Stat 212b:Topics in Deep Learning Lecture 10

Joan Bruna UC Berkeley

Review: Embed RF into Deep Neural Networks?

- $\Phi(x) \in \mathbb{R}^L$ is a one-hot vector encoding $x \in \Omega_{\infty}^l$, $l \leq L$. $(x \in \Omega_{\infty}^l \Leftrightarrow \Phi(x)_l = 1, \Phi(x)_k = 0, k \neq l)$
- The Random Forest is obtained with an ensemble of two-layer networks.
- Training is radically different: greedy in RF versus gradient descent in Deep Learning.

Review: Deformable Parts Model

"Object Detection with discriminatively trained Deformable Parts Model", Felzenszwalb, Girshick et al.'10

Provides a Generative Model that is compatible with the Deep Convolutional Architecture.

Can it scale to model high-dimensional variability present in natural images?

Review: Region-based CNN (R-CNN)

- Suppose that for each bounding box we ask: is there a {house, bicycle, dog, man, ..., none} ?
- This is standard object classification.

Review: R-CNN [R. Girshick et al, 14-15]

- Rather than testing every possible rectangular region, we rely on a Region Proposal algorithm (which can also be done by a CNN).
- Each proposal region is warped and analyzed with another CNN.

Review: Graph Transformer Network

- [Bottou, Bengio & LeCun, '97]
- Graphical model over possible "segmentations" of handwritten characters

 Used commercially to read ~10% checks in the US (1996).

Review: CRFs as Convolutional Neural Networks

- [Zheng et al,'15] approximate the mean-field message passing iterations with CNN layers with shared parameters.
- The system can be efficiently trained end-to-end.

Algorithm 1 Mean-field in dense CRFs [27], broken down to common CNN operations.

$Q_i(l) \leftarrow \frac{1}{Z_i} \exp\left(U_i(l)\right)$ for all i	▷ Initialization
while not converged do	
$\tilde{Q}_i^{(m)}(l) \leftarrow \sum_{j \neq i} k^{(m)}(\mathbf{f}_i, \mathbf{f}_j) Q_j(l)$ for all m	
570	Message Passing
$\check{Q}_i(l) \leftarrow \sum_m w^{(m)} \tilde{Q}_i^{(m)}(l)$	
	▷ Weighting Filter Outputs
$\hat{Q}_i(l) \leftarrow \sum_{l' \in \mathcal{L}} \mu(l, l') \check{Q}_i(l)$	
<u> </u>	▷ Compatibility Transform
$Q_i(l) \leftarrow U_i(l) - Q_i(l)$	
	▷ Adding Unary Potentials
$Q_i \leftarrow \frac{1}{Z_i} \exp\left(\check{Q}_i(l)\right)$	
· · · /	▷ Normalizing

end while

Figure 1. A mean-field iteration as a CNN. A single iteration of the mean-field algorithm can be modelled as a stack of common CNN layers.

Objectives

- Embeddings
- Extensions to Non-Euclidean Domains
 - Locally Connected Networks
 - Spectral Networks
 - Spatial Transformer Networks
- Representations of Stationary Processes
 - Scattering Moments
 - Properties and Applications
 - Texture Synthesis
 - CNNs for Texture Representation.

Embeddings

- Q: Can we use a CNN to learn a metric $\|\Phi(x) \Phi(x')\|$ with specific properties?
- Ex: metric compatible with object categories and/or transformations.
- Ex: metric compatible with a retrieval task:

Embeddings with "Siamese" Architectures

- positive pairs $(x_1, x_2) \in \mathcal{X} \times \mathcal{X}$: $(x_1, x_2) \sim q_{pos}$
- negative pairs $(x_1, x_2) \in \mathcal{X} \times \mathcal{X}$: $(x_1, x_2) \sim q_{neg}$
- Idea: we want to push closer positive pairs and push farther negative pairs:

Hinge Embedding Loss:

 $\min_{\Phi} \mathbb{E}_{x \sim q_{pos}} \|\Phi(x_1) - \Phi(x_2)\|^2 + \lambda \mathbb{E}_{x \sim q_{neg}} \max(0, M - \|\Phi(x_1) - \Phi(x_2)\|^2)$

Embeddings with General Architectures

- positive pairs $(x_1, x_2) \in \mathcal{X} \times \mathcal{X}$: $(x_1, x_2) \sim q_{pos}$
- negative pairs $(x_1, x_2) \in \mathcal{X} \times \mathcal{X}$: $(x_1, x_2) \sim q_{neg}$
- Idea: we want to push closer positive pairs and push farther negative pairs:

Hinge Embedding Loss:

 $\min_{\Phi,\tilde{\Phi}} \mathbb{E}_{x \sim q_{pos}} \|\Phi(x_1) - \tilde{\Phi}(x_2)\|^2 + \lambda \mathbb{E}_{x \sim q_{neg}} \max(0, M - \|\Phi(x_1) - \tilde{\Phi}(x_2)\|^2)$ $\xrightarrow{x_1} \quad \longrightarrow \Phi(x_1)$ $\xrightarrow{x_2} \quad \longrightarrow \tilde{\Phi}(x_2)$

• The "contrastive" term can be replaced by other losses.

Dimensionality Reduction and Embedding

• [DrLiM, Hasdell et al, '06] considered a setup where $\Phi(x)$ is a low-dimensional embedding using a siamese CNN architecture:

Semantic Embedding and metric learning

• Given labeled data, one may learn a metric of the form $d(x, x') = \|\Phi(x) - \Phi(x')\|$ that is compatible with labels.

(a) Training network with contrastive embedding [14]

(b) Training network with triplet embedding [39, 31]

(c) Training network with lifted structure embedding

"Deep Metric Learning via Lifted Structured Feature Embedding", Oh Song et al. 15

Semantic Embedding and metric learning

• Given labeled data, one may learn a metric of the form $d(x, x') = \|\Phi(x) - \Phi(x')\|$ that is compatible with labels.

"Learning visual similarity for product design with convolutional neural nets", Bell et al. 15

Application: Visual Analogies

- Analogies are relationships of the form "A is to B as C is to D".
 - E.g. ''Paris'' is to ''France'' as ''London'' is to ''UK''.
- Q: How to solve analogies using embeddings?
- We can try to *linearize* the analogies:

Application: Visual Analogies

• [''Deep Visual Analogy-Making'', Reed et al, NIPS'15]

 \bullet Given analogy tuples $\left(a,b,c,d\right)$, optimize a cost of the form

$$\sum_{(a,b,c,d)} \|d - g(\Phi(b) - \Phi(a) + \Phi(c))\|^2$$

• More complicated transformations beyond linear possible.

Application: Visual Analogies

• [''Deep Visual Analogy-Making'', Reed et al, NIPS'I5]

- Given analogy tuples (a, b, c, d) , optimize a cost of the form

$$\sum_{a,b,c,d} \|d - g(\Phi(b) - \Phi(a) + \Phi(c))\|^2$$

• More complicated transformations beyond linear possible.

• Person recognition with one single training example:

• Person recognition with one single training example:

• Person recognition with one single training example:

 Leverage examples from other classes and transfer knowledge

• One-Shot learning with siamese architectures

• Consider pairs of training examples $(x_{i,1}, y_{i,1}), (x_{i,2}, y_{i,2})$

• Consider pairs of training examples $(x_{i,1}, y_{i,1}), (x_{i,2}, y_{i,2})$

• We train the system to detect whether a pair comes from the same class or not.

• Now, given one training example \tilde{x}_i from each new class and a query x , we estimate the label as

• [G. Koch,'15] uses a CNN siamese architecture on the Omniglot dataset:

hj

Greek Hebrew Korean Latin

Pa w b L C δ

上来 J K HH K C: 表

Extensions to non-Euclidean Domain

 So far, we have been able to define convolutional operators to our inputs of the form

$$x(u,\lambda) , u \in \mathcal{G}$$
 $\mathcal{G}: \mathbb{R}^d \ (d=1,2,3)$
 $\mathcal{G}: \Omega^d \ (d=1,2,3) , \Omega:$ discrete grid

• In all these cases, the translation group acts on \mathcal{G} . (i.e. $\varphi_v \mathcal{G} = \mathcal{G}$ for all translations $\varphi_v \ v \in \mathcal{G}$) $\qquad \mathcal{G}(i - i_0)$

Extensions to non-Euclidean Domain

 So far, we have been able to define convolutional operators to our inputs of the form

$$\begin{aligned} x(u,\lambda) \ , \ u \in \mathcal{G} & \mathcal{G} : \mathbb{R}^d \quad (d=1,2,3) \\ \mathcal{G} : \Omega^d \quad (d=1,2,3) \ , \ \Omega : \ \text{discrete grid} \end{aligned}$$

- In all these cases, the translation group acts on \mathcal{G} (i.e. $\varphi_v \mathcal{G} = \mathcal{G}$ for all translations $\varphi_v \ v \in \mathcal{G}$)
- Moreover, stability to local deformations and stationarity result in models with localized convolutional operators.
- As a result, the number of parameters to learn is independent of input dimensionality

Limits of Convolutional Networks

These properties are not present in
3D Mesh data (eg surface tensions)

• Time-frequency audio representations:

 $x(t,\omega)$ is not stationary with respect to ω .

• Social Network signals, gene expression, collaborative filtering, etc.

Limits of Convolutional Networks

• Intermediate CNN layers

 $x(u,\lambda)$ is not stationary with respect to λ .

 In general, can we learn with #parameters independent of input size? What architecture?

General Signals: Functions on graphs

Feature Similarity

• Similarity can be given by sensing process:

-(grids, 3D meshes, weather stations)

• Or it can also be estimated from the data.

Recovering Graph Structure

- L Observations in dimension N: $X = (x_{i,l})_{i \le N}; l \le L$
- Similarity given by $W_{i,j} = \operatorname{Cov}(|X_i|, |X_j|)$
- Ex: Stationary distributions, in MNIST:

504192

from 'Learning the 2-D topology of images'', by N.LeRoux, Y. Bengio et al, NIPS 07

- Also in ["Selecting Receptive Fields in Deep Networks", Coates et al, NIPS 11].
- Richer statistics can be used to define similarity.

["Selecting Receptive Fields in Deep Networks", Coates & Ng, NIPS'II] ["Locally Connected Nets and Spectral Networks", B. et al, ICLR'I4]

- Hierarchical Clustering of Graph
- This gives O(n) parameters per feature map.

• In \mathbb{R}^d , convolutions are diagonalized in Fourier domain:

$$x * h = \mathcal{F}^{-1} \operatorname{diag}(\mathcal{F}h) \mathcal{F}x ,$$

where
$$\mathcal{F}_{k,l} = \exp\left(\frac{-2\pi i(k \cdot l)}{N^d}\right)$$
.

ullet In \mathbb{R}^d , convolutions are diagonalized in Fourier domain:

$$x * h = \mathcal{F}^{-1} \operatorname{diag}(\mathcal{F}h) \mathcal{F}x ,$$

where
$$\mathcal{F}_{k,l} = \exp\left(\frac{-2\pi i(k \cdot l)}{N^d}\right)$$
.

• Fourier basis can be defined as the eigenbasis of Laplacian operator:

$$\Delta x(u) = \sum_{j \le d} \frac{\partial^2 x}{\partial u_j^2}(u) \ .$$

Graph Laplacian

• We can define the Laplacian on an undirected graph: $\Delta = (I - \tilde{W}), \quad \tilde{W} = D^{-1/2}WD^{-1/2}, \quad D = \text{diag}(W1)$ $(\Delta x)_k = x_k - \sum_j \tilde{w}_{kj} x_j \text{ measures smoothness in the graph}$

Graph Laplacian

- We can define the Laplacian on an undirected graph: $\Delta = (I - \tilde{W}), \quad \tilde{W} = D^{-1/2}WD^{-1/2}, \quad D = \text{diag}(W1)$ $(\Delta x)_k = x_k - \sum_j \tilde{w}_{kj} x_j$ measures smoothness in the graph
- Δ is positive definite and symmetric. $\Delta = V \operatorname{diag}(\lambda) V^T$

Graph Laplacian

- We can define the Laplacian on an undirected graph: $\Delta = (I - \tilde{W}), \quad \tilde{W} = D^{-1/2}WD^{-1/2}, \quad D = \text{diag}(W1)$ $(\Delta x)_k = x_k - \sum_j \tilde{w}_{kj} x_j$ measures smoothness in the graph
- Δ is positive definite and symmetric. $\Delta = V \operatorname{diag}(\lambda) V^T$

• "Fourier basis" of the graph: V : Eigenvectors of Δ

• "Convolution" on a graph: Linear Operator commuting with Δ :

$$x *_G h := V \operatorname{diag}(h) V^T x$$

-Filter coefficients h are specified in the spectral domain.

• "Convolution" on a graph: Linear Operator commuting with Δ :

$$x *_G h := V \operatorname{diag}(h) V^T x$$

-Filter coefficients h are specified in the spectral domain.

• Spectral Network: filter bank $(x *_G h_k)_{k \leq K}$

• "Convolution" on a graph: Linear Operator commuting with Δ :

$$x *_G h := V \operatorname{diag}(h) V^T x$$

-Filter coefficients h are specified in the spectral domain.

• Spectral Network: filter bank $(x *_G h_k)_{k \leq K}$

•We still require O(n) parameters per filter.

• In R^d, Smoothness and sparsity are dual notions:

x fast decay $\iff \hat{x}$ smooth

• In R^N, Smoothness and sparsity are dual notions: x fast decay $\iff \hat{x}$ smooth

• In R^N, Smoothness and sparsity are dual notions:

x fast decay $\iff \hat{x}$ smooth

• In R^N, Smoothness and sparsity are dual notions:

x fast decay $\iff \hat{x}$ smooth

• In R^N, Smoothness and sparsity are dual notions:

x fast decay $\iff \hat{x}$ smooth

 $h = \mathcal{K}\tilde{h}$, \mathcal{K} : interpolation kernel (eg splines) \mathcal{K} size $n \times s$, with $s \sim$ spatial support size

Dual Laplacian Graph

• Smoothness requires a notion of similarity between eigenvectors $V = [v_1 \dots v_n]$ of Laplacian v_j

 $/\bar{w}_{i,j}$

• Simplest Dual Geometry: ID given by Spectrum

• General construction of dual graph: open problem. —Dual construction which enforces spatial decay?

Numerical Experiments

• MNIST random subsampling (400 pixels)

method	Parameters	Error
Nearest Neighbors	N/A	4.11
400-FC800-FC50-10	$3.6 \cdot 10^{5}$	1.8
400-LRF1600-MP800-10	$7.2 \cdot 10^4$	1.8
400-LRF3200-MP800-LRF800-MP400-10	$1.6 \cdot 10^{5}$	1.3
400-SP1600-10 ($d_1 = 300, q = n$)	$3.2 \cdot 10^{3}$	2.6
400-SP4800-10 ($d_1 = 300, q = 20$)	$5 \cdot 10^3$	1.8

Some Experiments

• MNIST projected onto 3D sphere:

learnt "feature maps"

method	Parameters	Error
Nearest Neighbors	N/A	19
4096-FC2048-FC512-9	10^{7}	5.6
4096-LRF4620-MP2000-FC300-9	$8\cdot 10^5$	6
4096-LRF4620-MP2000-LRF500-MP250-9	$2\cdot 10^5$	6.5
4096-SP32K-MP3000-FC300-9 $(q = n)$	$9\cdot 10^5$	7
4096-SP32K-MP3000-FC300-9 $(q = 64)$	$9\cdot 10^5$	6

Unknown Similarity

- When graph is unknown how to estimate it? - Unsupervised graph - Supervised: y_{gd} use data statistics (ego data covariance) - Supervised: y_{gd} use a simple network for st and con $p(y \mid x) = S_m (W_{1,j} = W_{1,j} = W_{$
- Small improvements over Dropout FC baseline:

Graph	Architecture	P _{net}	Pgraph	R^2
-	FC4000-FC2000-FC1000-FC1000	$22.1 \cdot 10^{6}$	0	0.2729
Supervised	GC16-P4-GC16-P4-FC1000-FC1000	$3.8\cdot10^6$	$3.9\cdot10^6$	0.2773
Supervised	GC64-P8-GC64-P8-FC1000-FC1000	$3.8 \cdot 10^{6}$	$3.9 \cdot 10^{6}$	0.2580
RBF Kernel	GC64-P8-GC64-P8-FC1000-FC1000	$3.8\cdot 10^6$	$3.9 \cdot 10^{6}$	0.2037
RBF Kernel (local)	GC64-P8-GC64-P8-FC1000-FC1000	$3.8 \cdot 10^{6}$	$3.9 \cdot 10^{6}$	0.1479

• However, computationally demanding: $O(n^2)$.

Supervised Embedding

$$V = (v_1, \dots, v_N) \in \mathbb{R}^{d \times N}: \text{ coordinate embedding}$$
$$x \in L^1(G) \mapsto \tilde{x} \in L^1(\mathbb{R}^d)$$
$$\tilde{x}(u) = \sum_{i=1}^{N} x(i)\delta(u - v_i)$$

• How to define a convolution in an irregular sampling grid?

Supervised Embedding

• Given a compact support kernel ψ defined in a regular grid $\mathcal{G} \subset \mathbb{R}^d$, we extend it to \mathbb{R}^d by interpolating:

• This idea has also been used within CNN architectures, in Spatial Transformer Networks:

"Spatial Transformer Networks", Jaderberg et al,' I 5

• Two clips. Goal: distinguish which is which.

clip l clip2

clip ?

• Same experiment. Goal: distinguish which is which.

clip3 clip4

clip ?

• Same experiment. Goal: distinguish which is which.

clip3 clip4 clip?

• Typically, the latter is harder. Reasons?

"Summary Statistics in auditory perception", McDermott & Simoncelli, Nature Neurosc.' 13

• Same experiment. Goal: distinguish which is which.

clip3 clip4 clip?

- Typically, the latter is harder. Reasons?
- Despite having more information, the discrimination is worse because we construct temporal averages in presence of *stationary* inputs.

"Summary Statistics in auditory perception", McDermott & Simoncelli, Nature Neurosc." [3

Representation of Stationary Processes

x(u): realizations of a stationary process X(u) (not Gaussian)

Representation of Stationary Processes

x(u): realizations of a stationary process X(u) (not Gaussian)

$\Phi(X) = \{E(f_i(X))\}_i$

Estimation from samples
$$x(n)$$
: $\widehat{\Phi}(X) = \left\{ \frac{1}{N} \sum_{n} f_i(x)(n) \right\}_i$

Discriminability: need to capture high-order moments Stability: $E(\|\widehat{\Phi}(X) - \Phi(X)\|^2)$ small

Properties of Scattering Moments

Properties of Scattering Moments

 Cascading non-linearities is *necessary* to reveal higherorder moments.

Consistency of Scattering Moments

Theorem: [B'15] If ψ is a wavelet such that $\|\psi\|_1 \leq 1$, and X(t) is a linear, stationary process with finite energy, then

$$\lim_{N \to \infty} E(\|\hat{S}_N X - S X\|^2) = 0 \; .$$
Consistency of Scattering Moments

Theorem: [B'15] If ψ is a wavelet such that $\|\psi\|_1 \leq 1$, and X(t) is a linear, stationary process with finite energy, then

$$\lim_{N \to \infty} E(\|\hat{S}_N X - S X\|^2) = 0 \; .$$

Corollary: If moreover X(t) is bounded, then

$$E(\|\hat{S}_N X - SX\|^2) \le C\frac{|X|_{\infty}^2}{\sqrt{N}}$$

- Although we extract a growing number of features, their global variance goes to 0.
- No variance blow-up due to high order moments.
- Adding layers is critical (here depth is log(N)).