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e Office Hours

— Tuesdays 4-6pm, Evans 419

» Course evaluation
— Paper Reviewing (30%): two papers during the semester

—Final Project (70%): you can choose among
* Oral Paper presentation
* [Iny research project
» Contribute to an open-source software package (Torch, Theano, Caffe)

—Final Project Proposal due April | st

» B-Courses (public access): https://bcourses.berkeley.edu/courses/
1413083

» Github (public access): https://github.com/joanbruna/stat? | 2b



https://bcourses.berkeley.edu/courses/1413088
https://github.com/joanbruna/stat212b

e Exhaustive review of state-of-the-art

— Although we will talk about recent work

— (5280 is focused on computer vision tasks.
— (S 188/287 develops some (deep) Reinforcement Learning.
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e Exhaustive review of state-of-the-art

— Although we will talk about recent work

— (5280 is focused on computer vision tasks.
— (S 188/287 develops some (deep) Reinforcement Learning.

* Hands-on implementations
— Although (you!) will implement stuft

e "“Stratosferic’” Al

— Although we will talk a brt about Reasoning, Memory and sequence-
to-sequence learning.



* Mathematical models of Deep Convolutional Networks

* Supervised and Unsupervised learning using Deep
models.

* Applications to computer vision, speech and time series.

* Relationships between Deep Learning and “classic”
models.

* Open mathematical/statistical questions.
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. Good understanding of Convolutional (and recurrent)
Networks

. Overview of current DL research

. ldentification of “good” open problems.

. Feedback!



Deep Learning (take 1)



~ Early Hierarchical Feature Models for Vision:

* Hubel & Wiesel [60s] Simple & Complex cells architecture:

“Simple cells”
“Complex

cells=

pooling
Multiple subsampling
convolutions

* Fukushima's Neocognitron [ 70s]

)
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Hg 2. Schematic diagram illu slraling the
interconnections between layers in the
neocogn

12 figures from Yann LeCun’s CVPR'I 5 plenary




* Yann LeCun’s Early ConvNets [80s]:

10 10 10 10 10
4x4 4x4 A | 4x4x4
12 \ -_‘,
8x8 8x8x2 E\‘j '// 8x8x2
e \
R\V/i
! A
16x16 16x16 | 16x16 16x16 16x16
S-;itngle lay.e-r Two layers FC locally connected Shared weights Shared weights

—Used for character recognition
— Irained with back propagation.

13 figures from Yann LeCun’'s CVPR'[ 5 plenary



Desplte Its very competitive performance, deep learning

archrtectures were not widespread before 201 2.

— State-of-the-art in handwritten pattern recognition [LeCun et al. ‘89,

Ciresan et al, 0/, etc]
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Despite Its very competitive performance, deep learning
archrtectures were not widespread before 2012,
—Face detection [Vaillant et al'93,94 ; Osadchy et al, ‘03, '04, '0/]
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* Despite its very competitive performance, deep learning

archrtectures were not widespread before 2012,

—Scene Parsing [Farabet et al, "1 2, | 3]

RGB Input

Laplacian
Pyramid

Level 1
Features

|16

Categories
gl
Level 2 Upsampled
Features Level 2 Features

fisures from Yann LeCun’'s CVPR'I 5 plenary



* Despite its very competitive performance, deep learning
archrtectures were not widespread before 2012,
—Scene Parsmg [Farabet et al, "1 2, | 3]

ioures from Yann LeCun’s CVPR'[5 n



Long Story Short

* “A class of parametrized non-linear representations
encoding appropriate domain knowledge (invariance
and stationarity) that can be (massively) optimized
efficiently using stochastic gradient descent”
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Long Story Short

* “A class of parametrized non-linear representations
encoding appropriate domain knowledge (invariance

and sta

lonarity) that can be (massively) optimized
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p(-)

ly using stochastic gradient descent”

z,0)=pWrlp(Wr-1...p(Wi(z))...)

- Convolutional Tensors

. point-wise thresholding
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Long Story Short

* “A class of parametrized non-linear representations
encoding appropriate domain knowledge (invariance
and stationarity) that can be (massively) optimized
efficiently using stochastic gradient descent”

(x, ©) = p(Wr(p(Wr—1...p(Wi(x))...)

W. . Convolutional Tensors

p(-) : point-wise thresholding

Given labeled data {z;,y;};, solve using online stochastic optimization:

7 (0) = Softmax(CI)(xz,
OF argmm E(© Z€



— oo many parameters to learn from few labeled examples.
—"| know my features are better for this task’.
—Non-convex optimization? No, thanks.

—Black-box model, no interpretabillity.

—Mostly point estimates: Non inferential.

21



Deep Learning (take 2)



* 2012-2014 Imagenet results: CNN
non-CNN

* 2015 results: MSRA under 3.5% error. (using a CNN with 150 layers!)

23 figures from Yann LeCun’s CVPR'I5 plenary



~ Progress in large-scale Image Classification

Computers Stop Squinting and Open Their Eyes
Error rates on a popular image recognition challenge have fallen dramatically since the advent of
deep learning systems in the 2012 competition.

24 %

Incorrect Guesses
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Sources: ImageNet, Stanford Vision Lab Bloomberg m
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AlLearnstoPintheTailonthe Donkey
Computers are getting better at figuring out where in a picture a specific object is, with error rates
dropping in recent years.
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* What made this result possible?
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* What made this result possible?

—Larger training sets (1.2 million, high-resolution training samples, 000
object categories)

— Better Hardware (GPU)
— Better Learning Regularization (eg Dropout)

— Better Optimization Conditioning (eg Batch Normalization)
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— Better Learning Regularization (eg Dropout)
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* What made this result possible?

—Larger training sets (1.2 million, high-resolution training samples, 000
object categories)

— Better Hardware (GPU)
— Better Learning Regularization (eg Dropout)

— Better Optimization Conditioning (eg Batch Normalization)

* |s this just for a particular dataset?

* |s this just for a particular task?

* Why are these archrtectures so efficient!
* We'll look for mathematical and statistical reasons.
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* No. Nowadays CNNs hold the state-of-the-art on virtually any object
classification task.

Word error rate on Switchboard
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Speech Recognition
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 No. CNINs work well on domains where there is a low-dimensional
geometric structure.

AtomNet: A Deep Convolutional Neural Network for
Bioactivity Prediction in Structure-based Drug

Discovery
Izhar Wallach Michael Dzamba Abraham Heifets
Atomwise, Inc. Atomwise, Inc. Atomwise, Inc.
izhar@atomwise.com miskoRatomwise.com abe@atomwise.com
Abstract

Deep convolutional neural networks comprise a subclass of deep neural networks
(DNN) with a constrained architecture that leverages the spatial and temporal
structure of the domain they model. Convolutional networks achieve the best pre-
dictive performance in areas such as speech and image recognition by hierarchi-
cally composing simple local features into complex models. Although DNNs have
been used in drug discovery for QSAR and ligand-based bioactivity predictions,
none of these models have benefited from this powerful convolutional architec-
ture. This paper introduces AtomNet, the first structure-based, deep convolutional
neural network designed to predict the bioactivity of small molecules for drug dis-
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* No. CNN architectures also obtain state-of-the-art performance on
many other tasks:

— Object Localization
[R-CNIN, HyperColumns, Overfeat, etc.]

Pose estimation [ Tomson et al, CVPR'| 5]
32 figures from Yann LeCun’s CVPR'I5 plenary



* No. CNN architectures also obtain state-of-the-art performance on

other tasks:
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* No. CNN architectures also obtain state-of-the-art performance on
other tasks:

° Image Captioning [Vinyals et al' | 4, Karpathy et al '14, Donahue et al' |4, Kiros et al' | 4MSR'[ 4]

A person riding a Two dogs play in the grass. A skateboarder does a trick A dog is jumping to catch a
motorcycle on a dirt road.

on aramp.

o lfisbee.
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* No. CNN architectures also obtain state-of-the-art performance on
other tasks:

° Image Captioning [Vinyals et al' | 4, Karpathy et al '14, Donahue et al' |4, Kiros et al' | 4MSR'[ 4]

A person riding a Two dogs play in the grass. A skateboarder does a trick A dog is jumping to catch a
motorcycle on a dirt road. on a ramp. frisbee
P |7

Original / PSNR Bicubic / 24.04 dB SC / 25.58 dB SRCNN / 27.58 dB

» Optical Flow estimation [Zontar & LeCun, "I 5]
* elc..
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Beyond Supervised Learning
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* Deep Mind success (201 3-now)
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* Visual analogies using CNNSs:
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* Exploit spatio-temporal structure to constrain good image
representations, eg:

Unlabeled training image

oooooooo

[Goroshin et al'| 5]

Train Deep Net to recover relative position

'Doersch et al'l 5]
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* CNN Representati

ons arising from large-scale classification

“disentangle” texture from geometry:

Style Reconstructions 3

Input image $

Content Reconstructions

O Style |:|

Representations
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* CNN Representations arising from large-scale classification
“disentangle” texture from geometry:

[Gathys et al' | 5]

4]



* CNNs can also be used to generate images, using appropriate loss and
optimization ‘tricks”:

DC-GAN [Radford, Metz & Chintala, | 5]

4)



* CNNs can also be used to generate images, using appropriate loss and
optimization ‘tricks”:

* DC-GAN [Radford, Metz & Chintala, | 5]
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* Convolutional Deep Learning models thus appear to
capture high level image properties more efficiently than
previous models.
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» Convolutional Deep Learning mode
capture high level image properties
previous models.

s thus appear to

more efficiently than

* Highly Expressive Representations capturing complex geometrical

and statistical patterns.

* Excellent generalization: “beating” the curse of dimensionality

* The representation extracts geometry and texture “automatically”

45



* Convolutional Deep Learning models thus appear to
capture high level image properties more efficiently than
previous models.

* Which architectural choices might explain this advantage
mathematically?
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* Convolutional Deep Learning models thus appear to
capture high level image properties more efficiently than
previous models.

* Which architectural choices might explain this advantage
mathematically?

e Role of non-linearities?

* Role of convolutions!
* Role of depth!?
* Interplay with geometrical, class-specific invariants?

47



* Convolutional Deep Learning models thus appear to
capture high level image properties more efficiently than
previous models.

* Which architectural choices might explain this advantage
mathematically?

* Which optimization choices might explain this advantage!
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* Convolutional Deep Learning models thus appear to
capture high level image properties more efficiently than
previous models.

* Which architectural choices might explain this advantage
mathematically?

* Which optimization choices might explain this advantage!

* Presence of local minima or saddle points?

* Equivalence of local solutions!

* Role of Stochastic optimization?

e Role of Normalization!?

49



* Images and Sounds are subject to the physical world (and to harmonic
analysis).
» Other important data of interest Is not: language, robotics.

50



Sequence learning with RNNs

* Images and Sounds are subject to the physical world (and to harmonic
analysis).
» Other important data of interest Is not: language, robotics.

* Generic setup:

S =1(50,81y--,8ky--.), SR EX

* Sequence modeling:

p(S) = p(so) Hp(Sk | S0...5k—1)
k
* Sequence translation:

p(S| R)=p(so | R) || p(sk | s0.. 511, R)

51



 Curse of dimensionality Is broken by projecting the past information
into a finite-dimensional space and using recurrence:

p(sk | so---s8k-1) = [(Sk, h)
hi = g(hk—1,5%) , hry € RP .

I
A

!
é

®  ®
I

52
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e Attention

mechanisms [Badhanu et al' |4, DeepMind’'14-15, .. .]

—Introduce a controlled form of non-stationarity in the model

* Differentiable Memory structures:
—LSTM [Hochrerter & Schmidhuber]

— lapes [
— Arrays

N TM, Graves et al' | 4]
Memory Nets, Weston et al' [ 4]
— Stacks [Joulin & Mikolov'| 5
input hidden output input hidden output
U V U Vv
st ———> h, S Xt > h > vt
/ D / D
5t1[0] l A st[0] La00] l A Li[0]
St1 at > St Let at > L
action action
stack(t-1) stack(t) list(t-1) list(t)

[Joulin & Mikoloy, | 5]
53



Applications of Recurrent Models

* Language modeling (see Andrej Karpathy's blog)

 Machine Translation:

Source

An admitting privilege is the right of a doctor to admit a patient to a hospital or a medical centre
to carry out a diagnosis or a procedure, based on his status as a health care worker at a hospital.

Reference

Le privilege d’admission est le droit d’un médecin, en vertu de son statut de membre soignant
d’un hopital, d’admettre un patient dans un hopital ou un centre médical afin d’y délivrer un
diagnostic ou un traitement.

RNNenc-50

Un privilege d’admission est le droit d’un médecin de reconnaitre un patient a I’hdpital ou un
centre médical d’un diagnostic ou de prendre un diagnostic en fonction de son état de sant€.

RNNsearch-50

Un privilege d’admission est le droit d’un médecin d’admettre un patient a un hopital ou un
centre médical pour effectuer un diagnostic ou une procédure, selon son statut de travailleur des
soins de santé a I’hopital.

Google
Translate

Un privilege admettre est le droit d’un médecin d’admettre un patient dans un hopital ou un
centre médical pour effectuer un diagnostic ou une procédure, fondée sur sa situation en tant
que travailleur de soins de santé dans un hopital.

[Badhanu et al]
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* Synthesis models:
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* Nonlinear Recurrent models can capture stationary information
beyond second-order structure.

— Comparisons with n-gram and convolutional models?

— Extension to high-dimensional spaces!?

* Attention and external memory models provide “non-stationary relief”
—Role of memory layout?

— Relationship to non-parametric models (eg K-Nearest Neighbors)
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Deep Learning Approximation Theory

* Deep Networks define a class of “universal approximators’:

Theorem [C’89, H’91] Let p() be a bounded, non-constant continuous func-
tion. Let I,,, denote the m-dimensional hypercube, and C'([,,) denote the space
of continuous functions on I,,. Given any f € C([,,) and € > 0, there exists
N >0 and v;,w;,b;, 2 =1..., N such that

F(x) = Z vip(w! = 4+ b;) satisfies
i<N

sup |f(z) — F(z)| <e€.
x€l,,
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* Deep Networks define a class of “universal approximators’:

Theorem [C’89, H’91] Let p() be a bounded, non-constant continuous func-
tion. Let I,,, denote the m-dimensional hypercube, and C'([,,) denote the space
of continuous functions on I,,. Given any f € C([,,) and € > 0, there exists
N > 0 and v;, w;,b;, 1 =1..., N such that

F(x) = Z vip(w! = 4+ b;) satisfies
i<N

sup |f(z) — F(z)| <e.

x€l,,

* [t guarantees that even a single hidden-layer network can represent any
classification problem in which the boundary is locally linear (smooth).

* [t does not inform us about which architectures are good...
* ...Or how they relate to the optimization.
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Deep Learning Estimation [heory

Theorem [Barron’92] The mean integrated square error between the esti-
mated network F' and the target function f is bounded by

C4 Nm
_f R
O<N>+O( I74 logK) :

where K is the number of training points, /V is the number of neurons, m is the
input dimension, and Cy measures the global smoothness of f.
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Theorem [Barron’92] The mean integrated square error between the esti-
mated network F' and the target function f is bounded by

C? Nm
—f LY
O<N>+O<KlogK>,

where K is the number of training points, IV is the number of neurons, m is the
input dimension, and Cy measures the global smoothness of f.

* Combines approximation and estimation error.

* Does not explain why online/stochastic optimization works better than
batch normalization.

* Does not relate generalization error with choice of architecture,
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* One can compute the complexity or capacity of Neural Network
models by measuring how many configurations can be shattered (VC
dimension) [P Bartlett et al,"Vapnik-Chervonenkis Dimension of Neural

Nets"]

* The capacity of the network, If measured by the number of pieces in a
plecewise linear approximation, increases exponentially with depth
[Montufar, Pascanu et al, '[4]

* These results quantify an upper bound on the empirical risk of deep
neural networks

* They do not explain the superior generalization properties of CNNs
versus models with similar capacity

* [he bounds might be very pessimistic.
6l



* Generally speaking, gsiven high-dimensional data
X = (x1,...,7,), We want to estimate a low-dimensional
model characterizing the population.
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* Generally speaking, gsiven high-dimensional data
X = (x1,...,7,), We want to estimate a low-dimensional
model characterizing the population.

* Why do we care!

—Simulation environments, prediction, inverse problems, transfer
learning.
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Unsupervised Learning with

* Generally speaking, given high-dimensional data

Deep Networks

X = (x1,...,7,), We want to estimate a low-dimensional

model characterizing the population.
* Why do we care!

—Simulation environments, prediction, inverse problems, transfer

learning.

* Problem: X is itself high-dimensional! (unless you believe
in the low-dimensionality manifold hypothesis).
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Unsupervised Learning with Deep Networks

* Generally speaking, given high-dimensional data
X = (z1,...,z,), We want to estimate a low-dimensional
model characterizing the population.

* Why do we care!

—Simulation environments, prediction, inverse problems, transfer
learning.

* Problem: X is itself high-dimensional! (unless you believe
in the low-dimensionality manifold hypothesis)

* Prior can be encoded In a parametric generative model:
density estimation.

—Ex: GMM 1s a shallow model that assumes density concentrates in a
finite number of modes

—|f data Is sequential, exploit temporal regularity (eg word2vec).
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* How to learn a representation from unlabeled data that
captures regularity AND complexity?

e How to relate auto-encoder models with variational
iNnference!
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* How to learn a representation from unlabeled data that
captures regularity AND complexity?

e How to relate auto-encoder models with variational
iNnference!

* How to evaluate unsupervised models properly!

* How to relate deep representations with the method of
moments and maximum entropy!

67



* Geoff Hinton, when describing their landmark 2012 Imagenet result:
“We applied all the tricks that Yann and his lab had developed over the
last 10 years...plus dropout”
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* Geoff Hinton, when describing their landmark 2012 Imagenet result:
“We applied all the tricks that Yann and his lab had developed over the
last 10 years...plus dropout”

* There Is a functional equivalence between models of different depths
at equal capacity ( [Ba and Caruana'l4]).

* S0 why deep models perform better In practice!
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* [Choromaska et al, AISTATS | 5] (also [Dauphin et al, ICML [5] ) use
tools from Statistical Physics to explain the behavior of stochastic
gradient methods when training deep neural networks.

nhidden
25
50
100
250
S00

count

[Choromaska et al, AISTATS'| 5]
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* [Choromaska et al, AISTATS | 5] (also [Dauphin et al, ICML [5] ) use
tools from Statistical Physics to explain the behavior of stochastic
gradient methods when training deep neural networks.

nhidden
25
S50
100
250
S00

count

loss

[Choromaska et al, AISTATS | 5]
* Offers a macroscopic explanation of why SGD “works'.

* Gives a characterization of the network depth.

* Strong model simplifications, no convolutional specification.
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|. Convolutional and Recurrent Neural Networks
—Invariance, Stabllity
—Scattering Networks
—Supervised Learning with CNNs
—Properties of CNNs
—Recurrent Models
— Guest Lecture: Wojciech Zaremba (OpenAl)
2. Unsupervised Learning with Deep Networks
—Auto encoders
—Variational Autoencoders
—Gibbs models
—Generative Adversarial Networks
— Guest Lecture: lan Goodfellow (Google Brain)
3. Optimization & Misc
—Dropout, Batch Normalization
—Non-convex Optimization and Tensor Decompositions
—Reasoning, Attention and Memory (time permitting)
—Guest Lecture: TBA
72



