different viewing angles. The manifold is roughly cylindrical with a systematic organization: along
the circumference varies azimuth of camera in the viewing half-sphere. Along the height varies the camera elevation in the viewing sphere.
The mapping is invariant to the lighting condition, thanks to the prior knowledge built into the neighborhood relationships.

similar pairs, the system avoids collapse to a constant func-
tion and maintains an equilibrium in output space, much as
a mechanical system of interconnected springs does.
The experiments with LLE show that LLE is most useful

where the input samples are locally very similar and well-
registered. If this is not the case, then LLE may give degen-
erate results. Although it is possible to run LLE with arbi-
trary neighborhood relationships, the linear reconstruction
of the samples negates the effect of very distant neighbors.
Other dimensionality reduction methods have avoided this
limitation, but none produces a function that can accept new
samples without recomputation or prior knowledge.
Creating a dimensionality reduction mapping using prior

knowledge has other uses. Given the success of the NORB
experiment, in which the positions of the camera were
learned from prior knowledge of the temporal connections
between images, it may be feasible to learn a robot’s posi-
tion and heading from image sequences.
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Semantic Embedding and metric learning

• Given labeled data, one may learn a metric of the form
                                      that is compatible with labels.
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Abstract

Learning the distance metric between pairs of examples
is of great importance for learning and visual recognition.
With the remarkable success from the state of the art convo-
lutional neural networks, recent works [1, 31] have shown
promising results on discriminatively training the networks
to learn semantic feature embeddings where similar exam-
ples are mapped close to each other and dissimilar exam-
ples are mapped farther apart. In this paper, we describe an
algorithm for taking full advantage of the training batches
in the neural network training by lifting the vector of pair-
wise distances within the batch to the matrix of pairwise
distances. This step enables the algorithm to learn the state
of the art feature embedding by optimizing a novel struc-
tured prediction objective on the lifted problem. Addition-
ally, we collected Online Products dataset: 120k images
of 23k classes of online products for metric learning. Our
experiments on the CUB-200-2011 [37], CARS196 [19],
and Online Products datasets demonstrate significant im-
provement over existing deep feature embedding methods
on all experimented embedding sizes with the GoogLeNet
[33] network.

1. Introduction
Comparing and measuring similarities between pairs of

examples is a core requirement for learning and visual com-
petence. Being able to first measure how similar a given pair
of examples are makes the following learning problems a
lot simpler. Given such a similarity function, classification
tasks could be simply reduced to the nearest neighbor prob-
lem with the given similarity measure, and clustering tasks
would be made easier given the similarity matrix. In this
regard, metric learning [13, 39, 34] and dimensionality re-
duction [18, 7, 29, 2] techniques aim at learning semantic
distance measures and embeddings such that similar input
objects are mapped to nearby points on a manifold and dis-
similar objects are mapped apart from each other.

Furthermore, the problem of extreme classification [6,
26] with enormous number of categories has recently at-

Query Retrieval

Figure 1: Example retrieval results on our Online Products
dataset using the proposed embedding. The images in the
first column are the query images.

tracted a lot of attention in the learning community. In this
setting, two major problems arise which renders conven-
tional classification approaches practically obsolete. First,
algorithms with the learning and inference complexity lin-
ear in the number of classes become impractical. Sec-
ond, the availability of training data per class becomes
very scarce. In contrast to conventional classification ap-
proaches, metric learning becomes a very appealing tech-
nique in this regime because of its ability to learn the gen-
eral concept of distance metrics (as opposed to category
specific concepts) and its compatibility with efficient near-
est neighbor inference on the learned metric space.

With the remarkable success from the state of the art con-
volutional neural networks [20, 33], recent works [1, 31]
discriminatively train neural network to directly learn the
the non-linear mapping function from the input image to a
lower dimensional embedding given the input label annota-
tions. In high level, these embeddings are optimized to pull
examples with different class labels apart from each other
and push examples from the same classes closer to each
other. One of the main advantages of these discriminatively
trained network models is that the network jointly learns the
feature representation and semantically meaningful embed-

1

ar
X

iv
:1

51
1.

06
45

2v
1 

 [c
s.C

V
]  

19
 N

ov
 2

01
5whether a pair (xi,xj) is from the same class or not. The

[·]+ operation indicates the hinge function max(0, ·). We
direct the interested readers to refer [14, 1] for the details.

Triplet embedding [39, 31] is trained on the triplet data
n⇣

x

(i)
a ,x

(i)
p ,x

(i)
n

⌘o

where
⇣

x

(i)
a ,x

(i)
p

⌘

have the same class

labels and
⇣

x

(i)
a ,x

(i)
n

⌘

have different class labels. The x

(i)
a

term is referred to as an anchor of a triplet. Intuitively, the
training process encourages the network to find an embed-
ding where the distance between x

(i)
a and x

(i)
n is larger than

the distance between x

(i)
a and x

(i)
p plus the margin parame-

ter ↵. The cost function is defined as,

J =

3

2m

m/3
X

i

⇥

D2
ia,ip � D2

ia,in + ↵
⇤

+
, (2)

where Dia,ip = ||f(xa
i )� f(xp

i )|| and Dia,in = ||f(xa
i )�

f(xn
i )||. Please refer to [31, 39] for the complete details.

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

(a) Contrastive embedding

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

(b) Triplet embedding

x1 x2 x3 x4 x5 x6

(c) Lifted structured embedding

Figure 2: Illustration for a training batch with six examples.
Red edges and blue edges represent similar and dissimilar
examples respectively. In contrast, our method explicitly
takes into account all pair wise edges within the batch.

4. Deep metric learning via lifted structured
feature embedding

We define a structured loss function based on all positive
and negative pairs of samples in the training set:

J =

1

2| bP|

X

(i,j)2 bP

max (0, Ji,j)
2 , (3)
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• Who needs more than one heads?

(c) Training network with lifted structure embedding

Figure 3: Illustration for training networks with differ-
ent embeddings. m denotes the number of images in the
batch. The green round box indicates one example within
the batch. The network (a) takes as input binary labels, net-
work (b) does not take any label input because the ordering
of anchor, positive, negative encodes the label. The pro-
posed network (c) takes as input the multiclass labels.

where bP is the set of positive pairs and bN is the set of
negative pairs in the training set. This function poses two
computational challenges: (1) it is non-smooth, and (2) both
evaluating it and computing the subgradient requires mining
all pairs of examples several times.

We address these challenges in two ways: First, we
optimize a smooth upper bound on the function instead.
Second, as is common for large data sets, we use a stochas-
tic approach. However, while previous work implements
a stochastic gradient descent by drawing pairs or triplets
of points uniformly at random [14, 1, 22], our approach
deviates from those methods in two ways: (1) it biases
the sample towards including “difficult” pairs, just like a
subgradient of Ji,j would use the close negative pairs 1; (2)
it makes use of the full information of the mini-batch that

1Strictly speaking, this would be a subgradient replacing the nested
max by a plus.

d(x, x0) = k�(x)� �(x0)k

“Deep Metric Learning via Lifted Structured 
Feature Embedding”, Oh Song et al.’15



Semantic Embedding and metric learning

• Given labeled data, one may learn a metric of the form
                                      that is compatible with labels.
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d(x, x0) = k�(x)� �(x0)kLearning visual similarity for product design with convolutional neural networks

Sean Bell Kavita Bala
Cornell University⇤

(a) Query 1: Input scene and box

(b) Project into 256D embedding (c) Results 2: use of product in-situ

Convolutional
Neural

Network

Learned 
Parameters θ

(a) Query 2: Product

(c) Results 1: visually similar products

Figure 1: Visual search using a learned embedding. Query 1: given an input box in a photo (a), we crop and project into an embedding (b)
using a trained convolutional neural network (CNN) and return the most visually similar products (c). Query 2: we apply the same method to
search for in-situ examples of a product in designer photographs. The CNN is trained from pairs of internet images, and the boxes are collected
using crowdsourcing. The 256D embedding is visualized in 2D with t-SNE. Photo credit: Crisp Architects and Rob Karosis (photographer).

Abstract

Popular sites like Houzz, Pinterest, and LikeThatDecor, have com-
munities of users helping each other answer questions about products
in images. In this paper we learn an embedding for visual search in
interior design. Our embedding contains two different domains of
product images: products cropped from internet scenes, and prod-
ucts in their iconic form. With such a multi-domain embedding, we
demonstrate several applications of visual search including identify-
ing products in scenes and finding stylistically similar products. To
obtain the embedding, we train a convolutional neural network on
pairs of images. We explore several training architectures including
re-purposing object classifiers, using siamese networks, and using
multitask learning. We evaluate our search quantitatively and qualita-
tively and demonstrate high quality results for search across multiple
visual domains, enabling new applications in interior design.

CR Categories: I.3.8 [Computer Graphics]: Applications I.4.8
[Image Processing and Computer Vision]

Keywords: visual similarity, interior design, deep learning, search

⇤Authors’ email addresses: {sbell, kb}@cs.cornell.edu

1 Introduction

Home owners and consumers are interested in visualizing ideas for
home improvement and interior design. Popular sites like Houzz,
Pinterest, and LikeThatDecor have large active communities of users
that browse the sites for inspiration, design ideas and recommenda-
tions, and to pose design questions. For example, some topics and
questions that come up are:

• “What is this {chair, lamp, wallpaper} in this photograph?
Where can I find it?”, or, “Find me {chairs, . . .} similar to
this one.” This kind of query may come from a user who sees
something they like in an online image on Flickr or Houzz, a
magazine, or a friend’s home.

• “How has this armchair been used in designer photos?” Users
can search for the usage of a product for design inspiration.

• “Find me a compatible chair matching this table.” For example,
a home owner is replacing furniture in their home and wants
to find a chair that matches their existing table (and bookcase).

Currently, sites like Houzz have active communities of users that an-
swer design questions like these with (sometimes informed) guesses.
Providing automated tools for design suggestions and ideas can be
very useful to these users.

The common thread between these questions is the need to find
visually similar objects in photographs. In this paper we learn a
distance metric between an object in-situ (i.e., a sub-image of a
photograph) and an iconic product image of that object (i.e., a clean
well-lit photograph, usually with a white background). The distance
is small between the in-situ object image and the iconic product
image, and large otherwise. Learning such a distance metric is
challenging because the in-situ object image can have many different
backgrounds, sizes, orientations, or lighting when compared to the
iconic product image, and, it could be significantly occluded by
clutter in the scene.

“Learning visual similarity for product design 
with convolutional neural nets”, Bell et al.’15



Application: Visual Analogies 

• Analogies are relationships of the form “A is to B as C is 
to D”.
- E.g. “Paris” is to “France” as “London” is to “UK”.

• Q: How to solve analogies using embeddings?
• We can try to linearize the analogies: 
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Application: Visual Analogies
• [“Deep Visual Analogy-Making”,  Reed et al, NIPS’15]

• Given analogy tuples                , optimize a cost of the form

• More complicated transformations beyond linear possible.
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Increment 
function T

Decoder 
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Encoder network f
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f(a)
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deep

add mul deep
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Figure 2: Illustration of the network structure for analogy making. The top portion shows the
encoder, transformation module, and decoder. The bottom portion illustrates the transformations
used for Ladd, Lmul and Ldeep. The

N
icon in Lmul indicates a tensor product. We share weights

with all three encoder networks shown on the top left.

were similarly used in bilinear models [27], disentangling Boltzmann Machines [23] and Tensor
Analyzers [26]. Note that our multiplicative interaction in Lmul is different from [19] in that we use
the difference between two encoding vectors (i.e., f(b)� f(a)) to infer about the transformation (or
relation), rather than using a higher-order interaction (e.g., tensor product) for this inference.

Algorithm 1: Manifold traversal by analogy,
with transformation function T (Eq. 5).
Given images a, b, c, and N (# steps)
z  f(c)

for i = 1 to N do
z  z + T (f(a), f(b), z)

xi  g(z)

return generated images xi (i = 1, ..., N )

For Ldeep, h : R2K ! RK is an MLP (deep
network without 3-way multiplicative interactions)
and [f(b)� f(a); f(c)] denotes concatenation of the
transformation vector with the query embedding.

Optimizing the above objectives teaches the model
to predict analogy completions in image space, but
in order to traverse image manifolds (e.g. for re-
peated analogies) as in Algorithm 1, we also want
accurate analogy completions in the embedding
space. To encourage this property, we introduce a regularizer to make the predicted transforma-
tion increment T (f(a), f(b), f(c)) match the difference of encoder embeddings f(d)� f(c):

R =

X

a,b,c,d2A
||f(d)� f(c)� T (f(a), f(b), f(c))||22 , where (4)

T (x, y, z) =

8
<

:

y � x when using Ladd

W ⇥1 [y � x]⇥2 z when using Lmul

MLP ([y � x; z]) when using Ldeep

(5)

The overall training objective is a weighted combination of analogy prediction and the above regu-
larizer, e.g. Ldeep+↵R. We set ↵ = 0.01 by cross validation on the shapes data and found it worked
well for all models on sprites and 3D cars as well. All parameters were trained with backpropagation
using stochastic gradient descent (SGD).
3.3 Analogy-making with a disentangled feature representation
Visual analogies change some aspects of a query image, and leave others unchanged; for example,
changing the viewpoint but preserving the shape and texture of an object. To exploit this fact,
we incorporate disentangling into our analogy prediction model. A disentangled representation is
simply a concatenation of coordinates along each underlying factor of variation. If one can reliably
infer these disentangled coordinates, a subset of analogies can be solved simply by swapping sets
of coordinates among a reference and query embedding, and projecting back into the image space.
However, in general, disentangling alone cannot solve analogies that require traversing the manifold
structure of a given factor, and by itself does not capture image relationships.

In this section we show how to incorporate disentangled features into our analogy model. The
disentangling component makes each group of embedding features encode its respective factor of
variation and be invariant to the others. The analogy component enables the model to traverse the
manifold of a given factor or subset of factors.

4

(a, b, c, d)
X

(a,b,c,d)

kd� g(�(b)� �(a) + �(c))k2 .



Application: Visual Analogies
• [“Deep Visual Analogy-Making”,  Reed et al, NIPS’15]

• Given analogy tuples                , optimize a cost of the form

• More complicated transformations beyond linear possible.
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(a, b, c, d)
X

(a,b,c,d)

kd� g(�(b)� �(a) + �(c))k2 .

    ref.    output   query   predictions

walk

thrust

rotate

Figure 9: Extrapolating by analogy. The model sees the reference / output pair and repeatedly
applies the inferred transformation to the query. This inference requires learning the manifold of
animation poses, and cannot be done by simply combining and decoding disentangled features.

4.3 3D car analogies
In this section we apply our model to analogy-making on 3D car renderings subject to changes in
appearance and rotation angle. Unlike in the case of shapes, this requires the ability of the model to
perform out-of-plane rotation, and the depicted objects are more complex.

Features Pose AUC ID AUC
Pose units 95.6 85.2
ID units 50.1 98.5

Combined 94.6 98.4

Table 4: Measuring the disentangling performance on 3D
cars. Pose AUC refers to area under the ROC curve for
same-or-different pose verification, and ID AUC for same-
or-different car verification on pairs of test set images.

Figure 10: 3D car analogies. The
column “GT” denotes ground truth.

We use the car CAD models from [11]. For each of the 199 car models, we generated 64⇥ 64 color
renderings from 24 rotation angles each offset by 15 degrees. We split the models into 100 training,
49 validation and 50 testing. The same convolutional network architecture was used as in the sprites
experiments, and we used 512 units for identity and 128 for pose.

Figure 11: Repeated rotation analogies in forward and reverse directions, starting from frontal pose.
Figure 10 shows test set predictions of our model trained on Ldis, where images in the fourth column
combine pose units from the first column and identity units from the second. Table 4 shows that the
learned features are in fact disentangled, and discriminative for identity and pose matching despite
not being discriminatively trained. Figure 11 shows repeated rotation analogies on test set cars using
a model trained on Ldeep, demonstrating that our model can perform out-of-plane rotation. This type
of extrapolation is difficult because the query image shows a different car from a different starting
pose. We expect that a recurrent architecture can further improve the results, as shown in [29].

5 Conclusions
We studied the problem of visual analogy making using deep neural networks, and proposed several
new models. Our experiments showed that our proposed models are very general and can learn to
make analogies based on appearance, rotation, 3D pose, and various object attributes. We provide
connection between analogy making and disentangling factors of variation, and showed that our
proposed analogy representations can overcome certain limitations of disentangled representations.
Acknowledgements This work was supported in part by NSF GRFP grant DGE-1256260, ONR
grant N00014-13-1-0762, NSF CAREER grant IIS-1453651, and NSF grant CMMI-1266184. We
thank NVIDIA for donating a Tesla K40 GPU.
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Application: One-Shot Learning
• Person recognition with one single training example:
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Application: One-Shot Learning
• Person recognition with one single training example:
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Application: One-Shot Learning
• Person recognition with one single training example:

• Leverage examples from other classes and transfer 
knowledge
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Application: One-shot learning

• One-Shot learning with siamese architectures
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Application: One-shot learning

• Consider pairs of training examples

22
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Application: One-shot learning

• Consider pairs of training examples

• We train the system to detect whether a pair comes 
from the same class or not.
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Application: One-shot learning
• Now, given one training example     from each new class 

and a query    , we estimate the label as  

24
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Chapter 2. The Omniglot Dataset 7

Figure 2.1: The Omniglot dataset contains a variety of di↵erent images from alphabets across the world.

Figure 2.2: Example of a 20-way one-shot classification task using the Omniglot dataset. The lone test
image is shown above the grid of 20 images representing the possible unseen classes that we can choose
for the test image. These 20 images are our only known examples of each of those classes.

along with twenty characters taken uniformly at random (Figure 2.2). Two of the twenty drawers are

also selected from among the pool of evaluation drawers. These two drawers then produce a sample

of the twenty characters. Each one of the characters produced by the first drawer are denoted as test

images and individually compared against all twenty characters from the second drawer, with the goal

of predicting the class corresponding to the test image from among all of the second drawer’s characters.

This process is repeated twice for all alphabets, so that there are 40 one-shot learning trials for each

of the ten evaluation alphabets. This constitutes a total of 400 one-shot learning trials, from which the

standard classification accuracy is calculated. We specify more details for this generation procedure in

Appendix A.1.

We reproduced this procedure using an identical set of one-shot learning tasks as in [16]. We also

wrote code to generate new one-shot tasks from an arbitrary data set. This allows us to monitor one-shot

learning performance on our validation set while optimizing for the verification task.

• [G. Koch,’15]  uses a CNN siamese architecture on the 
Omniglot dataset:

Application: One-Shot Learning

25

Chapter 5. Using Verification Networks for One-Shot Image Recognition 18

Figure 5.1: Examples of the model’s top-5 classification performance on 1-versus-20 one-shot classifica-
tion tasks.

tions returned by the network (Figure 5.1). We include a graph depicting the optimization of one of

the convolutional networks on the 30k training set with a�ne transforms over 300 epochs (Figure 5.2).

Here, we see that one-shot validation accuracy is a good approximation to the desired one-shot evalu-

ation accuracy. In this example, we monitored both during a run of a convolutional network (6-layer,

30k training set with 8x global distortions), where only the one-shot validation accuracy was used for

training purposes.

We now present the final comparison of one-shot results (Table 5.3).2 We borrow the baseline results

from [16] for comparison to our two methods. We use the term ‘Regular’ to describe the standard 400

one-shot trial task on the evaluation set. ‘Distortions’ uses some k transforms to the test image and l

transforms to the 20 training images, which is described in more detail in the next section.

2HBPL - Hierarchical Bayesian Program Learning, A�ne - models image variance as a�ne transformations, DBM -
pre-trained Deep Boltzmann Machine with 3 layers of 1000 units each, HD - pre-trained Hierarchical Deep model, a hybrid
DBM/nonparametric Bayesian approach, SS - Simple Strokes, a simplified version of HBPL, 1-NN - 1-nearest-neighbor
with cosine similarity metric.



Extensions to non-Euclidean Domain

• So far, we have been able to define convolutional 
operators to our inputs of the form

• In all these cases, the translation group acts on   .
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Extensions to non-Euclidean Domain

• So far, we have been able to define convolutional 
operators to our inputs of the form

• In all these cases, the translation group acts on 

• Moreover, stability to local deformations and stationarity 
result in models with localized convolutional operators. 

• As a result, the number of parameters to learn is 
independent of input dimensionality

27

x(u,�) , u 2 G G : Rd (d = 1, 2, 3)

G : ⌦d (d = 1, 2, 3) , ⌦ : discrete grid

G
(i.e. 'vG = G for all translations 'v v 2 G)



• These properties are not present in 
• 3D Mesh data (eg surface tensions)

• Time-frequency audio representations:

• Social Network signals, gene expression, collaborative 
filtering, etc.

Limits of Convolutional Networks

t

!

x(t,!) is not stationary with respect to !.



• Intermediate CNN layers

• In general, can we learn with #parameters independent 
of input size? What architecture?

Limits of Convolutional Networks

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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General Signals: Functions on graphs

⌦

i

j

Wij

⌦: set of input coordinates

Wi,j : similarity between coordinates i and j



• Similarity can be given by sensing process:
– (grids, 3D meshes, weather stations)

• Or it can also be estimated from the data.

Feature Similarity 

ui
uj

Wi,j = exp(�kui � ujk2/2�2
)



• L Observations in dimension N: 
• Similarity given by
• Ex: Stationary distributions, in MNIST:

• Also in [“Selecting Receptive Fields in Deep Networks”, Coates 
et al, NIPS 11].

• Richer statistics can be used to define similarity.

Recovering Graph Structure

9.25 2.43 1.68 1.21 1.13
10 examples 50 examples 100 examples 1000 examples 2000 examples

Figure 3: Embedding discovered by Isomap on the NORB dataset, with different numbers of training
samples (top row). Second row shows the same embeddings aligned (by a similarity transformation)
on the original grid, third row shows the residual error (RMSE) after the alignment.

Figure 4 shows the whole process of transforming an original image (with pixels possibly permuted)
into an embedded image and finally into a reconstructed image as per algorithms 1 and 2.

Figure 4: Example of the process of transforming an MNIST image (top) from which pixel order
is unknown (second row) into its embedding (third row) and finally reconstructed as an image after
rotation and convolution (bottom). In the third row, we show the intensity associated to each original
pixel by the grey level in a circle located at the pixel coordinates discovered by Isomap.

We also performed experiments with acoustic spectral data to see if the time-frequency topology
can be recovered. The acoustic data come from the first 100 blues pieces of a publically available
genre classification dataset [14]. The FFT is computed for each frame and there are 86 frames per
second. The first 30 frequency bands are kept, each covering 21.51 Hz. We used examples formed
by 30-frame spectrograms, i.e., just like images of size 30 × 30. Using the first 600,000 audio
samples from each recording yielded 2600 30-frames images, on which we applied our technique.
Figure 5 shows the resulting embedding when we removed the 30 coordinates of lowest standard
deviation (δ = .15).

6

from ‘Learning the 2-D topology of images”,
by N.LeRoux, Y. Bengio et al, NIPS 07

X = (xi,l)iN ; lL

Wi,j = Cov(|Xi|, |Xj |)



Locally Connected Networks

i

j

Wij ⌦0

[“Selecting Receptive Fields in Deep Networks”, Coates & Ng, NIPS’11]
[“Locally Connected Nets and Spectral Networks”, B. et al, ICLR’14]
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Locally Connected Networks

• Hierarchical Clustering of Graph
• This gives O(n) parameters per feature map.
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Spectral Networks
• In      , convolutions are diagonalized in Fourier domain:

   where 

x ⇤ h = F�1diag(Fh)Fx ,
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Spectral Networks
• In      , convolutions are diagonalized in Fourier domain:

   where 

• Fourier basis can be defined as the eigenbasis of 
Laplacian operator:

x ⇤ h = F�1diag(Fh)Fx ,
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Graph Laplacian
• We can define the Laplacian on an undirected graph:

(�x)k = xk �
X

j

w̃kjxj

� = (I � W̃ ) , W̃ = D�1/2WD�1/2 , D = diag(W1)

measures smoothness in the graph



Graph Laplacian
• We can define the Laplacian on an undirected graph:

•  

(�x)k = xk �
X

j

w̃kjxj
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Graph Laplacian
• We can define the Laplacian on an undirected graph:

•  

• “Fourier basis” of the graph: V : Eigenvectors of �

(�x)k = xk �
X

j

w̃kjxj

� is positive definite and symmetric. � = V diag(�)V T

� = (I � W̃ ) , W̃ = D�1/2WD�1/2 , D = diag(W1)

v2 v10 v30

measures smoothness in the graph



Spectral Networks
• “Convolution” on a graph:  Linear Operator commuting 

with    :

– Filter coefficients h are specified in the spectral domain.

x ⇤G h := V diag(h)V T
x
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Spectral Networks
• “Convolution” on a graph:  Linear Operator commuting 

with    :

– Filter coefficients h are specified in the spectral domain.

• Spectral Network: filter bank 

•We still require O(n) parameters per filter. 

x ⇤G h := V diag(h)V T
x

�

(x ⇤G hk)kK



• In Rd, Smoothness and sparsity are dual notions:
Spectral Networks

x fast decay () bx smooth
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• In R^N, Smoothness and sparsity are dual notions:

Spectral Networks

x fast decay () bx smooth
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• In R^N, Smoothness and sparsity are dual notions:
Spectral Networks

x fast decay () bx smooth
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• In R^N, Smoothness and sparsity are dual notions:
Spectral Networks

x fast decay () bx smooth
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• In R^N, Smoothness and sparsity are dual notions:
Spectral Networks

x fast decay () bx smooth

h = K˜h , K : interpolation kernel (eg splines)
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• Smoothness requires a notion of similarity between 
eigenvectors                     of Laplacian

• Simplest Dual Geometry: 1D given by Spectrum

• General construction of dual graph: open problem.
– Dual construction which enforces spatial decay?

Dual Laplacian Graph

V = [v1 . . . vn]

vi

vj

w̄i,j

v1 v2 vn�1 vn



• MNIST random subsampling (400 pixels)

 

 

Numerical Experiments

method Parameters Error

Nearest Neighbors N/A 4.11
400-FC800-FC50-10 3.6 · 105 1.8

400-LRF1600-MP800-10 7.2 · 104 1.8
400-LRF3200-MP800-LRF800-MP400-10 1.6 · 105 1.3

400-SP1600-10 (d1 = 300, q = n) 3.2 · 103 2.6
400-SP4800-10 (d1 = 300, q = 20) 5 · 103 1.8



Some Experiments

• MNIST projected onto 3D sphere:

method Parameters Error

Nearest Neighbors N/A 19

4096-FC2048-FC512-9 10

7 5.6
4096-LRF4620-MP2000-FC300-9 8 · 105 6

4096-LRF4620-MP2000-LRF500-MP250-9 2 · 105 6.5
4096-SP32K-MP3000-FC300-9 (q = n) 9 · 105 7

4096-SP32K-MP3000-FC300-9 (q = 64) 9 · 105 6

learnt “feature maps”



Unknown Similarity

• When graph is unknown, how to estimate it?
- Unsupervised: use data statistics (eg data covariance).
- Supervised: use a simple network first and consider :

• Small improvements over Dropout FC baseline:

• However, computationally demanding: O(n^2).

57

p(y | x) = Sm(W2�(W1x))

d(i, j) = kW1,i �W1,jk

5.2 Merck Molecular Activity Challenge

The Merck Molecular Activity Challenge is a computational biology benchmark where the task is to
predict activity levels for various molecules based on the distances in bonds between different atoms.
For our experiments we used the DPP4 dataset which has 8193 samples and 2796 features. We chose
this dataset because it was one of the more challenging and was of relatively low dimensionality
which made the spectral networks tractable. As a baseline architecture, we used the network of [10]
which has 4 hidden layers and is regularized using dropout and weight decay. We used the same
hyperparameter settings and data normalization recommended in the paper.

As before, we used one-tenth of the training set to tune hyperparameters of the network. For this
task we found that k = 40 subsampled weights worked best, and that average pooling performed
better than max pooling. Since the task is to predict a continuous variable, all networks were trained
by minimizing the Root Mean-Squared Error loss. Following [10], we measured performance by
computing the squared correlation between predictions and targets.
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FC2000−FC1000
GC4−P4−FC1000, supervised graph
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Fully Connected
Spectral16, supervised
Spectral64, supervised
Spectral64, kernel (local)
Spectral64, kernel (global)

Figure 2: Evolution of Test accuracy. Left: Reuters dataset, Right: Merck dataset.

Table 2: Results for Merck DPP4 dataset.

Graph Architecture Pnet Pgraph R2

- FC4000-FC2000-FC1000-FC1000 22.1 · 106 0 0.2729
Supervised GC16-P4-GC16-P4-FC1000-FC1000 3.8 · 106 3.9 · 106 0.2773
Supervised GC64-P8-GC64-P8-FC1000-FC1000 3.8 · 106 3.9 · 106 0.2580
RBF Kernel GC64-P8-GC64-P8-FC1000-FC1000 3.8 · 106 3.9 · 106 0.2037

RBF Kernel (local) GC64-P8-GC64-P8-FC1000-FC1000 3.8 · 106 3.9 · 106 0.1479

We again designed our architectures to factor the first two hidden layers of the fully-connected net-
work across feature maps and a subsampled graph, and left the second two layers unchanged. As be-
fore, we see that the unsupervised graph estimation strategies yield a significant drop in performance
whereas the supervised strategy enables our network to perform similarly to the fully-connected net-
work with much fewer parameters. This indicates that it is able to factor the lower-level representa-
tions in such a way as to retain useful information for the classification task.

Figure 5.2-right shows the test performance as the models are being trained. We note that the Merck
datasets have test set samples assayed at a different time than the samples in the training set, and
thus the distribution of features is typically different between the training and test sets. Therefore
the test performance can be a significantly noisy function of the train performance. However, the
effect of the different graph estimation procedures is still clear.

5.3 ImageNet

In the experiments above our graph construction relied on estimation from the data. To measure the
influence of the graph construction compared to the filter learning in the graph frequency domain,
we performed the same experiments on the ImageNet dataset for which the graph is already known,
namely it is the 2-D grid. The spectral network was thus a convolutional network whose weights
were defined in the frequency domain using frequency smoothing rather than imposing compactly

7



Supervised Embedding

• How to define a convolution in an irregular sampling grid?
58

⌦

i

j

Wij

Rd , (d = 1, 2, 3)

vi

vj

V = (v1, . . . , vN ) 2 Rd⇥N
: coordinate embedding

x̃(u) =
NX

i=1

x(i)�(u� vi)

x 2 L

1(G) 7! x̃ 2 L

1(Rd)



Supervised Embedding

• Given a compact support kernel    defined in a regular 
grid            , we extend it to     by interpolating:  

• This idea has also been used within CNN architectures, 
in Spatial Transformer Networks:
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G ⇢ Rd Rd

 (u) , u 2 G  ̃(ũ) , ũ 2 R

(a) (c)
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(d)

5

6

(b)

9

4

Figure 1: The result of using a spatial transformer as the
first layer of a fully-connected network trained for distorted
MNIST digit classification. (a) The input to the spatial trans-
former network is an image of an MNIST digit that is dis-
torted with random translation, scale, rotation, and clutter. (b)
The localisation network of the spatial transformer predicts a
transformation to apply to the input image. (c) The output
of the spatial transformer, after applying the transformation.
(d) The classification prediction produced by the subsequent
fully-connected network on the output of the spatial trans-
former. The spatial transformer network (a CNN including a
spatial transformer module) is trained end-to-end with only
class labels – no knowledge of the groundtruth transforma-
tions is given to the system.

Spatial transformers can be incorporated into CNNs to benefit multifarious tasks, for example:
(i) image classification: suppose a CNN is trained to perform multi-way classification of images
according to whether they contain a particular digit – where the position and size of the digit may
vary significantly with each sample (and are uncorrelated with the class); a spatial transformer that
crops out and scale-normalizes the appropriate region can simplify the subsequent classification
task, and lead to superior classification performance, see Fig. 1; (ii) co-localisation: given a set of
images containing different instances of the same (but unknown) class, a spatial transformer can be
used to localise them in each image; (iii) spatial attention: a spatial transformer can be used for
tasks requiring an attention mechanism, such as in [14, 39], but is more flexible and can be trained
purely with backpropagation without reinforcement learning. A key benefit of using attention is that
transformed (and so attended), lower resolution inputs can be used in favour of higher resolution
raw inputs, resulting in increased computational efficiency.

The rest of the paper is organised as follows: Sect. 2 discusses some work related to our own, we
introduce the formulation and implementation of the spatial transformer in Sect. 3, and finally give
the results of experiments in Sect. 4. Additional experiments and implementation details are given
in Appendix A.

2 Related Work
In this section we discuss the prior work related to the paper, covering the central ideas of modelling
transformations with neural networks [15, 16, 36], learning and analysing transformation-invariant
representations [4, 6, 10, 20, 22, 33], as well as attention and detection mechanisms for feature
selection [1, 7, 11, 14, 27, 29].

Early work by Hinton [15] looked at assigning canonical frames of reference to object parts, a theme
which recurred in [16] where 2D affine transformations were modeled to create a generative model
composed of transformed parts. The targets of the generative training scheme are the transformed
input images, with the transformations between input images and targets given as an additional
input to the network. The result is a generative model which can learn to generate transformed
images of objects by composing parts. The notion of a composition of transformed parts is taken
further by Tieleman [36], where learnt parts are explicitly affine-transformed, with the transform
predicted by the network. Such generative capsule models are able to learn discriminative features
for classification from transformation supervision.

The invariance and equivariance of CNN representations to input image transformations are studied
in [22] by estimating the linear relationships between representations of the original and transformed
images. Cohen & Welling [6] analyse this behaviour in relation to symmetry groups, which is also
exploited in the architecture proposed by Gens & Domingos [10], resulting in feature maps that are
more invariant to symmetry groups. Other attempts to design transformation invariant representa-
tions are scattering networks [4], and CNNs that construct filter banks of transformed filters [20, 33].
Stollenga et al. [34] use a policy based on a network’s activations to gate the responses of the net-
work’s filters for a subsequent forward pass of the same image and so can allow attention to specific
features. In this work, we aim to achieve invariant representations by manipulating the data rather
than the feature extractors, something that was done for clustering in [9].

Neural networks with selective attention manipulate the data by taking crops, and so are able to learn
translation invariance. Work such as [1, 29] are trained with reinforcement learning to avoid the

2

“Spatial Transformer Networks”, Jaderberg 
et al,’15



Stationarity Prior

• Two clips. Goal: distinguish which is which.

clip1 clip2 clip ?
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• Same experiment. Goal: distinguish which is which.

clip3 clip4 clip ?
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Stationarity Prior

• Same experiment. Goal: distinguish which is which.

• Typically, the latter is harder. Reasons?

clip3 clip4 clip ?

“Summary Statistics in auditory perception”, McDermott & Simoncelli, Nature Neurosc.’13
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Stationarity Prior

• Same experiment. Goal: distinguish which is which.

• Typically, the latter is harder. Reasons?
• Despite having more information, the discrimination is 

worse because we construct temporal averages in 
presence of stationary inputs.

clip3 clip4 clip ?

“Summary Statistics in auditory perception”, McDermott & Simoncelli, Nature Neurosc.’13
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Representation of Stationary Processes 
x(u): realizations of a stationary process X(u) (not Gaussian)



Representation of Stationary Processes
x(u): realizations of a stationary process X(u) (not Gaussian)

Discriminability: need to capture high-order moments

�(X) = {E(fi(X))}i

Stability: E(kb�(X)� �(X)k2) small

b�(X) =

(
1

N

X

n

fi(x)(n)

)

i

Estimation from samples x(n):
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| ..|X ?  j1,�1 | ? . . . | ?  jm,�m |

E(|..|X ?  j1,�1 | ? . . . | ?  jm,�m |) , 8ji, �i
| ..|X ?  j1,�1 | ? . . . | ?  jm+1,�m+1 |



Properties of Scattering Moments
• Captures high order moments:

m = 1 m = 2
SJ [p]XPower Spectrum

[Bruna, Mallat, ’11,’12]



Properties of Scattering Moments
• Captures high order moments:

m = 1 m = 2
SJ [p]XPower Spectrum

[Bruna, Mallat, ’11,’12]

• Cascading non-linearities is necessary to reveal higher-
order moments.



Consistency of Scattering Moments

Theorem: [B’15] If  is a wavelet such that k k1  1, and X(t) is a

linear, stationary process with finite energy, then

lim

N!1
E(k ˆSNX � SXk2) = 0 .



Consistency of Scattering Moments

Corollary: If moreover X(t) is bounded, then

E(k ˆSNX � SXk2)  C
|X|21p

N
.

• Although we extract a growing number of features, their 
global variance goes to 0.

• No variance blow-up due to high order moments.
• Adding layers is critical (here depth is log(N)). 

Theorem: [B’15] If  is a wavelet such that k k1  1, and X(t) is a

linear, stationary process with finite energy, then

lim

N!1
E(k ˆSNX � SXk2) = 0 .


