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Logistics

• Office Hours
– Tuesdays 4-6pm, Evans 419

• Course evaluation
– Paper Reviewing (30%): two papers during the semester
– Final Project (70%): you can choose among

•Oral Paper presentation
•Tiny research project
•Contribute to an open-source software package (Torch, Theano, Caffe)

– Final Project Proposal due April 1st
• B-Courses (public access): https://bcourses.berkeley.edu/courses/

1413088
• Github (public access):  https://github.com/joanbruna/stat212b 
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What this course is NOT about

• Exhaustive review of state-of-the-art 
– Although we will talk about recent work
– CS280 is focused on computer vision tasks.
– CS188/287 develops some (deep) Reinforcement Learning.
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What this course is NOT about

• Exhaustive review of state-of-the-art 
– Although we will talk about recent work
– CS280 is focused on computer vision tasks.
– CS188/287 develops some (deep) Reinforcement Learning.

• Hands-on implementations
– Although (you!) will implement stuff

• “Stratosferic” AI
– Although we will talk a bit about Reasoning, Memory and sequence-

to-sequence learning.
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What this course is about

• Mathematical models of Deep Convolutional Networks

• Supervised and Unsupervised learning using Deep 
models.

• Applications to computer vision, speech and time series. 

• Relationships between Deep Learning and “classic” 
models.

• Open mathematical/statistical questions.
6



Course Objectives

1. Good understanding of Convolutional (and recurrent) 
Networks
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Course Objectives

1. Good understanding of Convolutional (and recurrent) 
Networks

2. Overview of current DL research

3. Identification of “good” open problems.

4. Feedback!
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Deep Learning (take 1)
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Early Hierarchical Feature Models for Vision
• Hubel & Wiesel [60s] Simple & Complex cells architecture:

• Fukushima’s Neocognitron [70s]

figures from Yann LeCun’s CVPR’15 plenary12



Early Hierarchical Feature Models for Vision
• Yann LeCun’s Early ConvNets [80s]:

– Used for character recognition
– Trained with back propagation.

figures from Yann LeCun’s CVPR’15 plenary13



Deep Learning pre-2012

• Despite its very competitive performance, deep learning 
architectures were not widespread before 2012.
– State-of-the-art in handwritten pattern recognition [LeCun et al. ’89, 

Ciresan et al, ’07, etc] 

figures from Yann LeCun’s CVPR’15 plenary14



Deep Learning pre-2012

• Despite its very competitive performance, deep learning 
architectures were not widespread before 2012.
– Face detection [Vaillant et al’93,’94 ; Osadchy et al, ’03, ’04, ’07]

(Yann’s Family)
15



Deep Learning pre-2012

• Despite its very competitive performance, deep learning 
architectures were not widespread before 2012.
– Scene Parsing [Farabet et al, ’12,’13]

figures from Yann LeCun’s CVPR’15 plenary16



Deep Learning pre-2012

• Despite its very competitive performance, deep learning 
architectures were not widespread before 2012.
– Scene Parsing [Farabet et al, ’12,’13]

figures from Yann LeCun’s CVPR’15 plenary17



Long Story Short
• “A class of parametrized non-linear representations 

encoding appropriate domain knowledge (invariance 
and stationarity) that can be (massively) optimized 
efficiently using stochastic gradient descent”  
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Long Story Short
• “A class of parametrized non-linear representations 

encoding appropriate domain knowledge (invariance 
and stationarity) that can be (massively) optimized 
efficiently using stochastic gradient descent”  

�(x , ⇥) = ⇢(WL(⇢(WL�1 . . . ⇢(W1(x)) . . . )

Wi : Convolutional Tensors

⇢(·) : point-wise thresholding
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Long Story Short
• “A class of parametrized non-linear representations 

encoding appropriate domain knowledge (invariance 
and stationarity) that can be (massively) optimized 
efficiently using stochastic gradient descent”  

�(x , ⇥) = ⇢(WL(⇢(WL�1 . . . ⇢(W1(x)) . . . )

Wi : Convolutional Tensors

⇢(·) : point-wise thresholding

⇥⇤  argmin
⇥

E(⇥) =
X

i

`(ŷi(⇥), yi)

ŷi(⇥) = softmax(�(xi,⇥))

Given labeled data {xi, yi}i, solve using online stochastic optimization:
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Long Story Short

–Too many parameters to learn from few labeled examples.

– “I know my features are better for this task”.

–Non-convex optimization? No, thanks. 

–Black-box model, no interpretability. 

–Mostly point estimates: Non inferential.
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Deep Learning (take 2)
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Deep Learning Golden age in Vision
• 2012-2014 Imagenet results: 

• 2015 results: MSRA under 3.5% error. (using a CNN with 150 layers!)

CNN
non-CNN

figures from Yann LeCun’s CVPR’15 plenary23



Progress in large-scale Image Classification

24



Progress in Object Localization

25



Some Puzzling Questions
• What made this result possible?
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Some Puzzling Questions
• What made this result possible?

– Larger training sets (1.2 million, high-resolution training samples, 1000 
object categories)

– Better Hardware (GPU)
– Better Learning Regularization (eg Dropout)
– Better Optimization Conditioning (eg Batch Normalization)
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Some Puzzling Questions
• What made this result possible?

– Larger training sets (1.2 million, high-resolution training samples, 1000 
object categories)

– Better Hardware (GPU)
– Better Learning Regularization (eg Dropout)
– Better Optimization Conditioning (eg Batch Normalization)

• Is this just for a particular dataset?

• Is this just for a particular task?

• Why are these architectures so efficient? 
• We’ll look for mathematical and statistical reasons.
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Is it just for a particular dataset?
• No. Nowadays CNNs hold the state-of-the-art on virtually any object 

classification task.

figures from Yann LeCun’s NIPS’15 tutorial30



Is it just for a particular dataset?
• No. CNNs work well on domains where there is a low-dimensional 

geometric structure. 
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Is it just for a particular task?
• No. CNN architectures also obtain state-of-the-art performance on 

many other tasks:

Pose estimation [Tomson et al, CVPR’15]

Object Localization 
[R-CNN, HyperColumns, Overfeat, etc.]

figures from Yann LeCun’s CVPR’15 plenary32



Is it just for a particular task?
• No. CNN architectures also obtain state-of-the-art performance on 

other tasks:

•Segmentation [Pinhero, Collobert, Dollar, ICCV’15]
figures from Yann LeCun’s CVPR’15 plenary33



Is it just for a particular task?
• No. CNN architectures also obtain state-of-the-art performance on 

other tasks:
• Image Captioning [Vinyals et al’14, Karpathy et al ’14, Donahue et al’14, Kiros et al’14,MSR’14]
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Is it just for a particular task?
• No. CNN architectures also obtain state-of-the-art performance on 

other tasks:
• Image Captioning [Vinyals et al’14, Karpathy et al ’14, Donahue et al’14, Kiros et al’14,MSR’14]

•Image Super-Resolution [MSR’14]

•Optical Flow estimation [Zontar & LeCun, ’15]
•etc..
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Beyond Supervised Learning

36



Beyond Supervised Learning
• Deep Mind success (2013-now)
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• Visual analogies using CNNs:

Y LeCun
Supervised ConvNets that Draw Pictures

Generating Chairs

Chair Arithmetic in Feature Space

Beyond Supervised Learning

[Dosovitsky et al ‘14]
[Kulkarni et al’15]

    ref.    output   query   predictions

walk

thrust

rotate

Figure 9: Extrapolating by analogy. The model sees the reference / output pair and repeatedly
applies the inferred transformation to the query. This inference requires learning the manifold of
animation poses, and cannot be done by simply combining and decoding disentangled features.

4.3 3D car analogies
In this section we apply our model to analogy-making on 3D car renderings subject to changes in
appearance and rotation angle. Unlike in the case of shapes, this requires the ability of the model to
perform out-of-plane rotation, and the depicted objects are more complex.

Features Pose AUC ID AUC
Pose units 95.6 85.2
ID units 50.1 98.5

Combined 94.6 98.4

Table 4: Measuring the disentangling performance on 3D
cars. Pose AUC refers to area under the ROC curve for
same-or-different pose verification, and ID AUC for same-
or-different car verification on pairs of test set images.

Figure 10: 3D car analogies. The
column “GT” denotes ground truth.

We use the car CAD models from [11]. For each of the 199 car models, we generated 64⇥ 64 color
renderings from 24 rotation angles each offset by 15 degrees. We split the models into 100 training,
49 validation and 50 testing. The same convolutional network architecture was used as in the sprites
experiments, and we used 512 units for identity and 128 for pose.

Figure 11: Repeated rotation analogies in forward and reverse directions, starting from frontal pose.
Figure 10 shows test set predictions of our model trained on Ldis, where images in the fourth column
combine pose units from the first column and identity units from the second. Table 4 shows that the
learned features are in fact disentangled, and discriminative for identity and pose matching despite
not being discriminatively trained. Figure 11 shows repeated rotation analogies on test set cars using
a model trained on Ldeep, demonstrating that our model can perform out-of-plane rotation. This type
of extrapolation is difficult because the query image shows a different car from a different starting
pose. We expect that a recurrent architecture can further improve the results, as shown in [29].

5 Conclusions
We studied the problem of visual analogy making using deep neural networks, and proposed several
new models. Our experiments showed that our proposed models are very general and can learn to
make analogies based on appearance, rotation, 3D pose, and various object attributes. We provide
connection between analogy making and disentangling factors of variation, and showed that our
proposed analogy representations can overcome certain limitations of disentangled representations.
Acknowledgements This work was supported in part by NSF GRFP grant DGE-1256260, ONR
grant N00014-13-1-0762, NSF CAREER grant IIS-1453651, and NSF grant CMMI-1266184. We
thank NVIDIA for donating a Tesla K40 GPU.
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[Reed et al’15]
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From Supervised to “Self-Supervised” Learning

• Exploit spatio-temporal structure to constrain good image 
representations, eg:

[Doersch et al’15]

(a) (b)

(c) (d)

Figure 5: Linear interpolation in code space learned by our model. (a) no phase-pooling, no curva-
ture regularization, (b) with phase pooling and curvature regularization Interpolation results obtained
by minimizing (c) Equation 1 and (d) Equation 7 trained with only partially predictable simulated
video

Finally, Deep Architecture 3 uses phase-pooling in the encoder, and “un-pooling” in the decoder.
This architecture makes use of phase-pooling in a two-dimensional feature space arranged on an
8 ⇥ 8 grid. The pooling is done in a single group over all the fully-connected features producing a
feature vector of dimension 192 (64⇥ 3) compared to 4096 in previous architectures. Nevertheless
this architecture achieves the best overall L2 prediction error and generates the most visually realistic
images (Figure 5b). In this subsection we compare the representation learned by minimizing the loss
in Equation 1 to Equation 7. Uncertainty is simulated by generating triplet sequences where the third
frame is skipped randomly with equal probability, determined by Bernoulli variable s. For example,
the sequences corresponding to models with rotation angles 0�, 20�, 40� and 0

�
, 20

�
, 60

� are equally
likely. Minimizing Equation 1 with Deep Architecture 3 results in the images displayed in Figure
5c. The interpolations are blurred due to the averaging effect discussed in Subsection 3.2. On the
other hand minimizing Equation 7 (Figure 5d) partially recovers the sharpness of Figure 5b. For this
experiment, we used a three-dimensional, real valued �. Moreover training a linear predictor to infer
binary variable s from � (after training) results in a 94% test set accuracy. This suggests that � does
indeed capture the uncertainty in the data.

5 Discussion

In this work we have proposed a new loss and architecture for learning locally linearized fea-
tures from video. We have also proposed a method that introduces latent variables that are non-
deterministic functions of the input for coping with inherent uncertainty in video. In future work
we will suggest methods for “stacking” these architectures that will linearize more complex features
over longer temporal scales.

Acknowledgments

We thank Jonathan Tompson, Joan Bruna, and David Eigen for many insightful discussions. We
also gratefully acknowledge NVIDIA Corporation for the donation of a Tesla K40 GPU used for
this research.
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[Goroshin et al’15]
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Texture and Geometry
•CNN Representations arising from large-scale classification 

“disentangle” texture from geometry:
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Input image

Content
Representations

Style
Representations

Convolutional Neural Network

Style Reconstructions

Content Reconstructions

a edcb

a edcb

Figure 1. Image representations in a Convolutional Neural Network (CNN). A given input image is represented as a set of filtered images
at each processing stage in the CNN. While the number of different filters increases along the processing hierarchy, the size of the filtered
images is reduced by some downsampling mechanism (e.g. max-pooling) leading to a decrease in the total number of units per layer of the
network. Content Reconstructions. We can visualise the information at different processing stages in the CNN by reconstructing the input
image from only knowing the network’s responses in a particular layer. We reconstruct the input image from from layers ‘conv1 2’ (a),
‘conv2 2’ (b), ‘conv3 2’ (c), ‘conv4 2’ (d) and ‘conv5 2’ (e) of the original VGG-Network. We find that reconstruction from lower layers is
almost perfect (a–c). In higher layers of the network, detailed pixel information is lost while the high-level content of the image is preserved
(d,e). Style Reconstructions. On top of the original CNN activations we use a feature space that captures the texture information of an
input image. The style representation computes correlations between the different features in different layers of the CNN. We reconstruct
the style of the input image from a style representation built on different subsets of CNN layers ( ‘conv1 1’ (a), ‘conv1 1’ and ‘conv2 1’
(b), ‘conv1 1’, ‘conv2 1’ and ‘conv3 1’ (c), ‘conv1 1’, ‘conv2 1’, ‘conv3 1’ and ‘conv4 1’ (d), ‘conv1 1’, ‘conv2 1’, ‘conv3 1’, ‘conv4 1’
and ‘conv5 1’ (e). This creates images that match the style of a given image on an increasing scale while discarding information of the
global arrangement of the scene.

Networks. Since the texture model is also based on deep
image representations, the style transfer method elegantly
reduces to a single optimisation problem. New images are
generated by performing a pre-image search to match fea-
ture representations of example images. This general ap-
proach has been used before in the context of texture syn-
thesis [9, 21, 7] and to improve the understanding of deep
image representations [23, 20]. In fact, StyleNet combines
a parametric texture model based on Convolutional Neural
Networks [7] with a method to invert their image represen-
tations [20].

2. Deep image representations

The results presented below were generated on the ba-
sis of the VGG network [24], which was trained to perform
object recognition and localisation [22] and is described ex-
tensively in the original work [24]. We used the feature
space provided by a normalised version of the 16 convo-
lutional and 5 pooling layers of the 19-layer VGG network.
We normalized the network by scaling the weights such that
the mean activation of each convolutional filter over images
and positions is equal to one. Such re-scaling can be done

2

[Gathys et al’15]
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Texture and Geometry
•CNN Representations arising from large-scale classification 

“disentangle” texture from geometry:

[Gathys et al’15]

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

CVPR
#1191

CVPR
#1191

CVPR 2016 Submission #1191. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

D

B

F

A

C

E

Figure 3. Images that combine the content of a photograph with the style of several well-known artworks. The images were created by
finding an image that simultaneously matches the content representation of the photograph and the style representation of the artwork.
The original photograph depicting the Neckarfront in Tübingen, Germany, is shown in A (Photo: Andreas Praefcke). The painting that
provided the style for the respective generated image is shown in the bottom left corner of each panel. B The Shipwreck of the Minotaur
by J.M.W. Turner, 1805. C The Starry Night by Vincent van Gogh, 1889. D Der Schrei by Edvard Munch, 1893. E Femme nue assise by
Pablo Picasso, 1910. F Composition VII by Wassily Kandinsky, 1913.
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Generative Models of Natural Images
• CNNs can also be used to generate images, using appropriate loss and 

optimization ‘tricks’:

DC-GAN [Radford, Metz & Chintala,’15]
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Generative Models of Natural Images
• CNNs can also be used to generate images, using appropriate loss and 

optimization ‘tricks’:

•DC-GAN [Radford, Metz & Chintala,’15]
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• Convolutional Deep Learning models thus appear to 
capture high level image properties more efficiently than 
previous models.
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• Convolutional Deep Learning models thus appear to 
capture high level image properties more efficiently than 
previous models.
• Highly Expressive Representations capturing complex geometrical 

and statistical patterns.
• Excellent generalization: “beating” the curse of dimensionality
• The representation extracts geometry and texture “automatically”
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• Convolutional Deep Learning models thus appear to 
capture high level image properties more efficiently than 
previous models.

•  Which architectural choices might explain this advantage 
mathematically?
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• Convolutional Deep Learning models thus appear to 
capture high level image properties more efficiently than 
previous models.

•  Which architectural choices might explain this advantage 
mathematically?
• Role of non-linearities?
• Role of convolutions?
• Role of depth?
• Interplay with geometrical, class-specific invariants?
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• Convolutional Deep Learning models thus appear to 
capture high level image properties more efficiently than 
previous models.

•  Which architectural choices might explain this advantage 
mathematically?

• Which optimization choices might explain this advantage?
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• Convolutional Deep Learning models thus appear to 
capture high level image properties more efficiently than 
previous models.

•  Which architectural choices might explain this advantage 
mathematically?

• Which optimization choices might explain this advantage?
• Presence of local minima or saddle points?
• Equivalence of local solutions?
• Role of Stochastic optimization?
• Role of Normalization?

49



Sequence learning with RNNs
• Images and Sounds are subject to the physical world (and to harmonic 

analysis).
•Other important data of interest is not: language, robotics. 
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• Images and Sounds are subject to the physical world (and to harmonic 
analysis).

•Other important data of interest is not: language, robotics. 

•Generic setup:

•Sequence modeling:

•Sequence translation:

Sequence learning with RNNs

S = (s0, s1, . . . , sk, . . . ) , sk 2 X

p(S) = p(s0)
Y

k

p(sk | s0 . . . sk�1)

p(S | R) = p(s0 | R)
Y

k

p(sk | s0 . . . sk�1, R)
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Sequence learning with RNNs
•Curse of dimensionality is broken by projecting the past information 

into a finite-dimensional space and using recurrence:

[from Chris Olah’s blog]

p(sk | s0 . . . , sk�1) = f(sk, hk)

hk = g(hk�1, sk) , hk 2 Rp .

s0 s1 s2 st st+1

52



Recent Sequential models
• Attention mechanisms [Badhanu et al’14, DeepMind’14-15, …]

– Introduce a controlled form of non-stationarity in the model

• Differentiable Memory structures: 
– LSTM [Hochreiter & Schmidhuber] 
– Tapes [NTM, Graves et al’14]
– Arrays [Memory Nets, Weston et al’14]
– Stacks [Joulin & Mikolov’15]
– …

(a) (b)
Figure 1: (a) Neural network extended with push-down stack and a controlling mechanism that
learns what action (among PUSH, POP and NO-OP) to perform. (b) The same model extended with
a doubly-linked list with actions INSERT, LEFT, RIGHT and NO-OP.

4.2 Pushdown network

In this section, we describe a simple structured memory inspired by pushdown automaton, i.e., an
automaton which employs a stack. We train our network to learn how to operate this memory with
standard optimization tools.

A stack is a type of persistent memory which can be only accessed through its topmost element.
Three basic operations can be performed with a stack: POP removes the top element, PUSH adds
a new element on top of the stack and NO-OP does nothing. For simplicity, we first consider a
simplified version where the model can only choose between a PUSH or a POP at each time step.
We suppose that this decision is made by a 2-dimensional variable at which depends on the state of
the hidden variable ht:

at = f (Aht) , (3)
where A is a 2⇥m matrix (m is the size of the hidden layer) and f is a softmax function. We denote
by at[PUSH], the probability of the PUSH action, and by at[POP] the probability of the POP action.
We suppose that the stack is stored at time t in a vector st of size p. Note that p could be increased
on demand and does not have to be fixed which allows the capacity of the model to grow. The top
element is stored at position 0, with value st[0]:

st[0] = at[PUSH]�(Dht) + at[POP]st�1[1], (4)

where D is 1 ⇥m matrix. If at[POP] is equal to 1, the top element is replaced by the value below
(all values are moved by one position up in the stack structure). If at[PUSH] is equal to 1, we move
all values down in the stack and add a value on top of the stack. Similarly, for an element stored at
a depth i > 0 in the stack, we have the following update rule:

st[i] = at[PUSH]st�1[i� 1] + at[POP]st�1[i+ 1]. (5)

We use the stack to carry information to the hidden layer at the next time step. When the stack is
empty, st is set to �1. The hidden layer ht is now updated as:

ht = �

�
Uxt +Rht�1 + Ps

k
t�1

�
, (6)

where P is a m⇥ k recurrent matrix and s

k
t�1 are the k top-most element of the stack at time t� 1.

In our experiments, we set k to 2. We call this model Stack RNN, and show it in Figure 1-a without
the recurrent matrix R for clarity.

Stack with a no-operation. Adding the NO-OP action allows the stack to keep the same value on
top by a minor change of the stack update rule. Eq. (4) is replaced by:

st[0] = at[PUSH]�(Dht) + at[POP]st�1[1] + at[NO-OP]st�1[0].

Extension to multiple stacks. Using a single stack has serious limitations, especially considering
that at each time step, only one action can be performed. We increase capacity of the model by
using multiple stacks in parallel. The stacks can interact through the hidden layer allowing them to
process more challenging patterns.

4

[Joulin & Mikolov,’15]
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Applications of Recurrent Models
•Language modeling (see Andrej Karpathy’s blog)
•Machine Translation:

Published as a conference paper at ICLR 2015

normalized the L2-norm of the gradient of the cost function each time to be at most a predefined
threshold of 1, when the norm was larger than the threshold (Pascanu et al., 2013b). Each SGD
update direction was computed with a minibatch of 80 sentences.

At each update our implementation requires time proportional to the length of the longest sentence in
a minibatch. Hence, to minimize the waste of computation, before every 20-th update, we retrieved
1600 sentence pairs, sorted them according to the lengths and split them into 20 minibatches. The
training data was shuffled once before training and was traversed sequentially in this manner.

In Tables 2 we present the statistics related to training all the models used in the experiments.

C TRANSLATIONS OF LONG SENTENCES

Source An admitting privilege is the right of a doctor to admit a patient to a hospital or a medical centre
to carry out a diagnosis or a procedure, based on his status as a health care worker at a hospital.

Reference Le privilège d’admission est le droit d’un médecin, en vertu de son statut de membre soignant
d’un hôpital, d’admettre un patient dans un hôpital ou un centre médical afin d’y délivrer un
diagnostic ou un traitement.

RNNenc-50 Un privilège d’admission est le droit d’un médecin de reconnaı̂tre un patient à l’hôpital ou un
centre médical d’un diagnostic ou de prendre un diagnostic en fonction de son état de santé.

RNNsearch-50 Un privilège d’admission est le droit d’un médecin d’admettre un patient à un hôpital ou un
centre médical pour effectuer un diagnostic ou une procédure, selon son statut de travailleur des
soins de santé à l’hôpital.

Google
Translate

Un privilège admettre est le droit d’un médecin d’admettre un patient dans un hôpital ou un
centre médical pour effectuer un diagnostic ou une procédure, fondée sur sa situation en tant
que travailleur de soins de santé dans un hôpital.

Source This kind of experience is part of Disney’s efforts to ”extend the lifetime of its series and build
new relationships with audiences via digital platforms that are becoming ever more important,”
he added.

Reference Ce type d’expérience entre dans le cadre des efforts de Disney pour ”étendre la durée de
vie de ses séries et construire de nouvelles relations avec son public grâce à des plateformes
numériques qui sont de plus en plus importantes”, a-t-il ajouté.

RNNenc-50 Ce type d’expérience fait partie des initiatives du Disney pour ”prolonger la durée de vie de
ses nouvelles et de développer des liens avec les lecteurs numériques qui deviennent plus com-
plexes.

RNNsearch-50 Ce genre d’expérience fait partie des efforts de Disney pour ”prolonger la durée de vie de ses
séries et créer de nouvelles relations avec des publics via des plateformes numériques de plus
en plus importantes”, a-t-il ajouté.

Google
Translate

Ce genre d’expérience fait partie des efforts de Disney à “étendre la durée de vie de sa série et
construire de nouvelles relations avec le public par le biais des plates-formes numériques qui
deviennent de plus en plus important”, at-il ajouté.

Source In a press conference on Thursday, Mr Blair stated that there was nothing in this video that might
constitute a ”reasonable motive” that could lead to criminal charges being brought against the
mayor.

Reference En conférence de presse, jeudi, M. Blair a affirmé qu’il n’y avait rien dans cette vidéo qui puisse
constituer des ”motifs raisonnables” pouvant mener au dépôt d’une accusation criminelle contre
le maire.

RNNenc-50 Lors de la conférence de presse de jeudi, M. Blair a dit qu’il n’y avait rien dans cette vidéo qui
pourrait constituer une ”motivation raisonnable” pouvant entraı̂ner des accusations criminelles
portées contre le maire.

RNNsearch-50 Lors d’une conférence de presse jeudi, M. Blair a déclaré qu’il n’y avait rien dans cette vidéo qui
pourrait constituer un ”motif raisonnable” qui pourrait conduire à des accusations criminelles
contre le maire.

Google
Translate

Lors d’une conférence de presse jeudi, M. Blair a déclaré qu’il n’y avait rien dans cette vido
qui pourrait constituer un ”motif raisonnable” qui pourrait mener à des accusations criminelles
portes contre le maire.

Table 3: The translations generated by RNNenc-50 and RNNsearch-50 from long source sentences
(30 words or more) selected from the test set. For each source sentence, we also show the gold-
standard translation. The translations by Google Translate were made on 27 August 2014.
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[Badhanu et al]
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Applications of Recurrent Models
•Synthesis models:

Figure 15: Real and generated handwriting. The top line in each block is
real, the rest are unbiased samples from the synthesis network. The two texts
are from the validation set and were not seen during training.

33

[A. Graves]
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• Nonlinear Recurrent models can capture stationary information 
beyond second-order structure.
– Comparisons with n-gram and convolutional models?
– Extension to high-dimensional spaces?

• Attention and external memory models provide “non-stationary relief ”
– Role of memory layout?
– Relationship to non-parametric models (eg K-Nearest Neighbors)
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• Deep Networks define a class of “universal approximators”:

Deep Learning Approximation Theory

Theorem [C’89, H’91] Let ⇢() be a bounded, non-constant continuous func-
tion. Let I
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•Deep Networks define a class of “universal approximators”:

• It guarantees that even a single hidden-layer network can represent any 
classification problem in which the boundary is locally linear (smooth).

• It does not inform us about which architectures are good…
•…Or how they relate to the optimization.

Deep Learning Approximation Theory

Theorem [C’89, H’91] Let ⇢() be a bounded, non-constant continuous func-
tion. Let I

m

denote the m-dimensional hypercube, and C(I
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) denote the space
of continuous functions on I
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. Given any f 2 C(I
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Deep Learning Estimation Theory
Theorem [Barron’92] The mean integrated square error between the esti-

mated network

ˆF and the target function f is bounded by

O

 
C2

f

N

!
+O

✓
Nm

K
logK

◆
,

where K is the number of training points, N is the number of neurons, m is the

input dimension, and Cf measures the global smoothness of f .

59



• Combines approximation and estimation error. 
• Does not explain why online/stochastic optimization works better than 

batch normalization.
• Does not relate generalization error with choice of architecture.

Deep Learning Estimation Theory
Theorem [Barron’92] The mean integrated square error between the esti-

mated network

ˆF and the target function f is bounded by

O

 
C2

f
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!
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✓
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logK

◆
,

where K is the number of training points, N is the number of neurons, m is the

input dimension, and Cf measures the global smoothness of f .
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Statistical Learning Theory
• One can compute the complexity or capacity of Neural Network 

models by measuring how many configurations can be shattered (VC 
dimension) [P. Bartlett et al, “Vapnik-Chervonenkis Dimension of Neural 
Nets”]

• The capacity of the network, if measured by the number of pieces in a 
piecewise linear approximation, increases exponentially with depth 
[Montufar, Pascanu et al, ’14]

• These results quantify an upper bound on the empirical risk of deep 
neural networks

• They do not explain the superior generalization properties of CNNs 
versus models with similar capacity

• The bounds might be very pessimistic.
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Unsupervised Learning with Deep Networks
• Generally speaking, given high-dimensional data                          

.                      , we want to estimate a low-dimensional 
model characterizing the population.
X = (x1, . . . , xn)
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Unsupervised Learning with Deep Networks
• Generally speaking, given high-dimensional data                          

.                      , we want to estimate a low-dimensional 
model characterizing the population.

• Why do we care? 
– Simulation environments, prediction, inverse problems, transfer 

learning.

X = (x1, . . . , xn)
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Unsupervised Learning with Deep Networks
• Generally speaking, given high-dimensional data                          

.                      , we want to estimate a low-dimensional 
model characterizing the population.

• Why do we care? 
– Simulation environments, prediction, inverse problems, transfer 

learning.
• Problem: X is itself high-dimensional! (unless you believe 

in the low-dimensionality manifold hypothesis).

X = (x1, . . . , xn)
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Unsupervised Learning with Deep Networks
•Generally speaking, given high-dimensional data                          

.                      , we want to estimate a low-dimensional 
model characterizing the population.

•Why do we care? 
– Simulation environments, prediction, inverse problems, transfer 

learning.
•Problem: X is itself high-dimensional! (unless you believe 

in the low-dimensionality manifold hypothesis)
•Prior can be encoded in a parametric generative model: 

density estimation.
– Ex: GMM is a shallow model that assumes density concentrates in a 

finite number of modes
– If data is sequential, exploit temporal regularity (eg word2vec).

X = (x1, . . . , xn)
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Unsupervised Learning with Deep Networks

• How to learn a representation from unlabeled data that 
captures regularity AND complexity? 

• How to relate auto-encoder models with variational 
inference?
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Unsupervised Learning with Deep Networks

• How to learn a representation from unlabeled data that 
captures regularity AND complexity? 

• How to relate auto-encoder models with variational 
inference?

• How to evaluate unsupervised models properly?

• How to relate deep representations with the method of 
moments and maximum entropy?
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Optimization in Deep Learning
• Geoff Hinton, when describing their landmark 2012 Imagenet result: 

“We applied all the tricks that Yann and his lab had developed over the 
last 10 years…plus dropout”
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Optimization in Deep Learning
• Geoff Hinton, when describing their landmark 2012 Imagenet result: 

“We applied all the tricks that Yann and his lab had developed over the 
last 10 years…plus dropout”

• There is a functional equivalence between models of different depths 
at equal capacity ( [Ba and Caruana’14]). 

• So why deep models perform better in practice?
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Non-Convex Optimization
• [Choromaska et al, AISTATS’15] (also [Dauphin et al, ICML’15] ) use 

tools from Statistical Physics to explain the behavior of stochastic 
gradient methods when training deep neural networks. 

[Choromaska et al, AISTATS’15]
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Non-Convex Optimization
• [Choromaska et al, AISTATS’15] (also [Dauphin et al, ICML’15] ) use 

tools from Statistical Physics to explain the behavior of stochastic 
gradient methods when training deep neural networks. 

• Offers a macroscopic explanation of why SGD “works”.
• Gives a characterization of the network depth.
• Strong model simplifications, no convolutional specification.

[Choromaska et al, AISTATS’15]
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Tentative Agenda
1. Convolutional and Recurrent Neural Networks

– Invariance, Stability
– Scattering Networks
– Supervised Learning with CNNs
– Properties of CNNs
– Recurrent Models
– Guest Lecture: Wojciech Zaremba (OpenAI) 

2. Unsupervised Learning with Deep Networks
– Auto encoders
– Variational Autoencoders
– Gibbs models
– Generative Adversarial Networks
– Guest Lecture: Ian Goodfellow (Google Brain) 

3. Optimization & Misc
– Dropout, Batch Normalization
– Non-convex Optimization and Tensor Decompositions
– Reasoning, Attention and Memory (time permitting)
– Guest Lecture:  TBA
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