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e &(x) € RV is a one-hot vector encoding x € QOL_, [ < L.
(z € Q= d(x), =1, () =0,k #1)

* [he Random Forest Is obtained with an ensemble of

two-layer networks.

* [raining Is radically different: greedy in RF versus gradient
descent In Deep Learning.




~ Review:

model

ice the resolution

response of part filters

response of root filter

color encoding of filter
response values

low value

combined score of

high value root locations

"Object Detection with

discriminatively trained
Deformable Parts Model”,

J

Felzenszwalb, Girshick et al."| O

Provides a Generative
Model that Is
compatible with the
Deep Convolutional
Architecture.

Can 1t scale to model
high-dimensional
variability present in
natural images?



* Suppose that for each bounding box we ask: Is there a
{house, bicycle, dog, man, ..., none} !

* This Is standard object classification.
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Review: R-CNN [R. Girshick et al, [4-15]

* Rather than testing every possible rectangular region, we

rely on a Region Proposal algorithm (which can also be
done by a CNN).

* Fach proposal region Is warped and analyzed with
another CNN.




best
segmentation

* [Bottou, Bengio & LeCun, '9/]

* Graphical model over possible
“segmentations’ of
handwritten characters

picks the path with
the lowest accumulated
penalty

3[0.1] 43.4] 1[0.2] 2[0.7]

scored character

candidates
8[5.2] 4[1.1]

gives low penalties
to well-formed characters

* Used commercially to read
~10% checks in the US (1996).

segmentation
graph

cuts a word into
pieces of ink

image of a word




~ Review: CRFs as Convolutional Neural Networks

Algorithm 1 Mean-field in dense CRFs [27], broken down

) to common CNN operations.
* I:Z qeng et a’l’ | 5:| Qi(l) + Z% exp (%(l)) for all 4 > Initialization
. 4+ while not converged do
approximate the mean-field e
: : . > Message Passin
message passing iterations Bu) S, ™3 S
. . ) ) > Weighting Filter Outputs
with CNN layers with Qi) = e L 1)Q:(D)
y X > Compatibility Transform
shared parameters. PO CBOTED | adting Unary Potenta

, Qi + 5= exp (@z‘(l))
* [he system can be efficiently > Nommalizing

end while
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Figure 1. A mean-field iteration as a CNN. A single iteration of

the mean-field algorithm can be modelled as a stack of common
CNN layers.




_Objectives

* Embeddings

e Extensions to Non-Euclidean Domains

- Locally Connected Networks
- Spectral Networks
- Spatial Transformer Networks

* Representations of Stationary Processes

- Scattering Moments

- Properties and Applications
- Texture Synthesis
- CNNs for Texture Representation.,
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e Q: Can we use a CNN to learn a metric ||®(x) — ®(2)]||
with specific properties!

* Ex: metric compatible with object categories and/or
transformations.

* Ex: metric compatible with a retrieval task:
N “maru’9




e positive pairs (r1,x2) € X X X1 (T1,T2) ~ Qpos
e negative pairs (r1,r3) € X X X: (21,T2) ~ Qneg

* [dea: we want to push closer positive pairs and push
farther negative pairs:

Hinge Embedding Loss:

min Eong,,, |®(21) = ®(22) ]| + AEBong,,, max(0, M — [[®(x1) — (22)|*)

> > (1)

2 >D(x2)

|0



e positive pairs (r1,x2) € X X X1 (T1,T2) ~ Qpos

e negative pairs (r1,r3) € X X X: (21,T2) ~ Qneg

e |[deg: we wan?

farther negative pairs:

Hinge Embedding Loss:

min
D,

gy [|P(21) — B(22)|* + A

. to push closer positive pairs and push

e, Max(0, M — [|®(x1) — B(z2)]?)

>

'CI)(CBl)

~

>(I)(ZIZ‘2>

* The “contrastive’” term can be replaced by other losses.



DrLiM,

architecture;

_ asdell et al, '06] considered a setup where ®(x)
s a low-dimensional embedding using a siamese CNN
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* Given labeled data, one may learn a metric of the form

d(z,z') = [|®(z) — (z')

Batch

N YN

xl(l) ..... xl(%) > CNN " Quer)’
ke, .y,
o .

(3) 0

Xq(al) ..... XTQ ‘ > CNN > g
5

y(l) ,,,,, y(%) O

— —

Batch
(%)
xM % . CNN
ke
() ©
xM L Xp > CNN 3
A=
x(M xS CNN
— —

(b) Training network with triplet embedding [39, 31]

Batch
..... Xm > CNN

Lifted struct loss

(c) Training network with lifted structure embedding

| that is compatible with labels.

Retrieval

» =

"Deep Metric Learning via Lifted Structured

Feature Embedding”’, Oh Song et al/ | 5

|3




* Given labeled data, one may learn a metric of the form

d(z,z') = [|®(z) — (z')

(a) Query 1: Input scene and box

—

(a) Query 2: Product

| that is compatible with labels.

Convolutional
Neural
Network

I

Learned
Parameters 6

(b) Project into 256D embedding (c) Results 2: use of product in-situ

“Learning visual similarity for product design
with convolutional neural nets’, Bell et al. | 5

| 4



* Analogies are relationships of the form “A'isto B as C is
to D",

- BE.g."Panis” 1s to “France™ as "London’ is to "UK""

* Q: How to solve analogies using embeddings!
* We can try to linearize the analogies:

B‘ ’@(B)
H(A)
A‘ ¢ , 0/ ®(D)
& (C) @
C ‘D ‘/



* ["Deep Visual Analogy-Making”, Reed et al, NIPS'| 5]

Encoder network f

NN
a5
Er=al" U S,
b NN R i}
\NREE L. N /

NN R
:%% -------

Increment
function T

add
mul

=

Decoder

::>/ deep \ network g

i >

b= :>@:>H:>@ ______ %-d
D

» Given analogy tuples (a,

> ld-

(a,b,c,d)

b, c,d), optimize a cost of the form

g(®(b) — ©(a) + ()" .

» More complicated transformations beyond linear possible.

|16



Application: Visual Analogies

* ["Deep Visual Analogy-Making”, Reed et al, NIPS'| 5]

ref.

output query predictions

 Given analogy tuples (a, b, ¢, d), optimize a cost of the form

> lld—g(®(b) — @(a) + &(c))||* .
(a,b,c,d)
» More complicated transformations beyond linear possible.

|7



* Person recognition with one single training example:

|18



* Person recognition with one single training example:
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* Person recognition with one single training example:

* Leverage examples from other classes and transfer
<nowledge

20



* One-Shot learning with siamese architectures
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» Consider pairs of training examples (z;.1,y:.1), (i2,¥i2)

& si = Y1 = Yi2)

F(xq1,1x2)

22



* Consider pairs of training examples (z;1,%:.1), (Ti2,Y:i2)

si = Y1 = Yi2)

T
d —

* We train the system to detec
from the same class or not.

23

F($1, 2172)

F(%‘,l,%’,z) — p(yi,l — Yi,2 ‘ %17%2)

. whether a pair comes



* Now, given one training example z; from each new class

and a query z , we estimate the label as

A

g(r) = arg max F'(Z;,z) .

24
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~_ Application: One-Shot Learning

[G Koch [ 5] uses a CNN siamese archfcecture on the
Ommglot dataset:
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~ Extensions to non-tuclidean Domain

e So far, we have been able to define convolutional
operators to our inputs of the form

r(u,\), u€g G:R% (d=1,2,3)
G:Q% (d=1,2,3), Q: discrete grid

* In all these cases, the translation group acts on G
(i.e. p,G = G for all translations ¢, v € G) G(t—10)

2% G (i)



Extensions to non-kEuclidean Domain

e So far, we have been able to define convolutional
operators to our inputs of the form

r(u,\), u€g

G:RY (d=1,2,3)
G:Q% (d=1,2,3), Q: discrete grid

* In all these cases, the translation group acts on ¢
(i.e. ©,G = G for all translations ¢, v € G)

* Moreover, stabllity to
result In models with

OCd
OCd

deformations and s
ized convolutional o

fationarity

pDerators.

* As a result, the number of parameters to learn Is
independent of input dimensionality

27



* [ hese properties are not present in

¢ 3

D Mesh data (eg surface tensions)

* [Ime-frequency audio representations:

R ‘ \El;l”.“'ﬁﬂf T 0T | R e
; : s ““-“;- '. ‘;!1'.., ";‘ ”:l i ; Ll i Feamaarnt a1

x(t,w) is not stationary with respect to w.

* Soclal Network signals, gsene expression, collaborative

filtering, etc.




* Intermediate CNN layers

- 3\
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48

x(u, \) is not stationary with respect to .

,can we learn with #parameters iIndependent
ize! What archrtecture?

* [n genera
of Input s




(

(): set of input coordinates
W, ;i similarity between coordinates ¢ and j



* SImilarity can be given by sensing process:

— (grids, 3D meshes, weather stations)

u-\W; exp(—lus — u]|*/20%)
HEEAZ

e Or It can also be estimated from the data.



* | Observations in dimension N: X = (x;.1)i<N:1<L
* Similarity given by  W; . = Cov (| X;|, | X;|)
 Ex: Stationary distributions, in MNIST:

i o :’._;.-_}._Ej?: SRR LRSS
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from ‘Learning the 2-D topology of images’,
by N.LeRoux, Y. Bengio et al, NIPS 0/

* Also In [“Selecting Receptive Fields in Deep Networks”, Coates
et al, NIPS [ 1].

* Richer statistics can be used to define similarity.



Locally Connected Networks

[ Selectmg Receptlve F|elds I Deep Netvvorks Coates & Ng I\IIPS I |
[“Locally Connected Nets and Spectral Networks”, B. et al, ICLR"[4]






















* Hierarchical Clustering of Graph

* This gives O(n) parameters per feature map.



* In R , convolutions are diagonalized in Fourier domain:
r*x h = F 'diag(Fh)Fz

—27?;}(5 - l)) |

where Fi; = exp (



* In R , convolutions are diagonalized in Fourier domain:
r*x h = F 'diag(Fh)Fz

—ZW]fif(f - l)) |

where Fi; = exp (

* Fourier basis can be defined as the eigenbasis of
_aplacian operator:




* We can define the Laplacian on an undirected graph:
A=I-W), W=DYWD 1% D= diag(W1)
(Ail?)k — Tk — Zfa}ijj

. measures smoothness in the graph



* We can define the Laplacian on an undirected graph:
A=I-W), W=DYWD 1% D= diag(W1)
(Ail?)k — Tk — Z@ijj

. measures smoothness in the graph

e A is positive definite and symmetric. A = Vdiag(\)V*



* We can define the Laplacian on an undirected graph:
A=I-W), W=DYWD 1% D= diag(W1)
(Ail?)k — Tk — Z@ijj

. measures smoothness in the graph

e A is positive definite and symmetric. A = Vdiag(\)V*

* “Fourier basis” of the graph: V : Eigenvectors of A




» “Convolution™ on a graph: Linear Operator commuting
with /\:

r *q h := Vdiag(h)V'x

—Filter coefficients h are specified in the spectral domain.



» “Convolution™ on a graph: Linear Operator commuting
with /\:

r *q h := Vdiag(h)V'x

—Filter coefficients h are specified in the spectral domain.

e Spectral Network: filter bank (= *g hx)r<xk



» “Convolution™ on a graph: Linear Operator commuting
with /\:

r *q h := Vdiag(h)V'x

—Filter coefficients h are specified in the spectral domain.

e Spectral Network: filter bank (= *g hx)r<xk

o We still require O(n) parameters per filter.



* In RY, Smoothness and sparsity are dual notions:

x fast decay <= ¥ smooth
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* In R™N, Smoothness and sparsity are dual notions:
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* In R™N, Smoothness and sparsity are dual notions:

x fast decay <= ¥ smooth
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* In R™N, Smoothness and sparsity are dual notions:

x fast decay <= ¥ smooth
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* In R™N, Smoothness and sparsity are dual notions:
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h = Kh, K : interpolation kernel (eg splines)
IC size n X s, with s ~ spatial support size



* Smoothness requires a notion of similarity between
elgenvectors V = [vy ... v,] of Laplacian

» Simplest Dual Geometry: |D given by Spectrum
&—@ & & & & 0 —0@

U1 U9 Unp—1 Up

» General construction of dual graph: open problem.

—Dual construction which enforces spatial decay?



Numerical Experiments

method Parameters | Error

Nearest Neighbors N/A 4.11
400-FC800-FC50-10 3.6 - 10° 1.8
400-LRF1600-MP800-10 7.2 10 1.8
400-LRF3200-MP800-LRF800-MP400-10 1.6 - 10° 1.3
400-SP1600-10 (d; = 300, ¢ = n) 3.2-10° 2.6
400-SP4800-10 (d; = 300, ¢ = 20) 5-10° 1.8




* MNIST projected onto 3 :

learnt “feature maps”

method Parameters | Error
Nearest Neighbors N/A 19
4096-FC2048-FC512-9 107 5.6
4096-LRF4620-MP2000-FC300-9 - 10° 6
4096-LRF4620-MP2000-LRF500-MP250-9 - 10° 6.5
4096-SP32K-MP3000-FC300-9 (¢ = n) - 10°
4096-SP32K-MP3000-FC300-9 (¢ = 64) - 10° 6

O© O OO
\]




* When graph Is unknown, how to estimate it/

- Unsupervised: use data statistics (eg data covariance).

- Supervised: use a simple network first and consider:

ply | ) = Sm(Wao(Wix))

d(iaj) — ||le — Wl,j

* Small iImprovements over

Dropout FC baseline:

Graph Architecture Poet Peraph R?

- FC4000-FC2000-FC1000-FC1000 22.1-10° 0 0.2729
Supervised GC16-P4-GC16-P4-FC1000-FC1000 | 3.8-10° | 3.9-10° | 0.2773
Supervised GC64-P8-GC64-P8-FC1000-FC1000 | 3.8-10°% | 3.9-10° | 0.2580
RBF Kernel GC64-P8-GC64-P8-FC1000-FC1000 | 3.8-10° | 3.9-10° | 0.2037

RBF Kernel (local) | GC64-P8-GC64-P8-FC1000-FC1000 | 3.8 - 10 | 3.9-10° | 0.1479

* However, computationally demanding: O(n"2).

57




R, (d=1,2,3)
j U; &

W"”’ o ® ®

()

V = (vi,...,on) € RN coordinate embedding
er«nF+xeL%R6

E x(2)0(u — v;)

* How to deﬂne a convolution In an Irregular sampling grid?

58



* Given a compact support kernel ¥ defined In a regular
orid G C R? we extend it to R? by interpolating:

A A

p(u), ueg b(a), weR

e This Idea has also been used within CNN architectures,

|(r)w Sb%ia/ Trgnsf%(mer Networks:

“Spatial Transformer Networks”, Jaderberg
etal,’ |5
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* Two clips. Goal: distinguish which 1s which.

clip| clip? clip ¢

60



* Same experiment. Goal: distinguish which i1s which.

clip3 clip4 clip ¢

6|



* Same experiment. Goal: distinguish which i1s which.

clip3 clip4 clip ¢

* Typically, the latter 1s harder. Reasons!

“Summary Statistics in auditory perception”,é/\z/chermott & Simoncelli, Nature Neurosc.’| 3



* Same experiment. Goal: distinguish which i1s which.

clip3 clip4 clip ¢

* Typically, the latter 1s harder. Reasons!

* Desprte having more information, the discrimination Is
worse because we construct temporal averages In
presence of stationary inputs.

“Summary Statistics in auditory perception”, McDermott & Simoncelli, Nature Neurosc.”| 3
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x(u): realizations of a stationary process X (u) (not Gaussian)

‘-
\




(u) (not Gaussian)

Discriminability: need to capture high-order moments
Stability: E(||®(X) — ®(X)||?) small




X






E(|X *wjlfh D 7\7].1771




E(|X *wjlfh |) 7Vj1771

E(‘ |X *wjlf}’l‘ *ijf'YQ |) 7\V/ji7%l
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Captures high opggveerrsgggments. sl

T =




Properties of Scattering Moments o
. | [Bruna Mallat

rder moments:

Power Spectrum

ol gh o

* Cascading non-linearities 1s necessary to reveal higher-
order moments.



Theorem: [B’15] If ¢ is a wavelet such that |[¢|1 < 1, and X (¢) is a
linear, stationary process with finite energy, then

lim E(||SyX —SX||*)=0.
N — o0



Consistency of Scattering Moments

Theorem: [B’15] If ¢ is a wavelet such that |[¢|1 < 1, and X (¢) is a
linear, stationary process with finite energy, then

lim E(||SyX — SX|?)=0.
N —00

Corollary: If moreover X (t) is bounded, then

X5

E(|SyX — SX||?) < C .
(HN H)— \/N

* Although we extract a growing number of features, their
olobal variance goes to 0.

* No variance blow-up due to high order moments.

* Adding layers is critical (here depth i1s log(N)).



